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ABSTRACT
For solving combinatorial optimisation problems with metaheuris-
tics, different search operators are applied for sampling new so-
lutions in the neighbourhood of a given solution. It is important
to understand the relationship between operators for various pur-
poses, e.g., adaptively deciding when to use which operator to find
optimal solutions efficiently. However, it is difficult to theoretically
analyse this relationship, especially in the complex solution space
of combinatorial optimisation problems. In this paper, we propose
to empirically analyse the relationship between operators in terms
of the correlation between their local optima and develop a measure
for quantifying their relationship. The comprehensive analyses on
a wide range of capacitated vehicle routing problem benchmark
instances show that there is a consistent pattern in the correlation
between commonly used operators. Based on this newly proposed
local optima correlation metric, we propose a novel approach for
adaptively selecting among the operators during the search process.
The core intention is to improve search efficiency by preventing
wasting computational resources on exploring neighbourhoods
where the local optima have already been reached. Experiments
on randomly generated instances and commonly used benchmark
datasets are conducted. Results show that the proposed approach
outperforms commonly used adaptive operator selection methods.

CCS CONCEPTS
•Mathematics of computing→Evolutionary algorithms;Com-
binatorial optimization; Randomized local search.

KEYWORDS
Adaptive operator selection, local search, metaheuristics, experience-
based optimisation, capacitated vehicle routing problem, combina-
torial optimisation

1 INTRODUCTION
Metaheuristics in generate-and-test style compose one of the main
fields of optimisation. Those algorithms iteratively improve the
solutions by replacing the current solution with a new one of better
quality. Search operators, like mutation and crossover operators in
evolutionary algorithms and differential rules in differential evolu-
tion algorithms, contribute the main part in sampling new solutions.
∗Corresponding author

Each search operator composes a unique solution neighbourhood,
i.e., a subset of the solution space, and the new solutions are sam-
pled from the neighbourhood. As search operators contribute the
main part of the search ability of a metaheuristic algorithm, the
selection and combination of operators require deliberate design
to be efficient. In the literature, to solve unseen problems, several
novel operators have been proposed for better handling the unique
problem characteristics [3, 16]. However, domain knowledge of the
specific problem is required, which is inaccessible when facing a
new problem. An alternative approach is selecting and utilising
existing search operators from relative problems [10, 24]. Adap-
tive operator selection (AOS) is a specific research field focusing
on dynamically and adaptively selecting search operators during
the optimisation process of metaheuristic algorithms with the aim
of better utilising the search ability of candidate operators and
avoiding resource wasting on unpromising operators. Various AOS
approaches have been proposed and proved effective in genetic
algorithm [13], differential evolution [18, 20] and local search [10].

Most existing AOS studies focus on real-valued optimisation
problems [6, 20, 22, 28], while combinatorial optimisation prob-
lems, especially routing problems, are seldom considered [1, 10].
Because of the continuity, smoothness and numerical represen-
tation in real-value optimisation problems, the measurement of
operators’ effectiveness and similarity of searching states are rela-
tively straightforward [18, 20, 24]. However, in combinatorial opti-
misation, the discrete solution space and rugged fitness landscape
complicate the operator selection process [1, 10]. A recent work
[17] suggests that in complex vehicle routing problems, unexpected
local optima are reached frequently, leading to the unpromising
performance of the commonly used AOS approaches.

Investigation of the operators’ neighbourhood, in which the
new solutions are sampled, is intuitive for assisting the operator
selection. Researches of fitness landscape analysis (FLA) have been
conducted to investigate the characteristics of solution space of
combinatorial optimisation problems [25]. Various approaches have
been proposed to quantify the fitness landscape of a given neigh-
bourhood for a given problem [11, 12], such as local optima network
[15]. However, to the best of our knowledge, there is no research
focusing on the relationship between different neighbourhoods.
Due to the characteristics of search operators, the neighbourhood
structures of different operators may own implicit relationships.
During optimisation, with the historical record of the exploration
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by some operators at the early stage, the understanding of the
relationship is helpful for operator selection at the later stage.

Taking the capacitated vehicle routing problem (CVRP) as an
example, this paper investigates the following three research ques-
tions.
• In combinatorial optimisation problems, specifically CVRP,
does the relationship of the neighbourhood of different search
operators exists?
• If the relationship exists, how to quantify it?
• How to utilise the quantified relationship to enhance meta-
heuristics?

Local optimum location is one of the key features of a neighbour-
hood. An efficient optimisation algorithm is expected to detect and
avoid local optima to prevent early-maturing convergence. To an-
swer our research questions, this paper focuses on the local optima
in each operator’s neighbourhood. Specifically, the contributions
of this paper are as follows.
• A novel measurement of neighbourhood relationship, called
local optima correlation (LOC), is proposed to analyse and
quantify the relationship of search operators.
• Empirical analysis of LOC is conducted on a wide range
of CVRP benchmark instances. Results indicate that a con-
sistent relationship among a set of commonly used search
operators exists.
• We also propose a novel LOC-assisted AOS framework. The
framework does not rely on specific AOS characteristics,
so that most of the existing AOS approaches can be easily
adapted into the framework. Experimental study verifies the
effectiveness of the proposed framework.

The rest of this paper is organised as follows. Section 2 reviews
the literature on adaptive operator selection and fitness landscape
analysis. The proposed approach and framework are described in
Section 3. Section 4 presents the experiments and discusses the
results. Section 5 concludes.

2 BACKGROUND
This section comprehensively reviews related studies of adaptive
operator selection and fitness landscape analysis with a focus on
combinatorial optimisation problems, especially CVRP.

2.1 Adaptive Operator Selection
Adaptive operator selection (AOS) focuses on dynamically and adap-
tively selecting and applying search operators during the optimisa-
tion process so that the computational resource can be assigned to
the high-performanced operators at the different searching stages.
Various AOS approaches have been proposed and can be briefly
categorised into two classes [17], stateless AOS and state-based
AOS.

Stateless AOS approaches record every use of each operator
during the optimisation process and estimates the impact of each
operator based on the records. Then, the selection probabilities of
operators are obtained. There are two main components in stateless
AOS approaches: the credit assignment (CA), i.e., how to measure
the impact of using an operator, and the operator selection rule
(OSR), i.e., how to make a decision based on the credits. Fitness

improvement is one of the most classic and commonly used CA,
which calculates the credits as the difference of quality between a
newly sampled solution and the original solution [24]. Several dif-
ferent CA methods have been proposed to handle various problem
characteristics based on fitness improvement [5, 21]. Probability
matching (PM) is a widely studied OSR [1, 7, 20]. Its operator selec-
tion strategy can be described as Eq. (1),

𝑄𝑖 =𝛼 · 𝑟𝑖 + (1 − 𝛼)𝑄𝑖 ,

P𝑖 =P𝑚𝑖𝑛 + (1 − 𝐾 · P𝑚𝑖𝑛)
𝑄𝑖∑𝐾
𝑗=1𝑄 𝑗

,
(1)

where 𝐾 is the number of candidate operators, 𝑟𝑖 is the reward (i.e.,
credit) of using operator 𝑖 , and P𝑖 is the calculated probability of
selecting operator 𝑖 . P𝑚𝑖𝑛 and 𝛼 are two pre-defined parameters.
Based on PM, adaptive pursuit (AP) is developed for better sensibil-
ity [24]. AP introduces the parameter 𝛽 to control the sensibility of
updating the selection probability P𝑖 , as formulated in Eq. (2),

P𝑖 =

𝛽 · P𝑚𝑎𝑥 + (1 − 𝛽)P𝑖 , if 𝑖 = argmax

𝑗 ∈{1,...,𝐾 }
𝑄 𝑗 ,

𝛽 · P𝑚𝑖𝑛 + (1 − 𝛽)P𝑖 , otherwise,
(2)

where P𝑚𝑎𝑥 = 1 − (𝐾 − 1)P𝑚𝑖𝑛 . With a higher 𝛽 , AP reacts more
quickly than PM when the performance of operators changes along
with the optimisation stage.

In state-based AOS approaches, the features of an optimisation
stage (i.e., state) are involved in the decision-making. A mapping
from state to decision is learned from training data collected from
either the early stage of the current optimisation process or the
records of optimising similar problems. The state representation is
required to be informative for decision-making and easy to under-
stand by learners. In state-based AOS approaches for real-valued
optimisation [19] or assignment problem [4, 8], the state represen-
tation is straightforward, while in permutation-based combinato-
rial optimisation (e.g., vehicle routing problems), extracting state
features from sequential solutions in graph-based instances is chal-
lenging. Consoli et al. [2] takes the fitness landscape of the solution
population on capacitated arc routing problem (CARP) [14, 29] as
a state feature to select the crossover operators in evolutionary
algorithms. Due to the state directly generated from the whole
population, the method of [2] is not able to suggest a fine-grained
operator for each solution. L2I [10], a deep reinforcement learning
approach for operator selection, trains a graph attention network
to generate numerical features from CVRP instances, the current
solution and the record of previous operator selection, and achieves
high performance on randomly generated instances when a large
number of instances are accessible for training.

2.2 Fitness Landscape Analysis
Fitness landscape analysis (FLA) for combinatorial optimisation
problems is a popular approach for understanding the character-
istics of a given neighbourhood structure of a solution [11, 12]. It
has been successfully applied to several combinatorial optimisation
problems [23], such as travelling-thief problem [27] and dynamic
capacitated arc routing problem [25].

Many existing FLA approaches focus on sampling a set of repre-
sentative neighbour solutions (e.g., local optima) of a given solution
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to investigate the search space. The fitness values of these neigh-
bours are analysed with statistical metrics, such as auto-correlation,
fitness distribution, fitness distance correlation, etc., to characterise
the fitness landscape [23]. Recently, a novel FLA approach, called
local optima network (LON), has been proposed to consider the
fitness landscape as a network [15]. The nodes in the network rep-
resent the local optima obtained by local search operators, and the
edges indicate the relation between local optima [15]. Therefore,
the network analysis and visualisation tools can help people to
better understand the problem’s landscape.

However, the relationship between different neighbourhoods is
seldom investigated. To the best of our knowledge, no existing FLA
approach extracts or quantifies the relationship among a neigh-
bourhood set or the corresponding operator set.

3 METHODOLOGY
Relationship among operators is instructive for operator selection.
With the record of operator performance, the ability of other related
operators can be predicted. To fill the gap of research in relation-
ship between operators, and also to assist AOS for better decision-
making, we propose a measurement of relationship between search
operators, named local optima correlation (LOC). Based on LOC,
a novel AOS framework is proposed. This section first introduces
the local optima correlation (LOC) and then describes the proposed
LOC-assisted AOS framework, named AOS-LOC.

3.1 Local Optima Correlation
Given an optimisation problem and a solution, each search oper-
ator forms a neighbourhood for this solution, which consists of a
set of solutions generated by applying the operator to the given
solution. In a neighbourhood of a specific operator, if the quality
of a solution is better than all its neighbours, we say that the so-
lution reaches a local optimum of the operator, and the operator
is local-optimum-trapped on the solution. For a set of 𝐾 operators
and a solution 𝑠 , we introduce the local-optimum-trapped vector
𝑂𝑠 = (𝑜𝑠,1, 𝑜𝑠,2, . . . , 𝑜𝑠,𝐾 ), ∀𝑖 ∈ {1, 2, . . . , 𝐾}, 𝑜𝑠,𝑖 ∈ {−1, 1}. 𝑂𝑠 indi-
cates if a local optimum is reached or not for each operator 𝑜𝑝𝑒𝑖 .
𝑜𝑠,𝑖 = 1 indicates that 𝑥 reaches a local optimum in its neighbour-
hood corresponding to operator 𝑖 . If the local optimum of operator
𝑖 is not reached, then 𝑜𝑠,𝑖 = −1.

To better represent the characteristics of a solution space, a
number of𝑁 solutions are sampled from the solution space, forming
a solution sequence 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁 }. Therefore, a binary matrix
O can be constructed as Eq. (3).

O =


𝑂𝑠1
.
.
.

𝑂𝑠𝑁

 =

𝑜𝑠1,1 · · · 𝑜𝑠1,𝐾
.
.
.

. . .
.
.
.

𝑜𝑠𝑁 ,1 · · · 𝑜𝑠𝑁 ,𝐾

 . (3)

Each column 𝐶𝑖 = [𝑜𝑠1,𝑖 , 𝑜𝑠2,𝑖 , . . . , 𝑜𝑠𝑁 ,𝑖 ]𝑇 of O indicates if the local
optimum is reached or not for operator 𝑖 on each sampled solution
𝑠 𝑗 , ∀𝑗 ∈ {1, 2, . . . , 𝑁 }.

Taking 𝐶𝑖 and 𝐶 𝑗 as two binary sequences for any operators 𝑖
and 𝑗 , the local optima correlation (LOC) can be calculated by Eq.
(4).

LOC𝑖, 𝑗 = 𝑐𝑜𝑟𝑟 (𝐶𝑖 ,𝐶 𝑗 ) =
1
|𝑆 |

∑︁
𝑠𝑘 ∈𝑆

𝑜𝑠𝑘 ,𝑖𝑜𝑠𝑘 , 𝑗 . (4)

LOC𝑖, 𝑗 = 1 indicates that the local optima of operators 𝑖 and 𝑗
are always reached simultaneously, i.e., 𝐶𝑖 and 𝐶 𝑗 are perfectly
positively correlated. LOC𝑖, 𝑗 = −1 indicates that when any of the
operators 𝑖 or 𝑗 is trapped by a local optimum, the other one is
always able to find a better neighbour solution, i.e., 𝐶𝑖 and 𝐶 𝑗 are
perfectly negatively correlated. We form LOC𝑖, 𝑗 for all operators
into the local optima correlation matrix LOC as Eq. (5).

LOC =


LOC1,1 · · · LOC1,𝐾

.

.

.
. . .

.

.

.

LOC𝐾,1 · · · LOC𝐾,𝐾

 . (5)

LOC is an upper triangular matrix since 𝑐𝑜𝑟𝑟 (𝑋,𝑌 ) = 𝑐𝑜𝑟𝑟 (𝑌,𝑋 )
and the main diagonal values are 1 as 𝑐𝑜𝑟𝑟 (𝑋,𝑋 ) = 1.

For a sampled solution set,LOC reflects the implicit relationship
between operators on those solutions. When the LOC matrices per-
form high similarity between different sampling, we conclude that
the relationship found is consistent on the problem. Furthermore, if
the LOC matrices follow the same pattern between different prob-
lems, we conclude that the relationship found is possibly general
and doesn’t highly reply on the problem itself.

3.2 LOC-assisted Adaptive Operator Selection

Algorithm 1 General framework of local search with AOS.

Require: a set of 𝐾 search operators 𝑂𝑃𝐸 = {𝑜𝑝𝑒1, . . . , 𝑜𝑝𝑒𝐾 }, a
problem and its solution evaluator 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (), iteration budget
𝑚𝑎𝑥_𝑖𝑡𝑒 , a base AOS approach which can generate selection
probability by AOS.decision_making() and update record by
AOS.record_update()

1: 𝑠0 ← solution initialisation
2: for 𝑖𝑡𝑒 ← 1 to𝑚𝑎𝑥_𝑖𝑡𝑒 do
3: P ← AOS.decision_making()
4: 𝑜𝑝𝑒 ←randomly_select(𝑂𝑃𝐸,P)
5: 𝑠𝑖𝑡𝑒 ← 𝑜𝑝𝑒 (𝑠𝑖𝑡𝑒−1)
6: 𝑟𝑖𝑡𝑒 ← 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠𝑖𝑡𝑒 ) − 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠𝑖𝑡𝑒−1)
7: AOS.record_update(𝑜𝑝𝑒, 𝑟𝑖𝑡𝑒 )
8: end for
9: return 𝑠𝑚𝑎𝑥_𝑖𝑡𝑒

Algorithm 1 demonstrates the classic framework for applying
AOS in metaheuristics, taking local search as an example. At the
beginning of each optimisation iteration, the selection probability
of each operator is calculated based on the historical records (line 3).
An operator is selected according to the probability (line 4). Then a
new solution is generated by applying the selected operator to the
current solution and evaluated. The performance of the selected
operator is evaluated by CA (cf. Section 2.1). In Algorithm 1, the
fitness improvement is used (line 6), but other evaluation measures
can be adopted. At the end of this iteration, the operator selection
and performance are used to update the historical records in AOS.

The work of [17] investigates the behaviour and characteristic
of AOS approaches and suggests that in combinatorial optimisation
problems, especially complex vehicle routing problems, there are
usually many local optima that are reached unexpectedly, leading
to the failure of operator performance estimation. Specifically, the
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performance of an operator with high historical performance may
rapidly drop to zero as a consequence of reaching local optima.
However, AOS approaches will still assign a high selection proba-
bility to such an operator for a relatively long period due to its high
performance in history. Another operator will be assigned a high
selection probability only after the reputation of the local-optimum-
trapped operator decreases due to the considerable resource wasted
on it. In this case, the performance of AOS approaches diminishes.

Algorithm 2 General framework of local search with LOC-assisted
AOS.
Require: a set of 𝐾 search operators 𝑂𝑃𝐸 = {𝑜𝑝𝑒1, . . . , 𝑜𝑝𝑒𝐾 }, a

problem instance and an evaluator 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (), iteration budget
𝑚𝑎𝑥_𝑖𝑡𝑒 , a base AOS approach which can generate selection
probability by AOS.decision_making() and update record by
AOS.record_update(), matrix LOC

1: 𝐿𝑂 ← ∅
2: 𝑠0 ← solution initialisation
3: for 𝑖𝑡𝑒 ← 1 to𝑚𝑎𝑥_𝑖𝑡𝑒 do
4: 𝑃 ← AOS.decision_making()
5: for 𝑖 ∈ 𝐿𝑂 do
6: P ← P × [1 − LOC𝑖,1, . . . , 1 − LOC𝑖,𝐾 ]
7: end for
8: P ← P/(𝑠𝑢𝑚(P)
9: 𝑜𝑝𝑒 ← randomly_select(𝑂𝑃𝐸,P)
10: 𝑠𝑖𝑡𝑒 ← 𝑜𝑝𝑒 (𝑠𝑖𝑡𝑒−1)
11: 𝑟𝑖𝑡𝑒 ← 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠𝑖𝑡𝑒 ) − 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑠𝑖𝑡𝑒−1)
12: AOS.record_update(𝑜𝑝𝑒, 𝑟𝑖𝑡𝑒 )
13: if 𝑟𝑖𝑡𝑒 > 0 then
14: 𝐿𝑂 ← ∅
15: else
16: 𝐿𝑂 ← 𝐿𝑂 + 𝑜𝑝𝑒
17: end if
18: end for
19: return 𝑠𝑚𝑎𝑥_𝑖𝑡𝑒

For handling the aforementioned issue, predicting local-optimum-
trapped operators based on the previous records and avoiding ex-
ploring trapped operators is an intuitive strategy. If an operator
𝑜𝑝𝑒𝑖 is confirmed as local-optimum-trapped after trying it on the
current solution, other operators 𝑜𝑝𝑒 𝑗 that own high LOC (cf. Eq.
(4)) with 𝑜𝑝𝑒𝑖 are also likely to be trapped on the current solution.
We refer to those operators as likely trapped operators. Therefore,
we propose to assist the operator selection by LOC, as demonstrated
in Algorithm 2. An operator set 𝐿𝑂 is maintained to store the oper-
ators with which the current solution has reached a local optimum.
The selection probability calculated by AOS is modified by multi-
plying vector [1 − LOC𝑖,1, . . . , 1 − LOC𝑖,𝐾 ] for each operator 𝑖 in
𝐿𝑂 (line 6). For any operators 𝑖 and 𝑗 , the range of (1 − LOC𝑖, 𝑗 )
is [0, 2]. The lower the correlation of local optima of 𝑖 and 𝑗 is, the
higher (1 − LOC𝑖, 𝑗 ) is. Then, the probabilities of selecting likely
trapped operators decrease and the probabilities of selecting other
operators increase. In this way, less resource will be wasted. After
applying an operator, 𝐿𝑂 will be updated, as in lines 13-17.

In the proposed LOC-assisted AOS framework, the coupling
of AOS and LOC is considerably low, so most AOS approaches

that output selection probability can be easily embedded into our
proposed framework. It gives the framework high generality and
can be applied to various problems and AOS approaches.

4 EXPERIMENTAL STUDIES
Values in the LOC matrix of a given problem depend on the solu-
tion sampling. Operators’ performance on different solution sets
are different, which is a major factor that affects the stability and
generalisation of LOC. Hence, a stable LOC that is insensitive to
solution sampling is expected. We take capacitated vehicle routing
problem (CVRP), one of the most classic combinatorial optimisation
problems, as a test case, and conduct experiments to investigate
the characteristics of LOC matrix on a specific operator set. Then,
the obtained LOC is adopted into the proposed LOC-assisted AOS
framework to verify the optimisation ability of the framework. This
section first presents the experiment setting, and then presents the
empirical analysis of LOC on a wide range of CVRP benchmark
instances. Finally, the performance of LOC-assisted AOS framework
is presented and discussed.

4.1 Experiment Setting
We design two experiments, (i) empirical study of LOC’s pattern,
to verify the stability and capability of LOC to extract operators’
characteristics among different problem instances, and (ii) testing
of AOS-LOC framework, to verify the effectiveness of LOC to assist
the decision making of AOS.

4.1.1 Problem instances. In this paper, Euclidean CVRPs are con-
sidered as the test problem. A CVRP instance can be formed into a
graph 𝐺 = (𝑉 , 𝐸) with a set of capacitated vehicles. Each vertex in
𝑉 , called customer, owns a numerical feature named demand. Each
edge in 𝑉 represents a road connecting two customers and owns a
travel cost. The objective is to find a routing plan that minimises
the total travel cost of all vehicles, without violating the capacity
constraint of any vehicle. Euclidean CVRP is a specific subset of
CVRPs in which any two vertices are connected by an edge and
the travel cost is the Euclidean distance between the two vertices.
Readers are referred to [26] for the mathematical model of CVRP.
Various metaheuristics with multiple operators have been proposed
to solve CVRPs [1, 10], making it a good case for investigating AOS
and metaheuristics in solving combinatorial optimisation problems.
The uniformly randomly generated CVRP instances as in [10], re-
ferred to as UniRand, together with the commonly used benchmark
Li instances [9], Loggi and ORTEC instances1 are used for study-
ing LOC and LOC-assisted AOS, as listed in Table 2. For both the
solution sampling in the first experiment and optimisation in the
second experiment, processes stop at the 40,000th iteration on Uni-
Rand instances, as suggested in [10]. Processes stop at the 2000th
iteration on Li, Loggi and ORTEC instances due to the significantly
larger instance size.

4.1.2 Search operators. The comprehensive set of search operators
for AOS in CVRPs provided by Lu et al. [10] (Table 1) are used in
this paper as it is the state-of-the-art work in AOS for CVRPs. We
take the local search algorithm and operators in [10] as a case study

1Loggi and ORTEC instances: http://dimacs.rutgers.edu/programs /challenge/vrp/cvrp/
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Table 1: Candidate operators for CVRP[10].

Index Operator(#operated routes) Description

1 2opt Reverse a section of a given route
2 Symmetric-exchange(1) Exchange two customers in a given route
3 Relocate(1) Move one customer to another location in the given route
4 Cross/Reverse-cross(2) Exchange the end customers of two given routes
5-7 Symmetric-exchange(2) Exchange sections with same length in 1, 2, 3 between two routes
8-10 Relocate(2) Move a section with length 1, 2, 3 from a given route to another one
11 Cyclic-exchange(3) Exchange customers between three given routes

12-17 Asymmetric-exchange(2) Exchange sections with different length in 1, 2, 3 between two routes

Table 2: CVRP benchmark instances [9].

Instance |V| Minimum Instance |V| Minimum
#vehicles #vehicles

Li-21 560 10 Loggi-n401-k23 400 23
Li-22 600 15 Loggi-n501-k24 500 24
Li-23 640 10 Loggi-n601-k19 600 19
Li-24 720 10 Loggi-n601-k42 600 42
Li-25 760 19 Loggi-n901-k42 900 42
Li-26 800 10 Loggi-n1001-k31 1000 31
Li-27 840 20 ORTEC-n242-k12 241 12
Li-28 880 10 ORTEC-n323-k21 322 21
Li-29 960 10 ORTEC-n405-k18 404 18
Li-30 1040 10 ORTEC-n455-k41 454 41
Li-31 1120 10 ORTEC-n510-k23 509 23
Li-32 1200 11 ORTEC-n701-k64 700 64

of LOC and LOC-assisted AOS. In our experiments, all setting of
the algorithm are the same as in [10] unless otherwise stated.

4.1.3 Solution sampling for LOC. The solution set used to generate
LOC matrix does not require a specific sampling method. In the
first experiment, the solution set is obtained by recording solu-
tions during the optimisation process of the algorithm proposed
in [10] with one modification, thus all operators are applied on
each solution for sampling, while in the original algorithm, only
one single operator is selected and applied. As operators will travel
the neighbourhood to find better solutions, 𝑂𝑠 𝑗 (matrix element
in Eq. (3)) is obtained and one of the found neighbours of higher
quality will be randomly selected, denoted as 𝑠 𝑗+1, and replaces the
current solution 𝑠 𝑗 . Solutions are recorded by repeating the process.
If all operators are local-optima trapped on a specific solution, the
solution will not be recorded for calculating LOC, as it does not
provide essential information for analysis. Then, a LOC matrix can
be calculated based on the selected set. For a single instance, the
LOC calculation requires more computational resources than the
optimisation process for solving the instance. However, if LOC
matrices can extract general features between different instances
and perform similar patterns, the LOC matrices can be used inter-
instance to assist AOS, i.e., calculate LOC from seen small instances
and then use the LOC matrix in unseen, larger instances. Therefore
in the first experiment, the LOC matrix from different sampling on

the same instance and different sampling on different instances are
calculated and compared.

4.1.4 Validation of AOS-LOC. In the second experiment, the pro-
posed AOS-LOC is compared to base AOS approaches. L2I, the im-
provement operator selector proposed in [10], and two commonly
used stateless AOS approaches, PM and AP, are implemented as
base approaches. Notable L2I is trained and tested only on UniRand
instances, since it requires a large number of training instances fol-
lowing the same distribution as the target instance. AOS-LOCs with
PM, AP and L2I as the base approach are named as PM-LOC, AP-
LOC and L2I-LOC, respectively. Base AOS approaches in AOS-LOC
framework share the same parameter setting as they are used along.
Parameters in PM and AP are arbitrarily set as P𝑚𝑖𝑛 = 0.5

𝐾−1 , 𝛼 = 0.2
and 𝛽 = 0.2. L2I is trained and tested with the code2 provided by
[10] and the parameters are set as suggested in [10].

4.2 LOC Pattern
On all benchmark instances introduced in Section 4.1, ten indepen-
dent solution sampling trials are conducted and the corresponding
LOC matrix for each sampled solution set is calculated. Kendall
correlation coefficient is commonly used for evaluating the ranking
similarity of two paired data. It is applied to a pair of LOC matri-
ces to evaluate their similarity. Specifically, for each operator, the
Kendall correlation coefficient of corresponding rows in two LOC
matrices is calculated. Then, the average value of all operators is
calculated as the similarity of the two LOC matrices. The mean and
variance of similarity of each pair of sampling are shown in Table
3. The LOC from different sampling for an instance is consistent.

To compare the similarity of LOC matrices from different in-
stances, the average LOC matrix of the ten samplings is calculated
for each instance. As illustrative examples, Fig. 1 shows the aver-
age LOC matrices of three instances. Though the values in LOC
matrices are different, the rank of items in each row shares a sim-
ilar pattern. For example, the three single-route-operators, 2opt,
symmetric-exchange and relocate indexed with 1, 2 and 3, respec-
tively, have a high correlation to each other. The operators 4 and 5
(i.e., cross/reverse-cross and symmetric-exchange with section length
1) also always have a high correlation. The operator indexed with
8, relocate with section length 1, always has a different pairwise
correlation compared to operators 7 and 9 (i.e., symmetric-exchange
with section length 3 and relocate with section length 2), though

2Code of L2I is provided by [10], available at github.com/rlopt/l2i
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1 .76 .81 .28 .30 .15 .05 .28 .06 -.02 .23 .12 -.04 .17 .04 .02 .08

.76 1 .69 .27 .32 .30 .24 .30 .25 .19 .34 .28 .18 .32 .23 .22 .26

.81 .69 1 .28 .30 .12 .03 .28 .04 -.05 .21 .11 -.06 .15 .02 0 .05

.28 .27 .28 1 .49 .23 .12 .53 .16 .05 .38 .21 .02 .28 .10 .09 .15

.30 .32 .30 .49 1 .28 .19 .39 .20 .12 .39 .27 .11 .32 .18 .17 .22

.15 .30 .12 .23 .28 1 .63 .26 .57 .57 .46 .56 .56 .56 .62 .57 .63

.05 .24 .03 .12 .19 .63 1 .18 .65 .71 .45 .56 .69 .55 .71 .69 .70

.28 .30 .28 .53 .39 .26 .18 1 .28 .16 .54 .26 .12 .31 .18 .19 .22

.06 .25 .04 .16 .20 .57 .65 .28 1 .81 .56 .57 .71 .59 .66 .74 .66

-.02 .19 -.05 .05 .12 .57 .71 .16 .81 1 .49 .57 .80 .56 .71 .80 .70

.23 .34 .21 .38 .39 .46 .45 .54 .56 .49 1 .47 .44 .50 .45 .49 .47

.12 .28 .11 .21 .27 .56 .56 .26 .57 .57 .47 1 .63 .48 .63 .55 .55

-.04 .18 -.06 .02 .11 .56 .69 .12 .71 .80 .44 .63 1 .50 .75 .72 .66

.17 .32 .15 .28 .32 .56 .55 .31 .59 .56 .50 .48 .50 1 .52 .62 .61

.04 .23 .02 .10 .18 .62 .71 .18 .66 .71 .45 .63 .75 .52 1 .67 .65

.02 .22 0 .09 .17 .57 .69 .19 .74 .80 .49 .55 .72 .62 .67 1 .73

.08 .26 .05 .15 .22 .63 .70 .22 .66 .70 .47 .55 .66 .61 .65 .73 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1 .76 .55 .37 .38 .22 .15 .40 .24 -.06 .37 .18 -.01 .20 .04 0 .05

.76 1 .49 .25 .24 .25 .20 .22 .25 .08 .28 .22 .11 .23 .15 .12 .16

.55 .49 1 .40 .40 .18 .10 .45 .20 -.16 .36 .12 -.10 .15 -.03 -.08 -.03

.37 .25 .40 1 .54 .28 .16 .55 .28 -.14 .48 .21 -.07 .23 .01 -.04 .02

.38 .24 .40 .54 1 .25 .14 .57 .24 -.19 .46 .18 -.12 .21 -.04 -.09 -.03

.22 .25 .18 .28 .25 1 .46 .12 .36 .31 .31 .42 .33 .44 .40 .35 .40

.15 .20 .10 .16 .14 .46 1 .01 .32 .36 .24 .39 .38 .39 .44 .40 .45

.40 .22 .45 .55 .57 .12 .01 1 .20 -.34 .50 .08 -.27 .11 -.17 -.24 -.17

.24 .25 .20 .28 .24 .36 .32 .20 1 .34 .38 .39 .28 .39 .30 .30 .33

-.06 .08 -.16 -.14 -.19 .31 .36 -.34 .34 1 .01 .35 .56 .34 .51 .56 .52

.37 .28 .36 .48 .46 .31 .24 .50 .38 .01 1 .28 .05 .32 .12 .08 .14

.18 .22 .12 .21 .18 .42 .39 .08 .39 .35 .28 1 .43 .41 .49 .35 .40

-.01 .11 -.10 -.07 -.12 .33 .38 -.27 .28 .56 .05 .43 1 .33 .55 .46 .46

.20 .23 .15 .23 .21 .44 .39 .11 .39 .34 .32 .41 .33 1 .39 .44 .49

.04 .15 -.03 .01 -.04 .40 .44 -.17 .30 .51 .12 .49 .55 .39 1 .45 .48

0 .12 -.08 -.04 -.09 .35 .40 -.24 .30 .56 .08 .35 .46 .44 .45 1 .55

.05 .16 -.03 .02 -.03 .40 .45 -.17 .33 .52 .14 .40 .46 .49 .48 .55 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1 .67 .70 .35 .37 .20 .08 .28 -.16 -.24 .23 .18 -.15 .18 .06 -.13 .06

.67 1 .54 .17 .18 .27 .24 .24 .13 .08 .28 .27 .13 .27 .24 .15 .24

.70 .54 1 .36 .38 .18 .04 .27 -.21 -.28 .22 .16 -.20 .14 .02 -.17 .03

.35 .17 .36 1 .60 .22 .01 .39 -.34 -.43 .27 .17 -.32 .17 -.02 -.30 -.02

.37 .18 .38 .60 1 .19 -.03 .33 -.39 -.47 .22 .12 -.37 .13 -.06 -.34 -.06

.20 .27 .18 .22 .19 1 .40 .28 .24 .18 .35 .37 .24 .38 .38 .26 .36

.08 .24 .04 .01 -.03 .40 1 .19 .47 .45 .31 .39 .47 .37 .49 .48 .49

.28 .24 .27 .39 .33 .28 .19 1 .02 -.06 .56 .28 .01 .26 .18 .03 .18

-.16 .13 -.21 -.34 -.39 .24 .47 .02 1 .86 .22 .30 .75 .28 .50 .77 .51

-.24 .08 -.28 -.43 -.47 .18 .45 -.06 .86 1 .14 .25 .79 .24 .48 .78 .48

.23 .28 .22 .27 .22 .35 .31 .56 .22 .14 1 .36 .20 .34 .31 .22 .31

.18 .27 .16 .17 .12 .37 .39 .28 .30 .25 .36 1 .32 .33 .42 .30 .36

-.15 .13 -.20 -.32 -.37 .24 .47 .01 .75 .79 .20 .32 1 .27 .52 .71 .48

.18 .27 .14 .17 .13 .38 .37 .26 .28 .24 .34 .33 .27 1 .34 .33 .41

.06 .24 .02 -.02 -.06 .38 .49 .18 .50 .48 .31 .42 .52 .34 1 .50 .45

-.13 .15 -.17 -.30 -.34 .26 .48 .03 .77 .78 .22 .30 .71 .33 .50 1 .53

.06 .24 .03 -.02 -.06 .36 .49 .18 .51 .48 .31 .36 .48 .41 .45 .53 1

Figure 1: Illustrative examples of average LOCs from three instances namely UniRand, Li-27 and ORTEC-n701-k64 from left
to right. Though the values are different, similar patterns are observed in the rank of rows.

Table 3: Pairwise similarity of ten LOC matrices on each in-
stance. LOC matrices from different solution sampling are
highly consistent.

Instance Mean Variance Instance Mean Variance

Li-21 0.845 ≈ 0 Loggi-n401-k23 0.864 ≈ 0
Li-22 0.851 0.002 Loggi-n501-k24 0.857 ≈ 0
Li-23 0.840 0.001 Loggi-n601-k19 0.842 0.001
Li-24 0.853 ≈ 0 Loggi-n601-k42 0.843 ≈ 0
Li-25 0.859 0.001 Loggi-n901-k42 0.833 0.002
Li-26 0.863 ≈ 0 Loggi-n1001-k31 0.841 0.001
Li-27 0.862 ≈ 0 ORTEC-n242-k12 0.872 ≈ 0
Li-28 0.837 ≈ 0 ORTEC-n323-k21 0.865 ≈ 0
Li-29 0.861 ≈ 0 ORTEC-n405-k18 0.852 ≈ 0
Li-30 0.865 ≈ 0 ORTEC-n455-k41 0.830 0.002
Li-31 0.830 ≈ 0 ORTEC-n510-k23 0.866 ≈ 0
Li-32 0.829 ≈ 0 ORTEC-n701-k64 0.793 0.003

UniRand 0.880 0.002

they are the same operation with different parameters. It verifies
that the relationship among operators has an implicit pattern.

Fig. 2 summarises the similarity of each pair of the average
LOC matrix. For any two instances, the similarity is high than 0.46,
representing relatively high relevancy. The instances from the same
benchmark have a higher similarity. It indicates that the obtained
LOC matrices obtain consistent information which is independent
of the problem instance. We conclude that the proposed LOCmetrix
can represent the universal relationship of a given operator set.

4.3 Performance of LOC-assisted AOS
AOS-LOC framework works to solve a problem instance with a
given LOC matrix. Previous experiment has proved that LOC is
capable of extracting instance-independent features of operators’
behaviour. Since randomly generated instances are always available
for analysis while similar-characteristic instances are not, in the
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Figure 2: Average similarity of LOC matrices on each in-
stance pair. Instances belong to the same group have obvi-
ously higher LOC similarity. Notable the range of similarity
is [-1,1], where “-1” indicates completely opposite and “1” in-
dicates identical. The minimum value of this matrix is 0.47.

following experiments we take a LOC matrix calculated from one
single sampling from a UniRand instance for all implementation of
AOS-LOC on the UniRand, Li, Loggi and ORTEC instances.

2000 UniRand instances are generated for testing. PM, AP, L2I,
PM-LOC, AP-LOC and L2I-LOC are applied to solve each instance
once. Fig. 3 demonstrates the average convergence over the 2000
instances. By applying the proposed AOS-LOC framework, the
performances of all the three base AOS approaches are improved.
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Wilcoxon signed-rank test indicates that the quality of final output
solution of PM-LOC, AP-LOC and L2I-LOC is significantly better
than the ones of PM, AP and L2I respectively, with 𝑝 < 0.05.

Table 4: Average number of times that local-optimum-
trapped operators are selected during optimisation. LOC im-
proves the base AOS approaches on all instances in terms
of this metric. The difference between each base AOS and
the corresponding AOS-LOC is significant under Wilcoxon
signed-rank test with 𝑝 < 0.05.

Instance AP AP-LOC PM PM-LOC

Li-21 886.4 865.3 921.7 888.4
Li-22 934.6 931.8 973.3 967
Li-23 867.9 884.7 913.5 893
Li-24 940.8 928.5 968.7 958.5
Li-25 989.5 986.6 1022 1005.9
Li-26 942.9 913.6 955.5 950.1
Li-27 1025.5 993.6 1037.3 1029.5
Li-28 994.8 953.3 1021.9 1005.7
Li-29 989.6 969 1011.9 999.5
Li-30 1034.8 1016.2 1059.9 1015.4
Li-31 1015.6 987.3 1053.7 1020.5
Li-32 1012.3 983.2 1046.4 997.9

Loggi-n401-k23 885.7 876.4 929.9 910.7
Loggi-n501-k24 914.7 904.9 963.9 936.7
Loggi-n601-k19 965.1 940.6 994.8 980.5
Loggi-n601-k42 882.7 875.7 908.1 913.2
Loggi-n901-k42 1022.9 991.3 1041 1026.3
Loggi-n1001-k31 1035.9 1017.2 1084.9 1052.8
ORTEC-n242-k12 820.3 804.6 861.7 837.5
ORTEC-n323-k21 772 765.8 800.6 801.3
ORTEC-n405-k18 846.1 840.9 896.8 878.1
ORTEC-n455-k41 783.2 766.5 795.1 800.4
ORTEC-n510-k23 897.2 881.1 935.9 914.9
ORTEC-n701-k64 846.5 844.5 879.2 867.5

AOS approaches are also tested on benchmark instances, ex-
cept for L2I as it requires training instances that follow the same
probability distribution as test instances. Each approach is tested
independently for 30 repeats on each instance. The 30 final out-
put solution distances of each approach are tested by Wilcoxon
signed-rank test. Table 6 summarises the comparison results of each
AOS and AOS-LOC implementation in terms of the average final
distance of the 30 repeat trials. On all the instances, AOS-LOC ap-
proaches achieve better performance than the corresponding base
AOS approaches. To the phenomenon that on multiple instances
the difference is not significant enough by statistics test, a possible
reason is the huge uncertainty due to both the random factor in
operators and the probabilistic selection. Besides, the differences
between operators also affect. A diverse operator set may enlarge
the performance difference between selection approaches.

As introduced above, LOC only affects the selection when at
least one local-optimum-trapped operator is selected and tried on
a given solution. Therefore, we summarise the number of times
that trapped operators are selected after at least one other trapped

Table 5: Average number of selecting a local-optimum-
trapped operator during optimisation on 2000 generated
UniRand CVRP-100 instances. The difference of each AOS-
LOC and corresponding base AOS is significant under
Wilcoxon signed-rank test with 𝑝 < 0.05.

AOS Avg. #trapped AOS Avg. #trapped

AP 3313.4 AP-LOC 2976.3
PM 3649.1 PM-LOC 3525.6
L2I 3457.4 L2I-LOC 3274.6

operator is tried, as listed in Tables 4 and 5. The core intention of
LOC in AOS-LOC is to predict local optima and avoid selecting
local-optimum-trapped operators, the number is expected to be
lower than the one of base AOS. Experimental results verify the
effectiveness of LOC in AOS-LOC.

Table 6: Averaged distances of final solutions found using
different AOS approaches over 30 trials. Bold/underlined
indicates that the AOS-LOC is better/worse than the cor-
responding AOS approach, respectively. “+” and “−” high-
light the cases where the difference is significant under the
Wilcoxon signed-rank test with 𝑝 < 0.05.

Instance AP AP-LOC PM PM-LOC

Li-21 16875 16757 16740 16715
Li-22 14432 14412 14392 14387
Li-23 19504 19461 19442 19434
Li-24 22651 22434 (+) 22476 22423
Li-25 16433 16391 16366 16366
Li-26 25368 25028 (+) 24944 24977
Li-27 17179 17123 17105 17119
Li-28 28683 28449 (+) 28321 28252
Li-29 31034 30886 30684 30663 (+)
Li-30 34780 34606 34001 33745 (+)
Li-31 36907 36599 36759 36748
Li-32 39541 39134 39196 38696 (+)

Loggi-n401-k23 40494 40423 40383 40417 (-)
Loggi-n501-k24 18708 18515 (+) 18551 18665
Loggi-n601-k19 13402 13357 13195 13251
Loggi-n601-k42 34057 34005 33972 34007
Loggi-n901-k42 28828 28997 28782 28732
Loggi-n1001-k31 26903 27032 (-) 26830 26867
ORTEC-n242-k12 17445 17466 17461 17369 (+)
ORTEC-n323-k21 23584 23490 23436 23376
ORTEC-n405-k18 18345 18303 18260 18227
ORTEC-n455-k41 19989 19963 19902 19939
ORTEC-n510-k23 30715 30629 (+) 30642 30692
ORTEC-n701-k64 41921 41895 41760 41844 (-)

5 CONCLUSION
Search operators contribute to the major ability of metaheuristics.
Each operator works by finding better solutions in the correspond-
ing neighbourhood of a given solution. When the quality of the
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Figure 3: Convergence curves of AOS approaches averaged over 2000 generated UniRand CVRP-100 instances (top: 0-5000 iter-
ations; bottom: 5000-40000 iterations). LOC (dashed curves) significantly improves all the base AOS approaches (solid curves).

solution is better than all its neighbour solutions, i.e., the solution
is a local optimum in the neighbourhood, further applying this
operator brings no benefit. In this situation, we name the operator
as a local optimum trapped operator. AOS approaches enhance the
search efficiency of metaheuristics by dynamically and adaptively
selecting operators during optimisation. However, due to the special
characteristics of combinatorial optimisation problems, especially
routing problems, the local optima of each operator significantly
affects the performance of AOS approaches [17]. Many resources
are wasted in trying operators that have already been trapped in
their local optima. To overcome the difficulty, the analysis of opera-
tors is considered an instructive method. Consistent characteristics
of operators are expected to exist and able to help predict local op-
tima. In this paper, we propose a novel method, named local optima
correlation (LOC), that calculates the correlation between the local
optima of the operators on a given problem. CVRP is taken as the
test problem and various problem instances, including randomly
generated instances and commonly used benchmark instances, are
used to investigate the feature of LOC matrix. Experiment results
on different sampling and instances indicate that the obtained LOC
represents a general operator relationship. Then, an operator se-
lection framework named AOS-assisted LOC is proposed, with the
aim of predicting the local optima of each operator base on records
from the early optimisation stage. By predicting the local optima,
the resource wasted in applying local-optimum-trapped operators
is reduced. The framework does not require any specific design of
the base AOS approach. Therefore, a wide range of AOS approaches
can be easily embedded. Experimental study and analysis verify
the effectiveness of the proposed LOC-assisted AOS framework.

As the difference of LOC from different instances can be eval-
uated, adaptively changing the effect degree of LOC on selection
probability is a promising direction for further research. A larger
range of instances and operators will be studied. Besides, LOC can
be used to evaluate the similarity of problem instances from the
view of operator and optimisation. It has a potential benefit on the
wider research field besides operator selection.

REFERENCES
[1] Pietro Consoli and Xin Yao. 2014. Diversity-driven selection of multiple crossover

operators for the capacitated arc routing problem. In Evolutionary Computation
in Combinatorial Optimisation. Springer Berlin Heidelberg, Berlin, Heidelberg,
97–108. https://doi.org/10.1007/978-3-662-44320-0_9

[2] Pietro A. Consoli, Yi Mei, Leandro L. Minku, and Xin Yao. 2016. Dynamic selection
of evolutionary operators based on online learning and fitness landscape analysis.
Soft Computing 20, 10 (apr 2016), 3889–3914. https://doi.org/10.1007/s00500-016-
2126-x

[3] Georges A Croes. 1958. A method for solving traveling-salesman problems.
Operations research 6, 6 (1958), 791–812. https://doi.org/10.1287/opre.6.6.791

[4] Rafet Durgut, Mehmet Emin Aydin, and Ibrahim Atli. 2021. Adaptive operator
selection with reinforcement learning. Information Sciences 581 (2021), 773–790.
https://doi.org/10.1016/j.ins.2021.10.025

[5] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, andMichele Sebag. 2008. Extreme
value based adaptive operator selection. In Parallel Problem Solving from Nature –
PPSN X. Springer Berlin Heidelberg, Berlin, Heidelberg, 175–184. https://doi.
org/10.1007/978-3-540-87700-4_18

[6] Álvaro Fialho, Raymond Ros, Marc Schoenauer, and Michèle Sebag. 2010.
Comparison-Based Adaptive Strategy Selectionwith Bandits in Differential Evolu-
tion. In Parallel Problem Solving from Nature, PPSN XI. Springer Berlin Heidelberg,
Berlin, Heidelberg, 194–203. https://doi.org/10.1007/978-3-642-15844-5_20

[7] David E Goldberg. 1990. Probability matching, the magnitude of reinforcement,
and classifier system bidding. Machine Learning 5, 4 (1990), 407–425. https:
//doi.org/10.1023/A:1022681708029

[8] Stephanus Daniel Handoko, Duc Thien Nguyen, Zhi Yuan, and Hoong Chuin Lau.
2014. Reinforcement learning for adaptive operator selection in memetic search
applied to quadratic assignment problem. In Proceedings of the Companion Publi-
cation of the 2014 Annual Conference on Genetic and Evolutionary Computation
(Vancouver, BC, Canada) (GECCO Comp ’14). Association for Computing Machin-
ery, New York, NY, USA, 193–194. https://doi.org/10.1145/2598394.2598451

[9] Feiyue Li, Bruce Golden, and EdwardWasil. 2005. Very large-scale vehicle routing:
new test problems, algorithms, and results. Computers & Operations Research 32,
5 (2005), 1165–1179. https://doi.org/10.1016/j.cor.2003.10.002

[10] Hao Lu, Xingwen Zhang, and Shuang Yang. 2020. A learning-based iterative
method for solving vehicle routing problems. In International Conference on
Learning Representations. https://openreview.net/forum?id=BJe1334YDH

[11] Katherine Mary Malan. 2021. A survey of advances in landscape analysis for
optimisation. Algorithms 14, 2 (2021). https://doi.org/10.3390/a14020040

[12] Katherine M. Malan and Andries P. Engelbrecht. 2013. A survey of techniques for
characterising fitness landscapes and some possible ways forward. Information
Sciences 241 (2013), 148–163. https://doi.org/10.1016/j.ins.2013.04.015

[13] Jorge Maturana and Frédéric Saubion. 2008. A Compass to Guide Genetic Algo-
rithms. In Parallel Problem Solving from Nature – PPSN X. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 256–265. https://doi.org/10.1007/978-3-540-87700-4_26

https://doi.org/10.1007/978-3-662-44320-0_9
https://doi.org/10.1007/s00500-016-2126-x
https://doi.org/10.1007/s00500-016-2126-x
https://doi.org/10.1287/opre.6.6.791
https://doi.org/10.1016/j.ins.2021.10.025
https://doi.org/10.1007/978-3-540-87700-4_18
https://doi.org/10.1007/978-3-540-87700-4_18
https://doi.org/10.1007/978-3-642-15844-5_20
https://doi.org/10.1023/A:1022681708029
https://doi.org/10.1023/A:1022681708029
https://doi.org/10.1145/2598394.2598451
https://doi.org/10.1016/j.cor.2003.10.002
https://openreview.net/forum?id=BJe1334YDH
https://doi.org/10.3390/a14020040
https://doi.org/10.1016/j.ins.2013.04.015
https://doi.org/10.1007/978-3-540-87700-4_26


Local Optima Correlation Assisted Adaptive Operator Selection

[14] Yi Mei, Ke Tang, and Xin Yao. 2011. Decomposition-Based Memetic Algorithm
for Multiobjective Capacitated Arc Routing Problem. IEEE Transactions on Evolu-
tionary Computation 15, 2 (2011), 151–165. https://doi.org/10.1109/TEVC.2010.
2051446

[15] Gabriela Ochoa, Sébastien Verel, Fabio Daolio, and Marco Tomassini. 2014. Local
Optima Networks: A New Model of Combinatorial Fitness Landscapes. Springer
Berlin Heidelberg, Berlin, Heidelberg, 233–262. https://doi.org/10.1007/978-3-
642-41888-4_9

[16] Jiyuan Pei, Chengpeng Hu, Jialin Liu, Yi Mei, and Xin Yao. 2021. Bi-objective
splitting delivery VRP with loading constraints and restricted access. In 2021
IEEE Symposium Series on Computational Intelligence (SSCI). 01–09. https://doi.
org/10.1109/SSCI50451.2021.9659967

[17] Jiyuan Pei, Yi Mei, Jialin Liu, and Xin Yao. 2022. An investigation of adaptive
operator selection in solving complex vehicle routing problem. In PRICAI 2022:
Trends in Artificial Intelligence. Springer Nature Switzerland, Cham, 562–573.
https://doi.org/10.1007/978-3-031-20862-1_41

[18] Karam M Sallam, Saber M Elsayed, Ruhul A Sarker, and Daryl L Essam. 2017.
Landscape-based adaptive operator selection mechanism for differential evolu-
tion. Information Sciences 418-419 (2017), 383–404. https://doi.org/10.1016/j.ins.
2017.08.028

[19] Mudita Sharma, Alexandros Komninos, Manuel López-Ibáñez, and Dimitar Kaza-
kov. 2019. Deep Reinforcement Learning Based Parameter Control in Differential
Evolution. In Proceedings of the Genetic and Evolutionary Computation Conference
(Prague, Czech Republic) (GECCO ’19). Association for Computing Machinery,
New York, NY, USA, 709–717. https://doi.org/10.1145/3321707.3321813

[20] Mudita Sharma, Manuel López-Ibáñez, and Dimitar Kazakov. 2018. Performance
assessment of recursive probability matching for adaptive operator selection
in differential evolution. In Parallel Problem Solving from Nature – PPSN XV.
Springer International Publishing, Cham, 321–333. https://doi.org/10.1007/978-
3-319-99259-4_26

[21] Jorge A Soria Alcaraz, Gabriela Ochoa, Martin Carpio, and Hector Puga. 2014.
Evolvability metrics in adaptive operator selection. In Proceedings of the 2014
Annual Conference on Genetic and Evolutionary Computation (Vancouver, BC,

Canada) (GECCO ’14). Association for Computing Machinery, New York, NY,
USA, 1327–1334. https://doi.org/10.1145/2576768.2598220

[22] Zhiping Tan, Kangshun Li, and Yi Wang. 2021. Differential evolution with
adaptive mutation strategy based on fitness landscape analysis. Information
Sciences 549 (2021), 142–163. https://doi.org/10.1016/j.ins.2020.11.023

[23] Mohammad-H. Tayarani-N. and Adam Prügel-Bennett. 2014. On the Landscape
of Combinatorial Optimization Problems. IEEE Transactions on Evolutionary
Computation 18, 3 (2014), 420–434. https://doi.org/10.1109/TEVC.2013.2281502

[24] Dirk Thierens. 2005. An adaptive pursuit strategy for allocating operator probabil-
ities. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation (Washington DC, USA) (GECCO ’05). Association for ComputingMachin-
ery, New York, NY, USA, 1539–1546. https://doi.org/10.1145/1068009.1068251

[25] Hao Tong, Leandro L. Minku, Stefan Menzel, Bernhard Sendhoff, and Xin Yao.
2022. What makes the dynamic capacitated arc routing problem hard to solve:
insights from fitness landscape analysis. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (Boston, Massachusetts) (GECCO ’22). As-
sociation for Computing Machinery, New York, NY, USA, 305–313. https:
//doi.org/10.1145/3512290.3528756

[26] Paolo Toth and Daniele Vigo. 2002. Models, relaxations and exact approaches
for the capacitated vehicle routing problem. Discrete Applied Mathematics 123, 1
(2002), 487–512. https://doi.org/10.1016/S0166-218X(01)00351-1

[27] Mohamed El Yafrani, Marcella S. R. Martins, Mehdi El Krari, Markus Wagner,
Myriam R. B. S. Delgado, Belaïd Ahiod, and Ricardo Lüders. 2018. A fitness
landscape analysis of the travelling thief problem. In Proceedings of the Genetic
and Evolutionary Computation Conference. ACM. https://doi.org/10.1145/3205455.
3205537

[28] Haotian Zhang, Jianyong Sun, and Zongben Xu. 2021. Learning to mutate for
differential evolution. In 2021 IEEE Congress on Evolutionary Computation (CEC).
1–8. https://doi.org/10.1109/CEC45853.2021.9504990

[29] Qingquan Zhang, Feng Wu, Yang Tao, Jiyuan Pei, Jialin Liu, and Xin Yao. 2020.
D-MAENS2: a self-adaptive D-MAENS algorithm with better decision diversity.
In 2020 IEEE Symposium Series on Computational Intelligence (SSCI). 2754–2761.
https://doi.org/10.1109/SSCI47803.2020.9308250

https://doi.org/10.1109/TEVC.2010.2051446
https://doi.org/10.1109/TEVC.2010.2051446
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1109/SSCI50451.2021.9659967
https://doi.org/10.1109/SSCI50451.2021.9659967
https://doi.org/10.1007/978-3-031-20862-1_41
https://doi.org/10.1016/j.ins.2017.08.028
https://doi.org/10.1016/j.ins.2017.08.028
https://doi.org/10.1145/3321707.3321813
https://doi.org/10.1007/978-3-319-99259-4_26
https://doi.org/10.1007/978-3-319-99259-4_26
https://doi.org/10.1145/2576768.2598220
https://doi.org/10.1016/j.ins.2020.11.023
https://doi.org/10.1109/TEVC.2013.2281502
https://doi.org/10.1145/1068009.1068251
https://doi.org/10.1145/3512290.3528756
https://doi.org/10.1145/3512290.3528756
https://doi.org/10.1016/S0166-218X(01)00351-1
https://doi.org/10.1145/3205455.3205537
https://doi.org/10.1145/3205455.3205537
https://doi.org/10.1109/CEC45853.2021.9504990
https://doi.org/10.1109/SSCI47803.2020.9308250

	Abstract
	1 Introduction
	2 Background
	2.1 Adaptive Operator Selection
	2.2 Fitness Landscape Analysis

	3 Methodology
	3.1 Local Optima Correlation
	3.2 LOC-assisted Adaptive Operator Selection

	4 Experimental Studies
	4.1 Experiment Setting
	4.2 LOC Pattern
	4.3 Performance of LOC-assisted AOS

	5 Conclusion
	References

