2105.12595v2 [cs.SE] 14 Apr 2023

arxXiv

Automated Repair of Unrealisable LTL Specifications Guided by
Model Counting

Matias Brizzio
IMDEA Software Institute
Universidad Politécnica de Madrid
Spain

César Sanchez
IMDEA Software Institute
Spain

Maxime Cordy
SnT, University of Luxembourg
Luxembourg

Nazareno Aguirre
Universidad Nacional de Rio Cuarto
CONICET

Mike Papadakis
SnT, University of Luxembourg
Luxembourg

Renzo Degiovanni
SnT, University of Luxembourg
Luxembourg

Argentina

ABSTRACT

The reactive synthesis problem consists of automatically produc-
ing correct-by-construction operational models of systems from
high-level formal specifications of their behaviours. However, spec-
ifications are often unrealisable, meaning that no system can be
synthesised from the specification. To deal with this problem, we
present AURUS, a search-based approach to repair unrealisable
Linear-Time Temporal Logic (LTL) specifications. AURUS aims at
generating solutions that are similar to the original specifications by
using the notions of syntactic and semantic similarities. Intuitively,
the syntactic similarity measures the text similarity between the
specifications, while the semantic similarity measures the num-
ber of behaviours preserved/removed by the candidate repair. We
propose a new heuristic based on model counting to approximate
semantic similarity. We empirically assess AURUS on many unre-
alisable specifications taken from different benchmarks and show
that it can successfully repair all of them. Also, compared to re-
lated techniques, AURUS can produce many unique solutions while
showing more scalability.

CCS CONCEPTS

« Software and its engineering — Requirements analysis; For-
mal methods; Search-based software engineering,.

KEYWORDS
Search-based Software Engineering, Model Counting, LTL-Synthesis

ACM Reference Format:

Matias Brizzio, Maxime Cordy, Mike Papadakis, César Sanchez, Nazareno
Aguirre, and Renzo Degiovanni. 2023. Automated Repair of Unrealisable
LTL Specifications Guided by Model Counting. In Genetic and Evolutionary
Computation Conference (GECCO °23), July 15-19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3583131.3590454

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO 23, July 15-19, 2023, Lisbon, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07...$15.00
https://doi.org/10.1145/3583131.3590454

1 INTRODUCTION

Reactive synthesis is the problem of automatically generating a
correct-by-construction implementation for a reactive system, from
a given specification of the expected behaviour [7, 9, 12, 24, 40, 46].
The specification comprises the list of the variables controlled by the
environment and system (i.e., inputs and outputs), respectively, and
a declarative description of the expected properties of the system,
i.e., the goals. Based on these, reactive synthesis produces a model
for the system, usually referred to as controller, which interacts
with the environment, and guarantees the specified goals [46].

Temporal logic is widely considered the standard formalism for
expressing the expected goals of reactive systems [38]. Reactive
specifications are usually expressed as assume-guarantee assertions,
ie, A = G, where A captures assumptions on the behaviour of
the environment, and G expresses the goals the system must fulfill,
provided that the assumptions are met. Since the specifications are
the central element in the synthesis, their quality is crucial for a
successful process.

Reactive specifications often contain imperfections that make
them unrealisable, i.e., no controller can be synthesised. Common is-
sues leading to unrealisability are (1) inconsistencies between goals
making them unsatisfiable (and therefore unrealisable); (2) inade-
quate assumptions and guarantees, which allow the environment
to satisfy the assumptions and prevent the system from comply-
ing with the guarantees. Therefore, arriving at a consistent and
realisable specification is not straightforward and demands com-
prehensive elicitation activities to prevent these common issues.

Previous attempts have made significant efforts to provide auto-
mated mechanisms to assist engineers in identifying and resolving
sources of unrealisability in temporal logic specifications. Some
concentrate on diagnosing the cause of synthesis impossibility, e.g.,
by computing a core of assertions that make the specification unre-
alisable [16, 29, 48]. Some generate counter-strategies that evidence
how the environment prevents the controller from satisfying the
goals [47]. Related to our work, many approaches to repair unreal-
isable specifications have been presented [8, 13, 14, 37, 41]. These
techniques attempt to repair the specifications just by adding as-
sumptions that are built from the information extracted from the
generated counter-strategies, and the current specification. This
is a significant limitation because they do not consider that unre-
alisability might be caused by failures in the current assumptions

https://doi.org/10.1145/3583131.3590454
https://doi.org/10.1145/3583131.3590454

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

and guarantees. These techniques also impose syntactical restric-
tions on how specifications are written, limiting their application
to particular patterns (e.g., GR(1), a subset of LTL).

In this paper, we present AURUS, a search-based approach to
repair unrealisable specifications, which applies to LTL [38] spec-
ifications and generates candidate repairs by changing both, as-
sumptions and guarantees. AURUS consists of a genetic algorithm
(GA) that, given an unrealisable LTL specification, attempts to gen-
erate a realisable variant of it, which is as close as possible to the
original one. The algorithm iteratively explores candidate repairs
of the original specification, seeking to find a realisable variant
that is both syntactically and semantically similar to the original
one. The syntactic similarity is measured by using the number of
sub-formulas that belong to both the original and the mutated spec-
ification. On the other hand, semantic similarity is measured by
calculating the number of behaviours from the original specification
that were maintained in the candidate repair. These behaviours are
computed by using model counting. Since all existing model count-
ing approaches for LTL do not scale well, we develop an alternative
approach to approximate the LTL model counting problem which
considerably improves scalability. We empirically assess AURUS
and show that it is effective at repairing unrealisable specifications
not handled by previous techniques, while also producing more
unique repairs not computed by related approaches.

2 PRELIMINARIES
2.1 Linear-Time Temporal Logic (LTL)

LTL is a logical formalism widely employed to specify reactive sys-
tems [38]. Given a set AP of propositional variables, LTL formulas
are inductively defined using the standard logical connectives, and
the temporal operators O (next) and U (until), as follows: (i) every
p € AP is an LTL formula, and (ii) if ¢ and ¢/ are LTL formulas, then
so are =@, ¢ V i, O and ¢Uy. Other connectives and operators,
such as A, O (always), < (eventually), and ‘W (weak-until), can be
defined in terms of the basic ones. LTL formulas are interpreted
over infinite traces of the form o = sy s1..., where each s; is a
propositional valuation on 247, Formulas with no temporal opera-
tor are evaluated in the first state of the trace. Formula Qg is true in
o iff ¢ is true in ¢[1..], i.e., the trace obtained by removing the first
state from o. Formula ¢ U is true in o iff there exists a position i in
the trace, such that, ¢ is true in o[i..] and for every 0 < k < i, ¢ is
true in o[k..]. An LTL formula ¢ is satisfiable (SAT) iff at least one
trace satisfies ¢. The model counting problem consists of calculating
the number of models satisfying ¢. In the case of LTL, if a formula
is unsatisfiable, the number of models is zero. Otherwise, it has an
infinite number of models. Therefore, LTL model-counting is re-
stricted to bounded models [25], i.e., it computes how many models
up to k states exist for ¢ and a bound k. AURUS uses bounded model
counting to guide the search by measuring the semantic impact of
syntactic changes on candidate repairs, in terms of the number of
preserved and removed behaviors from the original specification.

2.2 Reactive LTL Synthesis

Reactive LTL synthesis is the problem of automatically constructing
a reactive module that reacts to the environment with the objective
of realizing a given LTL specification of the form assume-guarantee,

Brizzio et al.

¢ : A — G [46], defined over a set of variables V = X U Y, where
X and Y are the variables controlled by the environment, and
system, respectively. A strategy for ¢ is a function o : (2%t - 2Y
that maps finite sequences of subsets of X into subsets of Y. For
an infinite sequence X = X3,Xy,... € (ZX)“’, the play induced
by strategy o is the infinite sequence psx = (X1 U 0(X1))(Xo U
0(X2)))...). Aplay p is winning if p |= ¢. A strategy is winning
when ps x |F ¢ forall X € (2%,

Realisability is the problem of deciding whether a specification
has a winning strategy, and synthesis is the problem of computing
one. The Unrealisability of a specification means that no winning
strategy exists for the system. This implies that the environment can
always falsify the specification, no matter which strategy the system
chooses. AURUS performs syntactic changes in the specification to
remove the flaw that makes it unrealisable. AURUS delegates the
realisability check to Strix [43], one of the most efficient synthesis
tools presented at the annual synthesis competition [3].

2.3 Genetic Algorithms

Genetic algorithms [27, 30, 44] are heuristic search algorithms,
inspired by natural evolution. Candidate solutions are called indi-
viduals or chromosomes, and are often represented as sequences
of genes (characteristics) that capture their features. Genetic algo-
rithms maintain a population of candidate solutions, rather than a
single “current” candidate, as in traditional search. They are largely
driven by random decisions, e.g., in the generation of the initial pop-
ulation, and how the new candidate solutions are generated from
existing ones. To produce new individuals, it exploits information
in the current population, combining their characteristics (called
crossover), or randomly altering the information in specific indi-
viduals (called mutation). The effectiveness of this general search
process is guided by a heuristic function, called fitness function.
Intuitively, this function measures how “fit” a particular individual
is, i.e., how close it is to being a real solution to the search problem
under consideration. This evolution process is usually performed
until some termination criterion is met, e.g., a defined number of
iterations (known as generations of the population). AURUS em-
ploys genetic algorithms to search for realisable repairs, close to
the unrealisable specification given as input. Individuals in our
case will represent LTL specifications, the genetic operators will
produce new specifications from others, and the fitness function
will attempt to evaluate how “close” a candidate repair is to be
realisable, as well as how close is to the original (unrealisable) one.

3 A MOTIVATING EXAMPLE

Let us present a running example to illustrate the main ideas behind
AURUS. Consider the problem of synchronising the access to a
shared resource, via an arbiter [31]. Two processes request access
to the resource via signals r1 and ry, respectively. An extra signal a
indicates when the resource can be accessed. The arbiter indicates
which process has been granted access by means of respective
signals g; and g. Signals r1, r2 and a thus constitute the inputs,
while signals g1 and g2 are the outputs. The following guarantees
are elicited in [31] for this problem:

Gy :0(r1 > 0g1) Gz :0(r2 = Cg2) Gs : O(-a — (g1 A —g2))

Automated Repair of Unrealisable LTL Specifications Guided by Model Counting

Intuitively, Gp states that if the first process requests access to the
resource, the arbiter will eventually grant it. Guarantee Gy states
the same but for the second process. While guarantee Gs states that
if the resource cannot be accessed, no process is granted permission.
No assumptions were identified for this specification. Hence, the
specification S = G1 A Gy A G3 is unrealisable.

A cause of unrealisability is that the environment is allowed to
set the input signal a to false continuously, preventing the arbiter
from granting access to the resource (see G3). Therefore, if any
of the processes requests access to the resource in such a situa-
tion, no implementation would satisfy the guarantees G; and G,.
In [31], authors propose different alternatives for “fixing” these
issues. One option is to add an environment assumption to ensure
that the resource is allowed to be accessed infinitely often; indeed,
by adding the assumption A; = O<a, the resulting specification
becomes realisable. Another option explored in [31] is to indicate
that the arbiter will enforce mutual exclusion in accessing the re-
source. This is done by replacing G3 by an alternative guarantee
Gj = O(=(g1 A g2)). The resulting specification S = G; A G2 A G
is also realisable. The overall intuition we get from this example is
that, in cases of unrealisability, it can sometimes be fixed by making
small changes to the original specification. But, even when the
repairs were generated automatically, a domain expert would need
to review them, and decide which of them is an acceptable solution.
For instance, the repairs introducing a new assumption would need
to be analysed to check if such an assumption is reasonable to ex-
pect from the environment. Thus, to help the domain expert and
make easier this validation activity, we would like to maintain as
much as possible from the original specification in the generated
repairs, and simply modify what is necessary to make it realisable.
In this paper, we propose AURUS, a genetic algorithm that performs
syntactic modifications to an unrealisable specification, with the
aim of producing a set of realisable candidate repairs. The candidate
repairs are searched for in the “vicinity” of the original specification,
in the sense that they aim at being slight syntactic and especially
semantic, modifications of the original one. AURUS has the chal-
lenge of dealing with a very large search space of LTL specifications
that are obtained by performing syntactic changes to the original
one. It also needs to objectively quantify the semantic impact of
each change. AURUS is guided by a multi-objective fitness function
that attempts to minimise syntactic and semantic changes, while
at the same time attempting to achieve realisability. Let us provide
some intuition on how AURUS works, and how it can produce some
solutions presented in [31].

AURUS starts by generating an initial population that represents
samples of candidate solutions. These are generated by introducing
new assumptions based on patterns commonly found in reactivity
specifications [23]. For example, assumptions stating that input
events occur infinitely often (O<$ry, OCr,, OOa), and that differ-
ent input events cannot simultaneously occur (O-(r1 A rz A a)),
will be considered. In our running example, the initial population
already contains one of the realisable solutions proposed in [31].
Other candidate solutions can be obtained by the successive appli-
cation of genetic operators to some selected specifications. AURUS
implements the two most common genetic operators, crossover and
mutation. Given two specifications S; and Sy, the crossover operator
will produce a new specification S3 by replacing a sub-formula of Sy,

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

by a sub-formula of S,. For instance, if both S; and S are exactly the
same specification G A G2 A G3, the crossover operator can produce
anew specification S3 = G1 A G, A G3, where G, = O(rz — Ogy) is
obtained by replacing sub-formula g, in G2, by the sub-formula g;
extracted from Gj in S. On the other hand, the mutation operator
will create a new specification by applying a syntactic mutation to
some sub-formula of the specification. For instance, mutating gener-
ated specification S3, the algorithm can produce a new specification
S4 = G{ A Gy A G3 in which G| = O(r; — Qgi) is obtained by
changing the operator < by O in Gy. Going back to the arbiter so-
lutions, to obtain the realisable version G1 A Gy A G, two mutations
to the original guarantee G3 are necessary: first, a replacement of
the sub-formula a by falseleading to O(—gj A —g2); and then the re-
placement of operator A by V, obtaining the formula O(—g; V —g2)
which is equivalent to G;. AURUS may produce other realisable
specifications that can also be considered as candidate repairs. The
fitness function plays a crucial role in guiding the search. Intuitively,
the fitness function is the oracle that is used to assess the quality
of the candidate solutions, giving higher scores to “better” individ-
uals, i.e., those closer to sought solutions. AURUS implements a
multi-objective fitness function that assesses three key properties
of the candidate solutions: (1) it checks whether the specification is
realisable or not; (2) it then computes the syntactic similarity with
respect to the original specification; and finally (3) it computes the
semantic similarity with respect to the original specification (i.e.,
the number of behaviours preserved and removed by the formula
modifications). We show in Section 6 the importance of each fitness
factor to guide the search toward adequate solutions, i.e., solutions
that are very alike to the original.

4 AURUS APPROACH

AURUS takes as input an unrealisable specification S, and by the
successive application of genetic operations, it aims at producing a
specification S’ that is realisable, and minimizes the syntactic and
semantic changes with respect to S.

4.1 Search Space and Initial Population

Individuals in our search space are LTL specifications S = (A4, G)
over V, consisting of assumptions and guarantees. Genetic opera-
tors are used to produce new individuals with syntactic changes to
both assumptions and guarantees, with equal probability. AURUS
begins by creating assumptions based on patterns commonly found
in reactive specifications [23] to form the initial population. These
new assumptions are generated from the original specification S, re-
sulting in Sp = (AU ag, G), where ag follows the patterns: (1) O x;,
(2)O=(xg A ... Axp),and (3) OO(xp A ... A xp), for x; € X. These
patterns respectively express that the input x; holds infinitely many
times, that all input events cannot happen at the same time, and that
all input events hold at the same time, infinitely many times. We
only include input variables in the assumptions to prevent trivial
solutions. Adding assumptions like Oy, y € Y would result in a
specification that can easily be satisfied by setting y to false, making
it trivially realisable. AURUS avoids anomalous solutions [22] in the
initial population and checks for unsatisfiable assumptions during
the search to prevent trivially realisable repairs.

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

4.2 Genetic Operators

AURUS implements the two most common genetic operators such
as, crossover and mutation, adapted to LTL. Let SF(¢) be the list
of sub-formulas of ¢, e.g., SF(O—-p) = [O=p, —p, p]. We denote
by ¢[¢$\¢] the formula that is obtained by replacing occurrences
of ¢ in ¢, by ¢. For instance, O(=p)[-p\r] returns O(r). Given
two formulas ¢ and ¢’, we define: replaceSub(¢, ¢’) = p[$\¢/] and
combineSub(g, ¢’) = p[Pp\¢ @ Y], s.t. ¢ € SF(¢p), ¥ € SF(¢’), and
o € {V,A, U, R, W}. Intuitively, replaceSub(p, ¢’) returns a new
formula that consists of replacing a sub-formula of ¢ with a sub-
formula of ¢’; while combineSub(¢p, ¢”) takes a sub-formula from
¢ and combines it with another from ¢’, using a binary operator.

The crossover operator combines two LTL specifications, namely
S1 = (A1,G1) and S2 = (A2,Gy), to create a new specification
S3 = (As, G3). This is achieved by merging the assumptions and
guarantees of the original specifications.

Particularly, every assumption in A3 is taken from A; or Aj,
or is generated by replacing (replaceSub(ay, az)) or combining
(combineSub(ay, az)) sub-formulas from A; and Ay, where a; € A;.
To produce G3, the crossover operator performs the same choices
but it takes guarantees from G; and Gy instead.

The mutation operator takes a specification and applies syntactic
modifications to produce a new one. Given a specification S =
(A, G), the algorithm randomly selects one assumption/guarantee
to which the mutation will be applied. Let mutate(p) = ¢’ be
the function that takes a formula and produces a mutation of it.
When the mutation operator is applied to some assumption a € A, it
returns a new specification S” = (A’, G), where A’ = (A\{a})U{a’}
and a’ = mutate(a). The same applies when some guarantee g € G
is mutated. mutate is defined as follows:

(1) if ¢ = b or ¢ = p, where b € {true, false} and p € AP, then:
(a) ¢’ =b',s.t. b’ € {true false} and b # b’.
(b) ¢’ =g, st.qe APandp # q.
(c) ¢’ = 01¢ where 07 € {O0,0, O, —}.
(2) if ¢ = 01¢1, where 01 € {~, O, <, O}, then:
(@) ¢’ = mutate(¢y).
(b) ¢" = oymutate(¢1), s.t. o] € {=,O, O, 0}
¢) ¢’ = ojoimutate(¢1) where o] € {—, O, ¢, O},
(d) ¢" = p oj o] (mutate(¢1)), s.t. p € AP,
oé e {U, W, V}and o{ e {~,0O,¢,0}.
(3) if ¢ = ¢p102¢02, where 03 € {V, A, U, R, W}, then:
(@) ¢" = mutate(yi), s.t. Yi € {¢1, $2}
(b) ¢" = mutate(¢1) o) mutate(z), s.t. 05 € {V, A, U, R, W}.
) ¢’ = o] (mutate(¢1) oy mutate(¢z)),
s.t. o{ € {-,0,<,0} and oé e{V, AU, R, W}.

4.3 Fitness Function

AURUS is guided by a multi-objective fitness function that aims at
generating a realisable variant, as close as possible, to the unrealis-
able specification given as input. This function focuses on checking
three key properties of the candidate solutions, with the objective
of finding one that is realisable, and that minimises the syntactic and
semantic changes with respect to the original specification. Syntac-
tic similarity is measured in terms of the number of sub-formulas
shared by the original specification and the candidate. Semantic
similarity is measured in terms of the number of behaviours that

Brizzio et al.

were maintained in the candidate. Basically, let S be the unrealisable
specification given as input, the fitness value for a candidate repair
S’ is computed by the following function f:

f(S") = a=*status(S") + B * synSim(S,S’) + y * semSim(S, S”)
where status(S”) focuses on checking if S’ is satisfiable and realis-
able; while, synSim(S, S”) and semSim(S, S”) compute the syntactic
and semantic similarities between S and S’, respectively. Constants
a, B and y are the factors that assign different weights to the three
properties of interest in the candidate repair S’.

Let S’ = (A’,G’) be a candidate solution, we define status(S’)
as follows:

1 if A’ A G is satisfiable and A” — G’ realisable;

0.5 if A’ A G’ is satisfiable, but A’ — G’ unrealisable;
status(S’) =40.2 if A’ A G’ is unsatisfiable, but A’/G’ are satisfiable;

0.1 if A’ is satisfiable, but not G’;

0 if A’ is unsatisfiable.

status(S’) will return 1 iff S” is both, satisfiable and realisable.
When the candidate S’ is satisfiable, but still unrealisable, status(S”)
will return 0.5. Whether assumptions/guarantees are unsatisfiable,
it will return values closer to 0.
synSim(S,S’) computes the syntactic similarity between specifi-
cations S and S’, measured in terms of the number of sub-formulas
that belong to both the original S and the candidate S’

#(SF(S) N SF(S"))
#SF(S)

#(SF(S) N SF(S"))

synSim(S,S’) = 0.5 * #SF(S")

Small values for synSim(S, S”) indicate that S’ is syntactically
very different from S, while values closer to 1 indicate that both
specifications are very similar. The fitness function uses this value
to quantify the syntactic changes produced by the genetic operators.

Small changes in the syntax of a specification may result in
significant changes in its semantics. For example, a mutation that
negates a formula may appear as a single syntactic change, but it
can completely reverse the behaviors described by the original for-
mula. The function semSim(S, S”) computes the semantic similarity
between specifications S and S/, measured in terms of the number
of behaviours from the original specification still in the candidate
repair. To automatically compute this value, we rely on LTL model
counting. Given a specification S and a bound k, let us denote by
#(S, k) the number of models up to k states satisfying S. We define
semSim(S, S’) as follows:

4 4
semSim(S,S’) = 0.5 * HSASLk) #SAS k)
#(S, k) #(S”, k)

Notice that small values for semSim(S, S”) indicate that the be-
haviours described by S are very different from the ones described
by S’. In particular, when S A S’ is unsatisfiable, semSim(S, S”) is 0.
As this value gets closer to 1, both specifications characterise an
increasingly large number of common behaviours. Since the compu-
tation of semSim(S, S”) requires calculating several model counting
instances, it is crucial for AURUS to perform model counting ef-
ficiently. Thus, later in Section 5, we develop an automata-based
estimation for LTL model counting, that scales much better than
exact LTL model counting algorithms. The user can select different
values for the different parameters that might affect the fitness
function, e.g., @, f, y, and the bound k. We tested AURUS in various

Automated Repair of Unrealisable LTL Specifications Guided by Model Counting

complex specifications, selecting the best-performing configuration
and comparing its effectiveness to previous techniques in Section 6.

4.4 Selection

The fittest individuals are chosen for the next generation using the
traditional “best selector” operator, sorting individuals by fitness
and selecting the best until maximum population size.

4.5 Soundness, and (In)completeness

AURUS guarantees satisfiability and realisability of its generated
repairs, checked using Polsat [35] and Strix [43], respectively. While
AURUS uses a non-exhaustive search and may not consider all
possible repairs, its genetic operators are complete, allowing the
production of ¢’ from ¢ via crossover and mutation.

5 LTL MODEL COUNTING APPROXIMATION

AURUS proposes to use LTL model counting to compute the se-
mantic similarity semSim(S, S"). Unfortunately, exact LTL model
counting techniques quickly reach their scalability limits [25]. As a
consequence, the work presented in [19] attempts to deal with the
scalability issues. It presents a translation from LTL formulas to
regular expressions, such that, each string recognized by the regular
expression is a prefix of some trace satisfying the formula. Then, a
string model counter (ABC [10]) is used to compute the number of
strings that, up to a certain length, satisfy the regular expression.
Though effective, this approach works on specific examples but
fails to scale overall (failing in 22/26 specifications, see Section 6).

Thus, we develop a new technique to efficiently estimate the LTL
model counting problem. Intuitively, we aim at counting the number
of prefixes satisfying an LTL formula and use that number as a proxy
for the number of models of the formula. To improve scalability,
we employ matrices multiplication for this task (as ABC [10]).

Basically, our approach operates in two steps. First, we rely on
established algorithms to generate an automaton A, that recog-
nises all the traces satisfying a given formula ¢. Recall that LTL
formulas are interpreted on infinite traces (c.f. Section 2.1). This
means that every trace satisfying ¢, has a path in automaton A, in
which some accepting state is visited infinitely many times (i.e., a
loop). Notice that, every finite path reaching some accepting state
of Ay, is potentially a prefix of some trace recognised by A,. Then,
we can have an estimation of the number of traces accepted by
Ay, by counting the number of finite paths of A, that reach some
accepting state (this can be thought as if we interpreted accepting
states as final states). Notice that, it may happen that our approach
overestimates the number of models for ¢. For instance, when some
reachable accepting state does not loop. Conversely, the accepting
state may be part of multiple loops; in this case, the prefix accepted
by A, corresponds to multiple traces, which leads to underestimat-
ing the number of models for ¢. These are the reasons why our
approach only approximates the number of models.

Then, we encode automaton Apintoa N XN transfer matrix Ty,
where N is the number of states in A, such that the value of each
Ty [i, j] denotes the number of transitions from states i to j in A.
The number of finite paths, of length k, reaching some accepting
state of A, can be computed by solving I x T(Zf X F, where I is a row

vector codifying the initial states; T(Lc is the matrix resulting from

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

{a} {p}

O {p.q} p.a} So | S1
(NS

T st 1 1

Figure 1: Finite automaton. Figure 2: Transfer matrix.

multiplying k times matrix Ty; and F is a column vector codifying
the final (accepting) states of A,. For example, Fig. 1 and Fig. 2 show
the automaton and the transfer matrix, generated by our approach
from the formula ¢ = O(p — (Oq). Considering k = 4, our model
counting approach answers that there are 108 models, computed
by the following matrices multiplication:

2
4 —
IxwaF—Ix 11

4
XF =1 0]><[27 > .

54 54] H _ los
Actually, there are exactly 351 lasso traces of length 4 for i but
our approach reports 108 (i.e., the approximate number of prefixes
for these traces). However, we show in Section 6.5 that it provides
a good estimation of the exact model counting. Meaning that, if
it computes that formula ¢ has more prefixes of length k than
formula ¢, then it is almost sure that the number of lasso traces of
¢ of length k is greater than the number of lasso traces for .

6 EXPERIMENTAL EVALUATION
We evaluate AURUS around the following research questions:
RQ1 How effective and efficient is AURUS?
RQ2 How does it compare with random generation?
RQ3 Does AURUS generate unique solutions?
RQ4 How does each objective of the fitness function contribute to
AURUS’ effectiveness?
RQ5 What is the precision of our model counting method?
We answer RQ1-RQ4 using unrealisable specifications from the
literature and benchmarks, and RQ5 using randomly picked LTL
formulas from an LTL SAT solving benchmark.

Specifications. We consider 26 unrealisable specifications in our
evaluation. Table 1 summarises for each specification the number
of input/output variables, assumptions (A), and guarantees (G). We
consider 5 cases from the literature, 13 from SYNTCOMP [4], and 8
specifications created by students and reported in SYNTECHI15 [41].

Table 1: Unrealisable Specifications.

Literature (5) #In-Out | #A-#G SYNTCOMP (13) | #In-Out | #A-#G
Arbiter 3-2 0-3 Detector 2-1 0-4
MinePump 2-1 1-2 Full Arbiter 3-3 | 0-16
RG1 2-2 1-4 Lily02 3-1 0-3
RG2 2-1 0-2 Lily11 2-2 0-1
Lift 3-3 7-12 Lily15 2-2 0-5
Lily16 33| 09
SYNTECH15 (8) | #In-Out | #A-#G Load Balancer 3-2 3-8
Humanoid458 3-10 0-11 1tl2dba_R_2 2-1 0-1
Humanoid503 6-11 1-17 1tl2dba_theta_2 4-1 0-1
Humanoid531 1-11 2-17 1tl12dba27 1-1 0-1
Humanoid741 4-14 5-21 Prioritized Arbiter 4-4 | 1-10
Humanoid742 1-14 2-26 Round-Robin 2-2 2-4
GyroV1 3-3 6-7 Simple Arbiter 2-2 0-4
GyroV2 3-3 7-7
PCarV2-888 3-9 4-21

Implementation. AURUS uses OWL [32] to manipulate LTL
specifications. Apache Commons Math [2] to manipulate matrices

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

for model counting. AURUS also integrates Polsat [35], a portfolio
that runs 4 LTL solvers in parallel. Moreover, AURUS uses Strix [43]
to check realisability. The experiments in this section were con-
ducted on a cluster with Xeon 2.6GHz, with 16Gb of RAM, running
GNU/Linux. The tool, case studies, and a description of how to
reproduce the experiments can be found in the replication pack-
age https://sites.google.com/site/unrealrepair/.

Experimental Setup. As AURUS is driven by random decisions,
for each experiment, we run it 10 times. Precisely, in our experi-
mentation AURUS is configured as follows: the population size is
100, the model-counter bound k is 20, best selector, the crossover
operator is applied to 10% of the individuals, and the mutation oper-
ator is applied to each individual, to which each gene (sub-formula)
is mutated with a probability of 1/N (where N is the size of the
formula). The termination criterion is reached either when 1000
individuals are generated or after 2hrs of execution time.

Notice that, our fitness function (Sec. 4.3) focuses on three as-
pects of the candidate solution (the status (@), the syntactic () and
semantic (y) similarities). We assess the performance of AURUS
under many configurations, by considering values for «, f, and
Y, such that a + f + y = 1 (i.e., the sum of weights is 100%). We
organise our unrealisable specifications into two disjoint sets: the
development set, and the evaluation set. We randomly selected 6
cases to be part of the development set (2 from the literature, 2
from SYNTECH15, and 2 from SYNTCOMP) and the remaining 20
cases as part of the evaluation set. The development set is meant to
support us in setting the parameters of our algorithm, with the hope
that the best-performing configuration for the development set, will
generalise to the evaluation set. To find the best-performing con-
figuration, for each experiment we measure the number of repairs
generated by AURUS, as well as, the syntactic and semantic similari-
ties of the found solutions. Then, for each case, we can compare the
performance of two configurations by using the Vargha-Delaney
A (A12) measure [53], to determine which configuration obtained
better performance for that particular subject. This will allow us to
analyse which configuration generalises more and better to all the
case studies. Particularly, realisability checking is crucial for qual-
ity and quantity of solutions. Also, better performance is reached
when the weight assigned to the semantic similarity is greater or
equal to the one assigned to the syntactic similarity. For instance,
configurations (a« = .7, = .1,y = .2), (e = .8, = .07,y = .13), or
(a=.9, B = .05y =.05) typically reach better performance.

6.1 Effectiveness and Efficiency Evaluation

Table 2 summarises the average results, out of the 10 runs, obtained
with the best-performing configuration for each case study. We
report the average number of repairs and time (in seconds) per case
required by AURUS to explore the 1000 individuals. Noticeable, Au-
RUS succeeds in generating satisfiable and realisable repairs in 100%
of the runs. As expected, it required more time to analyse the more
complex specifications such as the Lift, full arbiter, and Humanoid
cases in which the 2 hours timeout was reached. Particularly, there
are four cases for which the algorithm could find just a few repairs:
on average, 4 repairs for the full arbiter, 13 for the prioritized arbiter,
and 3 repairs for Humanoid503 and PCarV2-888. This is because
these cases contain several guarantees that require many changes

Brizzio et al.

by the algorithm to finally find realisable solutions. In particular,
the first 2 cases are part of the synthesis competition and were
made artificially unrealisable (by adding assertions contradicting
the existing ones) to use them for assessing the efficiency of the
tools participating in the competition.

Table 2: Comparison between AURUS and random.

Literature Tech. #Sol. Time SYNTCOMP Tech. #Sol. Time
Arbiter AURUS 467 921 Detector AURUS 522 1799
Random 11 404 Random 21 1592
Minepump AuURUS 481 897 Full Arbiter AuRUS 4 3805
Random 31 678 Random 6 1003
RG1 AuRUS 380 905 Lily02 AuRUS 387 2656
Random 15 529 Random 4 427
RG2 AuRUS 459 935 Lily11 AuRUS 623 834
Random 27 406 Random 35 350
Lift AuRUS 303 3170 Lily15 AuRUS 424 1643
Random 0 930 Random 4 1248
Lily16 AURUS 385 1756
SYNTECH15 Tech. #Sol. Time Random 6 984
GyroV1 AURUS 530 1574 Load Balancer AURUS 532 1619
Random 7 724 Random 29 801
GyroV2 AuURUS 618 1388 Itl2dba_R_2 AURUS 623 1442
Random 40 771 Random 42 1451
Humanoid458 | AuRUS 582 2307 1tl2dba_theta_2 AURUS 660 1453
Random 26 738 Random 32 1493
Humanoid503 | AuURUS 3 7400 Itl2dba27 AURUS 582 1473
Random 1 616 Random 46 1048
Humanoid531 | AuRUS 86 7400 Prioritized Arbiter | AuRUS 13 4205
Random 19 239 Random 24 5680
Humanoid741 | AuURUS 80 7400 Round-Robin AURUS 678 1713
Random 11 756 Random 76 904
Humanoid742 | AuRUS 99 7400 Simple Arbiter AURUS 504 1012
Random 21 705 Random 17 404

PCarV2-888 AuRUS 3 7400

Random 4 174

6.2 Comparison with Random Generation

Random starts by producing 1000 syntactic variants of each unre-
alisable specification and then checks which one is satisfiable and
realisable. The random approach uses the same mutation opera-
tor as AURUS to produce syntactic modifications to the original
specifications, with the additional requirement that at least one
sub-formula (assumption/guarantee) has been modified. We repeat
this experiment 10 times and report all results in Table 2. Notice
that, unsurprisingly, the time required by random is considerably
smaller than the required by AURUS in most cases, except for cases
Itl2dba_R_2, 1tl2dba_theta_2 and Prioritized Arbiter. However, ran-
dom effectiveness is relatively low compared to AURUS, producing
on average 23 times less repairs than AuURUS. We also compute,
for each case study, the A5 measure to compare the number of
repairs obtained in the 10 runs of our best-performing configu-
ration and random. Aj results to be 100% for almost every case
study, indicating that AURUS obtains more repairs than random
in every run. There are only 3 exceptions where random produces
more realisable solutions: in Full Arbiter (A;2 of 33.3%), Prioritized
Arbiter (Alz of 10.5%) and PCarV2-888 (Alg of 33.3%). Fig. 3 shows
further details regarding random performance.

6.3 Comparison with Related Approaches

We study to what extent AURUS’s repairs are unique or related to
the repairs produced by other approaches. Precisely, we analyse
if AURUS is able to produce some equivalent, weaker, or stronger
repair. We say that a formula B is weaker than A, if A — B holds
(i.e. if A A =B is unsatisfiable). Typically, weaker specifications are
thought of as more general solutions, while stronger ones corre-
spond to more localised solutions. Our intention is twofold: we

https://sites.google.com/site/unrealrepair/

Automated Repair of Unrealisable LTL Specifications Guided by Model Counting

want to show that AURUS can produce repairs that are close to the
ones obtained by other approaches, and also that it can generate
unique solutions that cannot be computed by existing techniques.

Manually reported solutions. AURUS can generate equivalent so-
lutions to some manual repairs, reported in the literature, for the
Arbiter, MinePump, RG2, and Lift cases. Additionally, it produces
some weaker/stronger solutions, compared to the manual ones, as
well as many unique solutions, giving further choices to the engi-
neer in how to refine the specifications to get a realisable one.

Automatically generated solutions. We consider the work pre-
sented by Maoz et al. [41], limited to GR(1). They present two sym-
bolic techniques for learning missing assumptions: JVTS-Repair,
which generates new assumptions from the counter-strategies built
as proofs of unrealisability; and GLASS, that computes safety, jus-
tice, and initial assumptions to ensure the corresponding safety,
justice, and initial guarantees of the unrealisable specification. Also,
[41] re-implements the algorithm presented in [8](AMT13), which
also generates missing assumptions from counter-strategies. Notice
that, while GLASS generates only 1 candidate repair, JVTS-Repair
and AMT13 may generate many candidates (because they try to
remove the counter-strategies generated). To perform this compari-
son we took specifications from SYNTECH15 and others expressed
in GR(1) such as RG1, RG2, and Lift (see Table 1).

Table 3: Repairs Overlapping
Case AURUS | GLASS | JVTS-Repair | AMT13
RG1 379/1 1/0 46 /0 98 /1
RG2 453 /6 0/1 11/1 20/4
Lift 302/1 1/0 145/0 1/1
GyroV1 529/1 1/0 7/0 22/1
GyroV2 617/1 1/0 9/0 13/1
Humanoid458 | 582/0 1/0 1/0 1/0
Humanoid503 3/0 1/0 Timeout | Timeout
Humanoid531 86/0 1/0 Timeout | Timeout
Humanoid741 80/0 1/0 Timeout | Timeout
Humanoid742 99/0 1/0 3/0 | Timeout
PCarV2-888 3/0 1/0 289 /0 | Timeout

Table 3 summarises, for each case, the number of unique solu-
tions (left) produced by AURUS, i.e., the number of solutions not
generated by other techniques, and the number of equivalent so-
lutions to one produced by other approaches (right). Notice that
the comparison is always in between AURUS and the related tech-
niques, but we do not compare the related approaches against each
other (i.e., we do not compare GLASS vs JVTS-Repair vs AMT13).

We observe that in most of the cases, AURUS and GLASS com-
plement each other, with the only exception for case RG2, where
AURUS produces an equivalent solution to the one proposed by
GLASS. Moreover, for all considered cases, AURUS generates many
weaker/stronger repairs (between 2 and 80) than the one provided
by GLASS, and the remaining are unique. When analysing AMT13
repairs, we observe that AURUS generates, for all cases in which
the bound of 10 minutes was not reached (same timeout of [41]) ex-
cept for Humanoid458, between 1 to 4 equivalent solutions, and the
remaining In the case of JVTS-Repair, AURUS only generates 1 equiv-
alent solution for the case RG2. In all case studies, many solutions
generated by AURUS maintains some relation (i.e., weaker/stronger)
to the ones generated by JVTS-Repair and AMT13, but the majority
are unique. The results evidence that the overlapping between the
solutions is low, indicating that AURUS can complement existing

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

techniques, and provide a rich set of variants to the engineer to
resolve the source of unrealisability.

6.4 Importance of the three properties

We first study AURUS’ effectiveness, when some properties are
deactivated from the fitness function. We run it under six extra
configurations (see Fig. 3). In configurations (Syn, Sem, Syn+Sem)
we deactivate the status checking, being AURUS only guided by the
syntactic and/or semantic similarity (realisability is only checked
at the end of the execution, to check which candidate is a solu-
tion). In configurations (Real, Real+Syn, Real+Sem) we deactivate
the syntactic and/or semantic similarity computation from the fit-
ness function. Configuration Real+Syn+Sem denotes that AURUS is
guided by the three properties. Fig. 3 reports, for each configuration,
the average percentage of repairs found per case study, with respect
to the best performance previously discussed (with the three factors
activated). Precisely, for the orange plots (repairs produced), the
y-axis represents the relative difference between configuration runs
and the best result for this metric across all configuration runs. For
instance, the configuration Real+Syn+Sem produced on average 467
repairs while the highest number across all configurations is 531
in the arbiter example. In the red and green plots, the similarity
is measured relative to the original specification. Notice that, by
removing the realisability checking, AURUS behaves pretty similar,
or even worse, than random, affecting drastically its effectiveness
in finding repairs. On the other hand, configurations that use re-
alisability checking considerably improve AURUS’ effectiveness,
being able to find more solutions. In fact, we compute A1y values
to compare different configurations for each case, and we can en-
sure that if AURUS is guided by the 3 properties (Real+Syn+Sem), it
obtains more repairs than the configurations that remove some of
the properties.

We also analyse the quality of the best 10 ranked repairs, mea-
sured in terms of the syntactic (red) and semantic (green) similarity,
that can be presented to the engineer for analysis and validation. It
is almost always the case that our best-performing configuration
(Real+Syn+Sem) obtains better syntactic and semantic similarities
than the other configurations. Only in a few cases where random
found more repairs than AURUS, outperforms us in syntactical and
semantic similarities. Two exceptions occur in Humanoid741/742,
where the solutions found by configuration Real+Sem have better
semantic similarities than the repairs found by Real+Syn+Sem. The
outliers in Fig. 3 correspond to the mentioned cases.

1

08

sm Sem Syn+sem Real Real+Syn Real+Sem Real+Syn+Sem

ntactic Similarity (10 top ranked) [Semantic Similarity (10 top ranked)

Figure 3: Impact of each factor of the fitness.

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

6.5 Evaluating our Model Counting Approach

To evaluate the precision and scalability of our model counting
approach, we compare it with two related approaches. Firstly, we
re-implemented an established exact model counting approach,
that will be used as a baseline in the comparison. We basically en-
code LTL formulas as propositional formulas, such that, for a given
bound k, each satisfying valuation of the encoding corresponds to
a lasso-trace of k states of the formula [33]. Then, we can use a
propositional model counter [28, 49, 50] to indirectly solve the LTL
(bounded) model counting. The propositional encoding explodes ex-
ponentially as the bound is incremented, thus it can only be applied
to small values of k. For the comparison, we additionally consider
the approach that served us as motivation, presented in [19]. It also
attempts to approximate LTL model counting, by generating a regex
from a formula, then fed to the string model counter ABC [10] to
estimate the number of models. Encoding our reactive specifica-
tions into propositional constraints can quickly produce formulas
beyond what exact model counters can analyse. Therefore, we gen-
erate ten sets, Sy, . . ., So, with 50 random LTL formulas, feasible for
all approaches, taken from a well-established benchmark [1], used
for assessing LTL SAT solvers [36]. For each formula in each set,
we compute the number of models, for k € [6..10], using the Exact
Model-Counting, the approach of [19] (RE), and our Approximate
Model-Counting (ApMC). Then, we rank the formulas in ascending
order w.r.t. the number of models obtained with each technique.
We compare these rankings to verify if the techniques preserve the
ranking of the exact MC.

Table 4: Model Counting results.

Time | Time Diff | Time Diff
Set | Exact | ApMC | Exact - ApMC RE | Exact - RE
S0 | 3685 2 0 102 11
51 8815 2 2 102 9
52 5757 2 0 101 7
53 5299 2 0 101 6
S4 5844 2 0 102 5
S5 5665 2 0 102 6
56 5130 2 0 103 10
S7 | 5929 2 0 103 8
58 8800 2 0 101 10
59 6172 2 0 103 7

Table 4 shows the results of the comparison only for bound
k = 10 (other bounds are in the tool’s site). It reports the execution
time in seconds and the difference between rankings provided by
ApMC and RE w.r.t. the ranking of the Exact model counter. The
results show that ApMC, in 9/10 sets, produces the same ranking
as Exact. In only 1 set it misclassified 2/50 formulas. Contrary, RE
misclassified 8 formulas per set on average. Exact required 470
seconds, for a bound of 6, to 6000 seconds, for a bound of 10, to
analyze each set on average. RE required more than 100 seconds
per set, while ApMC required only 2 seconds per set. We assess
scalability by testing approaches on 26 Table 1 specifications. Exact
quickly becomes infeasible, while RE failed on 22/26 specifications,
but ApMC succeeded on all, even with large bounds.

7 RELATED WORK

In reactive modeling, the system’s expected properties are captured
in temporal logics [38, 39], this is a typical setting in many essen-
tial activities, such as model checking [17], property monitoring

Brizzio et al.

[11], and model-based testing [26]. Detecting and finding flaws in
specifications have been the focus on many studies [20, 21, 52] Re-
cent works present different techniques to automatically repair the
system’s specification [6, 15, 18]. Unlike these approaches, which
target the behavioural model, AURUS aims to repair the declara-
tive specification from which the synthesis tool will later generate
an adequate model. LTL-Reactive synthesis has been studied for
many years [7, 9, 24, 40, 45, 46]. Many approaches have focused on
diagnosing the cause of unsynthesisability by computing a core of
assertions that makes the specification unreal [48] or by generating
a counter-strategy showing how the environment can prevent the
controller from satisfying the guarantees [47]. Other approaches
focus on undesirable properties of realisable specifications that
affect the controllers’ quality [22]. AURUS guarantees to produce
satisfiable and realisable repairs, and the mentioned techniques can
complement the analysis to assess and improve our repairs’ quality.

Recent approaches focus on inferring missing assumptions from
unrealisable specifications [8, 13, 14, 37, 41]. Their limitations are
twofold: they work on LTL fragments, e.g., GR(1), and only attempt
to solve unrealisability, adding assumptions, not considering that
existing ones/guarantees might be incorrect, which is often the
case [5, 51, 52]. We show in Section 6.3 that AURUS complements
these techniques by being able to analyse general LTL specifica-
tions, changing both assumptions and guarantees, and providing
more variants to repair unrealisability. Program repair tools, like
GenProg [34] and DirectFix [42], use evolutionary algorithms to ex-
plore syntactical variants of the buggy program. These algorithms
also aim to guide the search toward repairs similar to the input
program. AURUS uses LTL model counting to measure the seman-
tic distance of the candidates concerning the initial specification.
We show that existing LTL model counting tools [19, 25] quickly
reach their scalability limits. Thus, we developed an approach to
approximate it, proving that it is more efficient than the mentioned
methods.

8 CONCLUSION

This paper presents AURUS, a search-based approach to repair unre-
alisable specifications. Compared to previous methods that typically
focus their analyses on identifying missing assumptions, AURUS
aims to modify assumptions and guarantees. The key aim is to gen-
erate realisable versions close to the given unrealisable ones. We
defined syntactic and semantic similarity notions, essentials in guid-
ing the algorithm towards quality solutions. AURUS succeeded in
repairing several case studies from the literature, established bench-
marks, and managed to generate solutions in line with manual and
automated fixes.

ACKNOWLEDGMENT

This work is made possible by the support of the Luxembourg
National Research Funds (FNR) through the CORE project grant
C19/1S/13646587/RASoRS, the PRODIGY Project (TED2021-132464B-
100) funded by MCIN/AEI/10.13039/501100011033/ and the Euro-
pean Union NextGenerationEU/PRTR, as well as a research grant
from Nomadic Labs and the Tezos Foundation.

Automated Repair of Unrealisable LTL Specifications Guided by Model Counting

REFERENCES

[10]

[11]

=
&

(13

[14

[15]

[16

[17]

[18

[19]

[20]

[21]

[22

[23

[24

[25

[26

[27]

Aalta benchmark. https://www.lab301.cn/aalta/node3.html.

Commons math: The apache commons mathematics library. https://commons.
apache.org/proper/commons-math/.

The reactive synthesis competition. www.syntcomp.org.

Synthesis competition repository. https://bitbucket.org/swenjacobs/syntcomp/.
Dalal Alrajeh, Antoine Cailliau, and Axel van Lamsweerde. Adapting require-
ments models to varying environments. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, ICSE *20, page 50-61, New York,
NY, USA, 2020. Association for Computing Machinery.

Dalal Alrajeh and Robert Craven. Automated error-detection and repair for
compositional software specifications. In Dimitra Giannakopoulou and Gwen
Salaiin, editors, Software Engineering and Formal Methods, pages 111-127, Cham,
2014. Springer International Publishing.

R. Alur and S. La Torre. Deterministic generators and games for LTL fragments.
In Proceedings 16th Annual IEEE Symposium on Logic in Computer Science, pages
291-300, June 2001.

Rajeev Alur, Salar Moarref, and Ufuk Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. In Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pages 26-33, 2013.
Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis
for timed automata. IFAC Proceedings Volumes, 31(18):447 — 452, 1998. 5th IFAC
Conference on System Structure and Control 1998 (SSC’98), Nantes, France.
Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. Automata-based model count-
ing for string constraints. In Computer Aided Verification - 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part
I, pages 255-272, 2015.

Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol., 20(4):14:1-14:64, 2011.
Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.
Synthesis of reactive(1) designs. J. Comput. Syst. Sci., 78(3):911-938, 2012.
Davide G Cavezza and Dalal Alrajeh. Interpolation-based GR(1) assumptions re-
finement. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 281-297. Springer, 2017.

Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environ-
ment assumptions for synthesis. In Franck van Breugel and Marsha Chechik,
editors, CONCUR 2008 - Concurrency Theory, pages 147-161, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

George Chatzieleftheriou, Borzoo Bonakdarpour, Panagiotis Katsaros, and Scott A.
Smolka. Abstract model repair. Log. Methods Comput. Sci., 11(3), 2015.

A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev. Diagnostic information
for realizability. In Proc. of the 9th Intl. Conf. on Verification, Model Checking, and
Abstract Interpretation, pages 52-67, 2008.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT
Press, 2001.

Renzo Degiovanni, Dalal Alrajeh, Nazareno Aguirre, and Sebastian Uchitel. Au-
tomated goal operationalisation based on interpolation and sat solving. In ICSE,
pages 129-139, 2014.

Renzo Degiovanni, Pablo F. Castro, Marcelo Arroyo, Marcelo Ruiz, Nazareno
Aguirre, and Marcelo F. Frias. Goal-conflict likelihood assessment based on
model counting. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, pages 1125-1135, 2018.

Renzo Degiovanni, Facundo Molina, German Regis, and Nazareno Aguirre. A
genetic algorithm for goal-conflict identification. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018, pages 520-531, 2018.

Renzo Degiovanni, Nicolés Ricci, Dalal Alrajeh, Pablo F. Castro, and Nazareno
Aguirre. Goal-conflict detection based on temporal satisfiability checking. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 507-518, 2016.
Nicolas D’Ippolito, Victor A. Braberman, Nir Piterman, and Sebastian Uchitel.
Synthesizing nonanomalous event-based controllers for liveness goals. ACM
Trans. Softw. Eng. Methodol., 22(1):9, 2013.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property
specifications for finite-state verification. In ICSE, pages 411-420, 1999.

E. Allen Emerson and Edmund M. Clarke. Using branching time temporal logic
to synthesize synchronization skeletons. Sci. Comput. Program., 2(3):241-266,
1982.

Bernd Finkbeiner and Hazem Torfah. Counting models of linear-time temporal
logic. In Adrian Horia Dediu, Carlos Martin-Vide, José Luis Sierra-Rodriguez,
and Bianca Truthe, editors, Language and Automata Theory and Applications - 8th
International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings,
volume 8370 of Lecture Notes in Computer Science, pages 360-371. Springer, 2014.
Gordon Fraser, Franz Wotawa, and Paul Ammann. Testing with model checkers:
a survey. Softw. Test., Verif. Reliab., 19(3):215-261, 2009.

D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[28

[32

[33

&
=

[35

[36

[37

(38]
(39]

(40]

N
furg

[42

[43

[44]

[45

[47

[48

[49

[50

(52

[53

GECCO ’23, July 15-19, 2023, Lisbon, Portugal

Roberto J. Bayardo Jr. and Robert Schrag. Using CSP look-back techniques to solve
real-world SAT instances. In Proceedings of the Fourteenth National Conference
on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence
Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., pages
203-208, 1997.

Robert Konighofer, Georg Hofferek, and Roderick Bloem. Debugging formal
specifications: a practical approach using model-based diagnosis and counter-
strategies. Int. J. Softw. Tools Technol. Transf., 15(5-6):563-583, 2013.

John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

Hadas Kress-Gazit and Hazem Torfah. The challenges in specifying and ex-
plaining synthesized implementations of reactive systems. In Bernd Finkbeiner
and Samantha Kleinberg, editors, Proceedings 3rd Workshop on formal reason-
ing about Causation, Responsibility, and Explanations in Science and Technology,
Thessaloniki, Greece, 21st April 2018, volume 286 of Electronic Proceedings in
Theoretical Computer Science, pages 50-64. Open Publishing Association, 2019.
Jan Kretinsky, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for w-
words, automata, and LTL. In Automated Technology for Verification and Analysis
- 16th International Symposium, ATVA 2018, Los Angeles, CA, USA, October 7-10,
2018, Proceedings, pages 543-550, 2018.

Timo Latvala, Armin Biere, Keijo Heljanko, and Tommi A. Junttila. Simple
bounded LTL model checking. In Formal Methods in Computer-Aided Design, 5th
International Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004,
Proceedings, pages 186200, 2004.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
Genprog: A generic method for automatic software repair. IEEE Trans. Softw.
Eng., 38(1):54-72, January 2012.

Jianwen Li, Geguang Pu, Lijun Zhang, Yinbo Yao, Moshe Y. Vardi, and Jifeng He.
Polsat: A portfolio LTL satisfiability solver. CoRR, abs/1311.1602, 2013.

Jianwen Li, Shufang Zhu, Geguang Pu, and Moshe Y Vardi. SAT-based explicit
LTL reasoning. In Haifa Verification Conference, pages 209-224. Springer, 2015.
Wenchao Li, Lili Dworkin, and Sanjit A Seshia. Mining assumptions for synthesis.
In Ninth ACM/IEEE International Conference on Formal Methods and Models for
Codesign (MEMPCODE2011), pages 43-50. IEEE, 2011.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

Zohar Manna and Pierre Wolper. Synthesis of communicating processes from
temporal logic specifications. ACM Trans. Program. Lang. Syst., 6(1):68-93, 1984.
Shahar Maoz, Jan Oliver Ringert, and Rafi Shalom. Symbolic repairs for GR(1)
specifications. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, pages 1016-1026, 2019.

S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for simple pro-
gram repairs. In 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, volume 1, pages 448-458, 2015.

Philipp J. Meyer, Salomon Sickert, and Michael Luttenberger. Strix: Explicit
reactive synthesis strikes back! In Computer Aided Verification - 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I, pages 578-586, 2018.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1996.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. In
VMCALI pages 364-380, 2006.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, pages 179-190, New York, NY, USA, 1989. ACM.
Vasumathi Raman and Hadas Kress-Gazit. Explaining impossible high-level robot
behaviors. Trans. Rob., 29(1):94-104, February 2013.

Viktor Schuppan. Towards a notion of unsatisfiable cores for LTL. In Farhad
Arbab and Marjan Sirjani, editors, Fundamentals of Software Engineering, pages
129-145, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. Ganak: A
scalable probabilistic exact model counter. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, [JCAI-19, pages 1169-1176.
International Joint Conferences on Artificial Intelligence Organization, 7 2019.
Marc Thurley. sharpsat - counting models with advanced component caching
and implicit BCP. In Theory and Applications of Satisfiability Testing - SAT 2006,
9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings,
pages 424-429, 2006.

Axel van Lamsweerde. Requirements Engineering - From System Goals to UML
Models to Software Specifications. Wiley, 2009.

Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented
requirements engineering. IEEE Trans. Softw. Eng., 26(10):978-1005, October
2000.

Andras Vargha and Harold D. Delaney. A Critique and Improvement of the
"CL" Common Language Effect Size Statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics, 25(2):101-132, 2000.

https://www.lab301.cn/aalta/node3.html
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
www.syntcomp.org
https://bitbucket.org/swenjacobs/syntcomp/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Linear-Time Temporal Logic (LTL)
	2.2 Reactive LTL Synthesis
	2.3 Genetic Algorithms

	3 A Motivating Example
	4 AuRUS Approach
	4.1 Search Space and Initial Population
	4.2 Genetic Operators
	4.3 Fitness Function
	4.4 Selection
	4.5 Soundness, and (In)completeness

	5 LTL Model Counting Approximation
	6 Experimental Evaluation
	6.1 Effectiveness and Efficiency Evaluation
	6.2 Comparison with Random Generation
	6.3 Comparison with Related Approaches
	6.4 Importance of the three properties
	6.5 Evaluating our Model Counting Approach

	7 Related Work
	8 Conclusion
	References

