
Computing star discrepancies with numerical black-box optimization
algorithms
Clement, F.; Vermetten, D.L.; Nobel J.P. de; Jesus, A.D.; Paquete, L.; Doerr, C.

Citation
Clement, F., Vermetten, D. L., Jesus, A. D., Paquete, L., & Doerr, C. (2023). Computing star
discrepancies with numerical black-box optimization algorithms. Gecco '23 Companion,
1330-1338. doi:10.1145/3583131.3590456

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3731693

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3731693

Computing Star Discrepancies with Numerical Black-Box
Optimization Algorithms

François Clément
Sorbonne Université, CNRS, LIP6

Paris, France

Diederick Vermetten
Leiden Institute for Advanced

Computer Science
Leiden, The Netherlands

Jacob de Nobel
Leiden Institute for Advanced

Computer Science
Leiden, The Netherlands

Alexandre D. Jesus
University of Coimbra, CISUC, DEI

Coimbra, Portugal

Luís Paquete
University of Coimbra, CISUC, DEI

Coimbra, Portugal

Carola Doerr
Sorbonne Université, CNRS, LIP6

Paris, France

ABSTRACT
The 𝐿∞ star discrepancy is a measure for the regularity of a finite set
of points taken from [0, 1)𝑑 . Low discrepancy point sets are highly
relevant for Quasi-Monte Carlo methods in numerical integration
and several other applications. Unfortunately, computing the 𝐿∞
star discrepancy of a given point set is known to be a hard problem,
with the best exact algorithms falling short for even moderate
dimensions around 8. However, despite the difficulty of finding the
global maximum that defines the 𝐿∞ star discrepancy of the set,
local evaluations at selected points are inexpensive. This makes the
problem tractable by black-box optimization approaches.

In this workwe compare 8 popular numerical black-box optimiza-
tion algorithms on the 𝐿∞ star discrepancy computation problem,
using a wide set of instances in dimensions 2 to 15. We show that
all used optimizers perform very badly on a large majority of the
instances and that in many cases random search outperforms even
the more sophisticated solvers. We suspect that state-of-the-art
numerical black-box optimization techniques fail to capture the
global structure of the problem, an important shortcoming that
may guide their future development.

We also provide a parallel implementation of the best-known
algorithm to compute the discrepancy.

CCS CONCEPTS
• Computing methodologies → Randomized search; Parallel
algorithms.

KEYWORDS
Star discrepancy, Black-box optimization, Parallel computing, Evo-
lutionary computation, Uniform distributions
ACM Reference Format:
François Clément, Diederick Vermetten, Jacob de Nobel, Alexandre D. Jesus,
Luís Paquete, and Carola Doerr. 2023. Computing Star Discrepancies with
Numerical Black-Box Optimization Algorithms. In Genetic and Evolutionary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590456

Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3583131.3590456

1 INTRODUCTION
Discrepancy measures are designed to quantify how regularly a
point set is distributed in a given space. Among the many discrep-
ancy measures, the most common one is the 𝐿∞ star discrepancy.
The 𝐿∞ star discrepancy of a finite point set 𝑃 ⊆ [0, 1)𝑑 measures
the worst absolute difference between the Lebesgue measure of
a 𝑑-dimensional box anchored in (0, . . . , 0) and the proportion of
points that fall inside this box.

The 𝐿∞ star discrepancy is especially important because of
the Koksma-Hlawka inequality in numerical integration [21, 24].
This inequality states that the error of approximating the inte-
gral

∫
𝑥∈[0,1]𝑑 𝑓 (𝑥)𝑑𝑥 of a function 𝑓 by the average function value

1
|𝑃 |

∑
𝑝∈𝑃 𝑓 (𝑝) of 𝑓 evaluated in the points 𝑝 ∈ 𝑃 is upper-bounded

by a term depending only on 𝑓 and another term depending on
the 𝐿∞ star discrepancy of 𝑃 . While we cannot control the inte-
grand 𝑓 , the Koksma-Hlawka inequality suggests that evaluating
𝑓 in point sets 𝑃 of small discrepancy is preferable. Quasi-Monte
Carlo integration is undoubtedly the main motivation to study the
design of point sets with low 𝐿∞ star discrepancy values [8]. How-
ever, such point sets are also used in numerous other applications,
including the design of experiments [36], computer vision [31],
and financial mathematics [15]. In evolutionary computation, low-
discrepancy point sets are considered in the context of one-shot
optimization [2, 3], digital art [27], and TSP solvers [28].

The study of low-discrepancy sequences by mathematicians has
focused on trying to obtain the optimal asymptotic order of the
discrepancy of a sequence of points; see [30] or the more recent [8].
All currently known low-discrepancy sequences have a 𝐿∞ star dis-
crepancy of order𝑂 (log𝑑 (𝑛)/𝑛), with 𝑛 being the number of points
[30]. When 𝑑 increases, an exponential number of points is required
for this bound to be smaller than 1, giving no information on the
quality of the sets if 𝑛 is small. Taking so many points is impossible
for typical applications and thus requires the construction of low-
discrepancy point sets of a fixed size. Put differently, in contrast to
the asymptotic behavior studied by the classical low-discrepancy
constructions, in Computer Science and similar applications we
often require sets of low 𝐿∞ star discrepancy value for concrete
set size 𝑛. Recent attempts to construct such point sets, presented
for example in [11] and [5], require a great number of discrepancy

1330

https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0001-7691-0295
https://orcid.org/0000-0002-4981-3227
https://doi.org/10.1145/3583131.3590456
https://doi.org/10.1145/3583131.3590456
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590456&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal F. Clément et al.

computations, as it is often the only criterion available to differen-
tiate candidate point sets. That is, we are not aware of (possibly
low-fidelity) surrogates of the star discrepancy value. Obtaining
efficient methods of computing 𝐿∞ star discrepancies would there-
fore be an invaluable asset for the construction of low-discrepancy
point sets.

Unfortunately, the problem is known to be hard to tackle exactly.
More precisely, the decision version of the 𝐿∞ star discrepancy
computation was shown to be NP-hard [17] and even W[1]-hard
with respect to the dimension [16]. The best exact algorithm to
this day runs in 𝑂 (𝑛1+𝑑/2) [9]. This algorithm performs reliably
well for up to a few hundred points in dimension 8, or dozens in
dimension 10 (see Section 3.1). To calculate the 𝐿∞ star discrep-
ancy in higher dimensions, only a heuristic is available (based on
Threshold Accepting [18]), reliable up to around dimension 20 (see
Section 3.3). One of the main issues of the heuristic is that it only
provides a lower bound: throughout the heuristic, we are only eval-
uating local discrepancies (the maximum of which defines the star
discrepancy value of the set). Therefore, there are no guarantees
on the quality of the discrepancy values returned by the heuristic.
A comprehensive survey of the different attempts to compute the
𝐿∞ star discrepancy can be found in Chapter 10 of [10].

Many applications would also require discrepancy calculations
in much higher dimensions, in some cases 𝑑 ≥ 100, far out of
reach for the moment. Despite the complexity of finding the global
maximum, local evaluations are very cheap. Black-box optimization
approaches can be used to tackle this problem, even making a
very large number of local evaluations is feasible as the Threshold
Accepting heuristic has shown.

Our Contributions.We show in this work that popular numer-
ical black-box optimizers are unsuccessful in computing the 𝐿∞
star discrepancy, even for instances that can be solved within a sec-
ond with naïve methods. We apply 8 optimizers on three different
point set types, for varying dimensions and set sizes, and show that
their performance is globally bad. The relative performance rapidly
decreases with increasing dimension, whereas the size of the point
sets only seems to have a minor impact on the overall (bad) quality
of the solvers, which might be surprising given that the differences
in the local star discrepancy values at the discontinuities become
smaller with increasing set size (inverse linear relationship). The
sampler type has relatively little importance, if any, on the perfor-
mance of the optimizers. We observe that uniform i.i.d. random
search seems to be the best performing optimizer over the vast
majority of the instances, yet still fails to come close to the exact
value, as highlighted by a relative performance comparison with
the known exact values.

We complement our empirical comparison of “off-the-shelf” nu-
merical black-box optimization algorithms with a refinement of
the problem-specific exact algorithm. More precisely, to stretch the
settings for which we can obtain the exact 𝐿∞ star discrepancy
values of the problem instances, we provide a new parallel imple-
mentation of the Dobkin, Eppstein, Mitchell algorithm [9], the best
known to this day to compute the star discrepancy. We show that
our parallel implementation has a speed-up factor of up to 17 on
32 threads. This implementation is of independent interest to the
discrepancy and numerical integration communities.

Outline. In Section 2, we introduce the discrepancy computa-
tion problem and give some basic properties. The best discrepancy
algorithms are described in Section 3, along with a performance
analysis of our parallel implementation. Section 4 describes the in-
stances and optimizers chosen, while Section 5 describes the results
obtained.

Availability of code. Our implementations can be found in a
Zenodo repository [6], along with past implementations by the
authors of [18]. The repository also contains all code and data used
for the analysis of the black-box optimization algorithms, as well
as the code used to process this and create the figures included in
this paper.

2 𝐿∞ STAR DISCREPANCY
We provide in this section a formal definition of the 𝐿∞ star dis-
crepancy and discuss some basic properties.

2.1 Definition and properties
Definition 2.1. Let 𝑃 ⊆ [0, 1)𝑑 be a finite set of points. For 𝑞 ∈

[0, 1]𝑑 , the local 𝐿∞ star discrepancy of 𝑃 in q is defined as the
absolute difference between the (standard Lebesgue) volume of the
box [0, 𝑞), 𝜆(𝑞), and the fraction of points of 𝑃 that fall inside this
box,

𝑑∗∞ (𝑃, 𝑞) :=
���� |𝑃 ∩ [0, 𝑞) |

|𝑃 | − 𝜆(𝑞)
���� .

The 𝐿∞ star discrepancy of 𝑃 measures the worst local discrepancy,
i.e.,

𝑑∗∞ (𝑃) := sup
𝑞∈[0,1]𝑑

𝑑∗∞ (𝑃, 𝑞) .

As mentioned in the introduction, computing the 𝐿∞ star dis-
crepancy of a point set is a difficult task that likely cannot be done
in polynomial time in 𝑑 and |𝑃 |. Evaluating the local 𝐿∞ star dis-
crepancy, however, is rather simple and can be done naively in
𝑂 (𝑑 |𝑃 |). Indeed, it only requires checking if |𝑃 | given points are in
a specific box in [0, 1)𝑑 .

Properties of the local 𝐿∞ star discrepancy problem. Fig-
ure 1 illustrates the local 𝐿∞ star discrepancy values for an instance
in 𝑑 = 2. We can already observe that the problem of maximizing
the local 𝐿∞ star discrepancy bears two important challenges: (1)
it is a multimodal problem, i.e., there can be several local optima
in which the solvers can get trapped (this problem becomes worse
with increasing dimension); (2) there are sharp discontinuities in
the local discrepancy values. Slightly increasing one coordinate
can result in a point falling inside the considered box, causing a
1/|𝑃 | difference in the local star discrepancy value. Figure 2 shows
that the problem structure also depends strongly on the point set
considered.

2.2 Discrete Embedding
The star discrepancy can also be expressed as a discrete problem, as
shown by Niederreiter in [29]. Since every closed box in [0, 1]𝑑 can
be obtained as the limit of a sequence of open boxes, the definition
of star discrepancy can be extended to include closed boxes. We see
that for a fixed 𝑞 ∈ [0, 1]𝑑 , the local discrepancy can be expressed
as the maximum of a local discrepancy term for the open box [0, 𝑞)

1331

Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms GECCO ’23, July 15–19, 2023, Lisbon, Portugal

and a local discrepancy term for the closed box [0, 𝑞], rather than
with an absolute value.

More formally, we define 𝐷 (𝑞, 𝑃) to be the number of points of
𝑃 := (𝑥 (𝑖))𝑖∈{1,...,𝑛} that fall inside the open anchored box [0, 𝑞),
𝐷 (𝑞, 𝑃) the number of points of P that fall inside the closed anchored
box [0, 𝑞] and the two following functions

𝛿 (𝑞, 𝑃) := 𝜆(𝑞)− 1
𝑛
𝐷 (𝑞, 𝑃) and 𝛿 (𝑞, 𝑃) := 1

𝑛
𝐷 (𝑞, 𝑃)−𝜆(𝑞),

where here and in the following 𝑛 = |𝑃 |.
The local discrepancy in a point 𝑞 ∈ [0, 1]𝑑 is given by the

maximumof𝛿 (𝑞, 𝑃) and𝛿 (𝑞, 𝑃). Given this formulation, we can now
show that only positions on specific grids can reach the maximum
value for the star discrepancy. For all 𝑗 ∈ {1, . . . , 𝑑}, we define

Γ𝑗 (𝑃) := {𝑥 (𝑖)
𝑗

: 𝑖 ∈ 1, . . . , 𝑛} and Γ 𝑗 (𝑃) := Γ𝑗 (𝑃) ∪ {1},

and

Γ(𝑃) := Γ1 (𝑃)×. . .×Γ𝑑 (𝑃) and Γ(𝑃) := Γ1 (𝑃)×. . .×Γ𝑑 (𝑃) .

For any 𝑞 ∈ [0, 1]𝑑 \ Γ(𝑃), it is always possible to either increase
or decrease slightly one of the coordinates of 𝑞 without changing
the number of points inside the (open or closed) box. If the local
discrepancy was given by 𝛿 (𝑞, 𝑃) (respectively 𝛿 (𝑞, 𝑃)), increasing
(respectively decreasing) the volumewill make the local discrepancy
worse. Since only points in Γ(𝑃) can reach the maximum value for
the star discrepancy, we obtain with the open/closed box distinction

𝑑∗∞ (𝑃) := max
{

max
𝑞∈Γ (𝑃)

𝛿 (𝑞, 𝑃), max
𝑞∈Γ (𝑃)

𝛿 (𝑞, 𝑃)
}
. (1)

From this grid definition, the 𝐿∞ star discrepancy can be com-
puted by calculating local discrepancies for each of the𝑂 (𝑛𝑑) points
in the grid. This can be further refined by noticing that only boxes
whose outer edges have at least one point on each of them (or
coordinate 1 for open boxes) can reach the worst discrepancy value,
bringing the total number of local discrepancies to evaluate down to
𝑂 (𝑛𝑑/(𝑑!)). These boxes are called critical boxes. To our knowledge,
this method can be used only for relatively small sets: tests in [42]
indicate that 236 points in dimension 5 or 92 in dimension 6 seem
to be the limit.

Convention. Since in this work we only consider the 𝐿∞ star
discrepancy, the 𝐿∞ star discrepancy may be referred to as simply
discrepancy or star discrepancy from hereon.

3 PROBLEM-SPECIFIC ALGORITHMS
We describe in this section the baselines against which we will
compare the numerical black-box optimization approaches. The
currently best-known exact algorithm for computing the 𝐿∞ star
discrepancy of a given point set is presented in Section 3.1. In Sec-
tion 3.2 we present our parallelization of this approach. Finally,
in Section 3.3 we briefly discuss a problem-specific local search al-
gorithm that we use to evaluate instances for which we cannot
compute the exact value of the 𝐿∞ star discrepancy.

3.1 The DEM Algorithm
The best exact algorithm to compute the star discrepancy was
introduced by Dobkin, Eppstein and Mitchell in [9]. It involves

building a decomposition of [0, 1]𝑑 in 𝑂 (𝑛𝑑/2) disjoint boxes 𝐵𝑖 ,
such that we can find the maximum local discrepancy for a top-
right corner in 𝐵𝑖 in linear time. This leads to a total complexity
of 𝑂 (𝑛1+𝑑/2). As mentioned in the introduction, the algorithm can
be used up to dimension 8 for a few hundred points or dimension
10 for a few dozens. While the initial algorithm in [9] was based
on a point-box dualization, our description in this subsection will
follow a more direct approach, as in Chapter 10 of [10] and in the
original implementation by the authors of [18]. Some border cases
will be ignored for the clarity of the proof, as they do not change
the general idea of the implementation or the stated complexity.

Firstly, a point 𝑥 is said to be internal in dimension 𝑗 for a box
[𝑎, 𝑏] if 𝑎 𝑗 < 𝑥 𝑗 < 𝑏 𝑗 . Starting from [0, 1]𝑑 , we build dimension-
by-dimension boxes [𝑎, 𝑏] such that the two following properties
are verified: (1) Any 𝑥 ∈ [0, 𝑏) is internal in at most one dimension;
(2) For each box built up to dimension 𝑗 in {1, . . . , 𝑑}, there are at
most 𝑂 (

√
𝑛) points internal in dimension 𝑗 - for a fully-built box

[𝑎, 𝑏] this holds for all dimensions.
The decomposition is built recursively in the following man-

ner. We consider [0, 1]𝑑 and start the decomposition in the first
dimension. We find the smallest coordinate 𝑐1,1 such that [0, 𝑐1,1] ×
[0, 1]𝑑−1 contains

√
𝑛 points, then 𝑐1,2 such that [𝑐1,1, 𝑐1,2] ×

[0, 1]𝑑−1 contains
√
𝑛 points and continue until we obtain a set

(𝑐1,𝑖)𝑖∈{0,...,⌈√𝑛⌉ } where 𝑐1,0 = 0 and the last non-zero 𝑐1, 𝑗 = 1.For
each of these boxes [𝑐1,𝑖 , 𝑐1,𝑖+1] × [0, 1]𝑑−1, we track which points
are internal in dimension 1 (at most

√
𝑛) and which points are inside

the box [0, 𝑐1,𝑖+1) × [0, 1]𝑑−1.
Given a box𝐵 𝑗 = [𝑐1,𝑖1 , 𝑐1,𝑖1+1]×. . .×[𝑐 𝑗,𝑖 𝑗 , 𝑐 𝑗,𝑖 𝑗+1]×[0, 1]𝑑− 𝑗 , we

recursively perform a similar decomposition in dimension 𝑗 + 1. Let
𝑛 𝑗 be the number of points inside𝐵 𝑗 := [0, 𝑐1,𝑖1+1)×. . .×[0, 𝑐 𝑗,𝑖 𝑗+1]×
[0, 1]𝑑− 𝑗 . The new 𝑐 𝑗+1,𝑖 need to verify the two following properties.
Firstly, for any point 𝑥 in 𝐵 𝑗 that is internal in one of the 𝑗 first
dimensions, there needs to be some 𝑐 𝑗+1,𝑖 = 𝑥 𝑗+1. Secondly, for any
𝑖 ∈ {0, . . . , ⌈

√
𝑛⌉ − 1}, there are at most

√
𝑛 points 𝑦 in 𝐵 𝑗 such that

𝑐 𝑗+1,𝑖 < 𝑦 𝑗+1 < 𝑐 𝑗+1,𝑖+1. The first property guarantees that a point
will never be internal in multiple dimensions, and the second that
not too many points are in the boxes obtained from 𝐵 𝑗 .

After 𝑑 steps, we obtain boxes [𝑎, 𝑏] verifying the two desired
properties: a point is internal in at most one dimension and there
are at most 𝑂 (

√
𝑛) points internal in each dimension. We can now

find the worst local discrepancy for a box whose top-right corner
is in [𝑎, 𝑏) with the following dynamic programming approach. Let
𝑚(ℎ, 𝑗) (respectively 𝑟 (ℎ, 𝑗)) be the maximum (respectively mini-
mum) value of

∏𝑗

𝑖=1 𝑦𝑖 such that the box [0, 𝑦1) × . . . × [0, 𝑦 𝑗) ×
[0, 𝑏 𝑗+1) × . . . × [0, 𝑏𝑑) contains exactly ℎ points. By ordering the
points in [0, 𝑏] according to their first dimension, we can easily
obtain 𝑚(·, 1) and 𝑟 (·, 1). Since points can only be internal in a
single dimension, taking an internal point in dimension 1 guaran-
tees it will be contained in the box regardless of the other choices.
From the𝑚(·, 𝑗) and 𝑟 (·, 𝑗), we can therefore calculate𝑚(·, 𝑗 + 1)
and 𝑟 (·, 𝑗 + 1). Calculating each 𝑚(·, 𝑗 + 1) takes 𝑂 (

√
𝑛) time as

there are 𝑂 (
√
𝑛) internal points and therefore potential different

choices for the coordinate 𝑦 𝑗+1. In total, there are at most 𝑑
√
𝑛

internal points,𝑚(·, 𝑗 + 1) needs to be computed for 𝑂 (𝑑
√
𝑛) dif-

ferent values. The dynamic programming takes 𝑂 (𝑑𝑛) time (the

1332

GECCO ’23, July 15–19, 2023, Lisbon, Portugal F. Clément et al.

Figure 1: Discrepancy values of the first 5 instances of the 2-dimensional version of F31: Uniform sampler with 20 points. The
red points indicate the originally sampled points.

Figure 2: Comparison of the 3 samplers for 1000 points in 2D, and the corresponding discrepancy landscapes (instance 1 for
F39, F49 and F59 respectively).

𝑑 factor is usually ignored). All that remains to be done is to find
max1≤ℎ≤𝑛 (𝑚(ℎ,𝑑)−ℎ/𝑛,ℎ/𝑛−𝑟 (ℎ,𝑑)), in other words which (num-
ber of points inside a box, box volume) combination gives the worst
discrepancy. This will directly give the worst discrepancy value for
a box whose top-right corner is in [𝑎, 𝑏).

3.2 Parallelizing DEM
To parallelize the DEM algorithm we start by noting that after
computing the boxes for a given dimension we can continue the
recursive decomposition independently for each box. This naturally
gives way to a parallel-task construct where each task that can be
scheduled to an available CPU corresponds to the decomposition
in dimension 𝑗 + 1 of a given box 𝐵 𝑗 .

At this point, it is worth noting that another option initially
considered was to parallelize the dynamic programming algorithm
that is used to compute the worst local discrepancy for a box af-
ter 𝑑 steps. However, this idea was discarded since the dynamic
programming algorithm was very fast in practice and preliminary
attempts did not yield significant speedups.

To implement the parallel-tasks construct we considered
OpenMP Tasks [1] and we adapted the implementation of the DEM
algorithm by the authors of [18]. In particular, one relevant change

was that the sequential implementation reused the set of points
between recursive calls, with a possible resorting of the points in
the current dimension after each recursive call. However, in the
parallel variant, we cannot efficiently share the set of points since
sorting operations on the set of points in a thread could potentially
affect tasks running in other threads. Instead, in the parallel DEM
we opted to copy the set of points before entering a recursive call.
Although this requires an extra copy before each recursive call, we
observed that in some cases copying the vector was faster than
resorting after each recursive call, suggesting that the non-parallel
DEM implementation could be slightly improved by taking this
into account.

Finally, in order to avoid thread starvation with a recursive
parallel-tasks construct, it is often useful to consider a cut-off value
related to the problem size to switch to a non-parallel variant. In
this case, we define the cut-off with respect to the complexity of the
DEM algorithm, i.e., 𝑂 (𝑛1+𝑑/2). In particular, when decomposing a
box 𝐵 𝑗 with 𝑛 𝑗 points in dimension 𝑗 , we switch to the non-parallel
DEM algorithm if 𝑛 𝑗 1+(𝑑− 𝑗)/2 < 1𝑒8. This cut-off value was defined
empirically by experimenting with different values up to 1𝑒15.

Table 1 gives the CPU time in seconds for the parallelized DEM
on several instances generated with the GNU Scientific Library

1333

Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms GECCO ’23, July 15–19, 2023, Lisbon, Portugal

(using the indicated sequence) and considering different numbers of
threads. For a single thread, the best time between the non-parallel
and parallel implementations is shown. Experiments were run on
a machine with two Intel(R) Xeon(R) Silver 4210R CPUs clocked
at 2.40GHz, comprising a total of 20 cores and 40 threads. We can
see that for 32 threads we have speedups that range from a factor
of 7.4 to a factor of 17.4. These results show that parallelization is
generally successful and can give a significant boost. However, we
believe that there is still room for improvement by further tuning
the cut-off between the parallel and non-parallel variants, and by
further analyzing when it is best to copy or resort the set of points.

3.3 The TA Algorithm
Several applications of point sets with low star discrepancy value
concern settings that are not efficiently tractable by the exact al-
gorithms described in the previous two subsections. For these ap-
plications, we therefore need to resort to heuristic approaches to
evaluate the discrepancy of a given point set. To date, the best-
known heuristic is a Threshold Accepting (TA) algorithm proposed
in [18]. This approach exploits the grid structure introduced in
Section 2.2 and operates on the search space [1..𝑛 + 1]𝑑 , with each
point encoding one of the grid points in Γ(𝑃).

The TA algorithm from [18] builds on an earlier approach by
Winker and Fang suggested in [42] and extends it by various
problem-specific components. Threshold Accepting [13] is similar
to Simulated Annealing [23] but replaces its probabilistic selection
criterion with a deterministic one. That is, at each step, the current
incumbent solution is compared to a randomly sampled neighbor-
ing solution. The neighbor is selected as the new center if its quality
is not much worse than that of the previous incumbent. More pre-
cisely, neighbor 𝑦 replaces incumbent 𝑥 if 𝑓 (𝑦) − 𝑓 (𝑥) ≥ 𝜏 (𝑡),
where 𝜏 (𝑡) ≤ 0 is the threshold chosen at iteration 𝑡 . The sequence
(𝜏 (𝑡))𝑡 is monotonically increasing so that the further advanced
the optimization process is, the harder the selective pressure.

The TA algorithm from [18] uses a dynamic choice of the
neighborhood structure, increasing the number of coordinates
{ 𝑗 | 𝑥 𝑗 ≠ 𝑦 𝑗 } that may change in each iteration while at the
same time decreasing the absolute difference |𝑥 𝑗 − 𝑦 𝑗 |. The more
important problem-specific component, however, is a “snapping”
routine, which rounds a selected grid point to a so-called critical
box; see [18] for details.

Using the DEM solver from Section 3.1 as a baseline, it was shown
in [18] that the TA algorithm successfully found the optimum on
all instances for which DEM could provide exact values. Based on
the results presented in [18], the TA algorithm seems reliable for
point sets up to dimensions 12 to 20 for a few hundred points.

4 NUMERICAL BLACK-BOX OPTIMIZATION
APPROACHES

The𝐿∞ star discrepancy problemwas included as a black-box bench-
mark problem in IOHexperimenter (version 0.3.7) [7], using three
different point set generators:

(1) uniform random sampling,
(2) Halton [19],
(3) Sobol’ [38].

For the uniform sampler, a standard Mersenne Twister 19937
pseudo-random number generator was used, provided by the C++
STL. The Halton sequence was generated using a classic Sieve of
Eratosthenes prime number generating algorithm, and the Sobol’
sequence was generated with a third-party library based on the
FORTRAN implementation of Fox [14].

In addition to the generator, the number of points to be
sampled can be selected, which along with the dimensionality,
controls the complexity of the problem. We define a default suite,
which includes for every generator a fixed number of samples
𝑆 ∈ {10, 25, 50, 100, 150, 200, 250, 500, 750, 1000}. This includes a
total of 30 benchmark problems, where for each problem the
dimension and instance can be varied arbitrarily. Instances are
controlled by a unique instance identifier, which is a positive
integer that determines the random seed used to generate the point
set. The problems can be accessed through both the Python and
C++ interfaces of IOHexperimenter, with problem ids {30, . . . , 39},
{40, . . . , 49}, and {50, . . . , 59} for the problems generated with the
uniform, Sobol’, and Halton generators, respectively.

We test a total number of eight algorithms, all taken from the
Nevergrad platform [35]:

(1) Diagonal Covariance Matrix Adaptation Evolution Strategy
(dCMA-ES) [20]

(2) NGOpt14, Nevergrad’s algorithm selection wizard [26]
(3) Estimation of Multivariate Normal Algorithm (EMNA) [25]
(4) Differential Evolution [40]
(5) Constrained Optimization BY Linear Approximation

(Cobyla) [32]
(6) Random Search
(7) Particle Swarm Optimization (PSO) [22]
(8) Simultaneous Perturbation Stochastic Approximation algo-

rithm (SPSA) [39]
The algorithms are chosen “as they are" from Nevergrad. That is, we
did not perform any hyper-parameter tuning nor did we change any
of their components. Each algorithm is given a total budget of 2 500 ·
𝑑 local discrepancy evaluations, where𝑑 is the dimensionality of the
problem. For each instance, 10 independent runs of the algorithm
are performed. This is repeated for 10 instances, resulting in a
total of 100 runs per function, for each of the 30 functions, with
dimensionality 𝑑 ∈ {2, 3, 4, 6, 8, 10, 15}.

We run all our experiments in the IOHprofiler environment [12].
This allows us to track not only the final performance, but also
the trajectory of the algorithms in objective space. It furthermore
allows a straightforward visualization and analysis of the data using
the IOHanalyzer module [41].

For all instances in dimensions 2, 3 and 4, and for all the instances
in dimensions 6, 8, 10, and 15 with 𝑛 not larger than 750, 200, 50
and 10 points respectively, we computed the exact discrepancy
values using the parallel DEM algorithm proposed in Section 3.2.
For all other instances, we computed a lower bound for the star
discrepancy value using the TA algorithm described in Section 3.3.

5 RESULTS
We can compare the performance of the used optimization algo-
rithms by considering the expected running time (ERT) to reach

1334

GECCO ’23, July 15–19, 2023, Lisbon, Portugal F. Clément et al.

CPU time (speedup) per number of threads

N. Dim. N. Points Sequence 1 2 4 8 16 32

2 50000

halton 2.54 (1.0) 1.56 (1.6) 0.88 (2.9) 0.53 (4.8) 0.38 (6.7) 0.32 (7.9)
niederreiter 2.50 (1.0) 1.56 (1.6) 0.87 (2.9) 0.54 (4.6) 0.34 (7.4) 0.31 (8.1)
reversehalton 2.37 (1.0) 1.59 (1.5) 0.86 (2.8) 0.53 (4.5) 0.40 (5.9) 0.32 (7.4)
sobol 2.39 (1.0) 1.58 (1.5) 0.86 (2.8) 0.53 (4.5) 0.41 (5.8) 0.31 (7.7)

3 10000

halton 15.70 (1.0) 8.19 (1.9) 4.31 (3.6) 2.37 (6.6) 1.52 (10.3) 1.13 (13.9)
niederreiter 15.77 (1.0) 8.09 (1.9) 4.36 (3.6) 2.39 (6.6) 1.65 (9.6) 1.16 (13.6)
reversehalton 15.57 (1.0) 7.99 (1.9) 4.37 (3.6) 2.37 (6.6) 1.54 (10.1) 1.17 (13.3)
sobol 15.74 (1.0) 8.19 (1.9) 4.38 (3.6) 2.39 (6.6) 1.44 (10.9) 1.14 (13.8)

4 3000

halton 49.66 (1.0) 26.40 (1.9) 13.97 (3.6) 7.38 (6.7) 3.99 (12.4) 2.89 (17.2)
niederreiter 50.31 (1.0) 26.82 (1.9) 14.33 (3.5) 7.42 (6.8) 3.96 (12.7) 2.89 (17.4)
reversehalton 50.42 (1.0) 26.53 (1.9) 14.11 (3.6) 7.44 (6.8) 4.05 (12.4) 2.96 (17.0)
sobol 50.41 (1.0) 27.20 (1.9) 14.31 (3.5) 7.32 (6.9) 4.06 (12.4) 2.92 (17.3)

5 1000

halton 58.87 (1.0) 32.54 (1.8) 16.70 (3.5) 9.18 (6.4) 5.10 (11.5) 3.83 (15.4)
niederreiter 62.32 (1.0) 33.39 (1.9) 17.78 (3.5) 9.67 (6.4) 5.34 (11.7) 4.08 (15.3)
reversehalton 62.08 (1.0) 32.77 (1.9) 17.54 (3.5) 9.64 (6.4) 6.88 (9.0) 3.90 (15.9)
sobol 63.80 (1.0) 33.89 (1.9) 17.73 (3.6) 9.77 (6.5) 5.34 (11.9) 4.04 (15.8)

6 600

halton 175.79 (1.0) 103.74 (1.7) 53.04 (3.3) 28.82 (6.1) 17.12 (10.3) 12.57 (14.0)
niederreiter 196.24 (1.0) 109.22 (1.8) 57.99 (3.4) 30.44 (6.4) 17.94 (10.9) 12.71 (15.4)
reversehalton 187.99 (1.0) 114.35 (1.6) 58.75 (3.2) 31.56 (6.0) 19.12 (9.8) 13.49 (13.9)
sobol 200.76 (1.0) 112.53 (1.8) 59.18 (3.4) 30.91 (6.5) 18.34 (10.9) 13.32 (15.1)

7 300

halton 160.25 (1.0) 94.43 (1.7) 48.22 (3.3) 27.10 (5.9) 15.64 (10.2) 11.70 (13.7)
niederreiter 167.32 (1.0) 96.85 (1.7) 51.36 (3.3) 28.40 (5.9) 15.80 (10.6) 12.66 (13.2)
reversehalton 149.43 (1.0) 88.79 (1.7) 50.57 (3.0) 29.72 (5.0) 16.63 (9.0) 12.49 (12.0)
sobol 169.70 (1.0) 102.12 (1.7) 52.72 (3.2) 29.68 (5.7) 16.20 (10.5) 12.41 (13.7)

Table 1: CPU time in seconds and corresponding speedup in parenthesis for the parallelized DEM algorithm

0 0.05 0.1 0.15 0.2
5

1
2

5

10
2

5

100
2

5

1e+3
2

5

1e+4
2

5

1e+5
2

5

1e+6

DiagonalCMA DifferentialEvolution EMNA NGOpt14 PSO RandomSearch RCobyla

SPSA

Best-so-far f(x)-value

Fu
nc

tio
n

Ev
al

ua
tio

ns

Figure 3: Expected running time (ERT) of the 8 optimization
algorithms on the discrepancy calculation for the uniform
sampler with 100 samples (F33) in 3 dimensions. ERT is cal-
culated based on 10 runs on 10 instances with a budget of
7 500. Figure generated using IOHanalyzer [41].

increasing discrepancy values. This analysis shows the conver-
gence behavior on the selected function. In Figure 3, we show the
ERT on the 3-dimensional version of F33: the uniform sampler

with 𝑛 = 100. From this figure, we can clearly see that the algo-
rithms struggle to optimize this function. Particularly noticeable
is the SPSA algorithm, which seems to fail to find even slightly
improved discrepancy values. On the other side, we notice that
Random Search is surprisingly outperforming all other optimizers.
This seems to indicate that even for this relatively simple setting
of 𝑛 = 100 and 𝑑 = 3, the high level of multi-modality combined
with discontinuities in the landscape cause problems for all of the
considered optimization algorithms.

To check whether this is a consistent problem, or something
specific to the settings chosen in Figure 3, we can look in more
detail at the final solutions found by each optimizer across a wider
set of scenarios. In order to create a fair comparison, we can move
from the original discrepancy values to a relative measure, based
on the bounds found by the TA and DEM algorithms. Specifically,
we consider the following measure:

𝑅(𝑥) = 𝑂𝑃𝑇 (𝑥) − 𝑓 (𝑥)
𝑂𝑃𝑇 (𝑥) ,

where 𝑓 (𝑥) is the final value found after the optimization run,
and 𝑂𝑃𝑇 (𝑥) is the bound calculated by the parallel DEM or TA,
depending on the instance size.

Using this relative measure, we can compare the final solutions
found by each optimization algorithm across a set of different 𝑛

1335

Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms GECCO ’23, July 15–19, 2023, Lisbon, Portugal

alg
0.0

0.5

1.0

n=
10

alg alg alg alg

alg
0.0

0.5

n=
50

alg alg alg alg

alg0.0

0.5

n=
10

0

alg alg alg alg

alg0.0

0.5

n=
50

0

alg alg alg alg

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=2

0.0

0.5

n=
10

00

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=4

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=6
Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=8

Di
ag

on
al
CM

A

SP
SA

Ra
nd

om
Se

ar
ch

RC
ob

yl
a

PS
O

EM
NA

NG
Op

t1
4

Di
ffe

re
nt
ia
lE
vo

lu
tio

n

D=15

Figure 4: Relative final discrepancy value found by each of the used optimizers. Values of 0 correspond to finding the optimal
solution, while 1 corresponds to the worst achievable value (0 discrepancy). Box-plots are aggregations of 10 runs on 10 instances,
all for the uniform sampler.

and 𝑑 . This is visualized in Figure 4. In this figure, we see that the
observations made based on ERT from Figure 3 seem to hold across
scenarios: the SPSA algorithm is clearly performing poorly, while
Random Search seems to be competitive with, if not superior to,
all other algorithms for every scenario. In addition to the ranking
between algorithms, we also note a clear increase in problem dif-
ficulty as the dimensionality increases. Conversely, the number
of samples seems to have a rather limited impact on the relative
difficulty. This suggests that the structure of the point set has little
influence on the performance of the optimizers.

As a final comparison, we can consider the differences in the
difficulty of the optimization problem when different samplers are
used. As we observed in Figure 2, the landscape is clearly impacted
by the choice of the sampler. To see whether this also impacts
the performance of the optimization algorithms, we consider the
relative final discrepancy found on the grids with 𝑛 = 500, for a
few selected dimensions. The resulting distributions are visualized
in Figure 5. From this figure, we can see that, while the choice
of sampler often has a low impact on the performance of most
algorithms, some tendencies can still be observed. In most cases,
the Halton sampler seems to be the most challenging, especially
in lower dimensions. However, the ordering is not fully consistent
between algorithms or even between dimensions.

6 CONCLUSIONS
We have studied the efficiency of numerical black-box optimization
approaches for maximizing the local 𝐿∞ star discrepancy values for
a given point set 𝑃 . The results are underwhelming; the obtained
results cannot be used as reliable estimates for the overall 𝐿∞ star
discrepancy of 𝑃 .

The results indicate that off-the-shelf black-box optimization ap-
proaches have difficulties coping with the multi-modal nature of the
problem and/or with the discontinuities in the genotype-phenotype
mapping. We believe that this combination makes the problem an
interesting use case for comparing diversity mechanisms with or
without restarts. In particular, we expect that approaches such as
quality-diversity (originally introduced in [33, 34], but see [4] for a
more recent survey) or niching [37] could improve the quality of
the search algorithms.

The focus of our work has been on the numerical black-box
solvers. However, an interesting aspect of the star discrepancy com-
putation problem is that it can also be studied as a discrete problem,
using the grid structure described in Section 2. This grid structure
is exploited by the TA algorithm from [18] (see Section 3.3). We sus-
pect that merging some of the problem-specific components of this
algorithm (e.g., the snapping rounding routines) into evolutionary
algorithms operating on discrete search spaces of the type [1..𝑛]𝑑
could be worthwhile.

1336

GECCO ’23, July 15–19, 2023, Lisbon, Portugal F. Clément et al.

sampler
0.0

0.5

1.0

D=
2

sampler sampler sampler sampler sampler sampler sampler

sampler0.0

0.5D=
4

sampler sampler sampler sampler sampler sampler sampler

sampler0.0

0.5D=
6

sampler sampler sampler sampler sampler sampler sampler

sampler0.0

0.5D=
8

sampler sampler sampler sampler sampler sampler sampler

Un
ifo

rm

So
bo

l

Ha
lto

n

DiagonalCMA

0.0

0.5

D=
15

Un
ifo

rm

So
bo

l

Ha
lto

n

SPSA

Un
ifo

rm

So
bo

l

Ha
lto

n

RandomSearch

Un
ifo

rm

So
bo

l

Ha
lto

n

RCobyla

Un
ifo

rm

So
bo

l

Ha
lto

n
PSO

Un
ifo

rm

So
bo

l

Ha
lto

n

EMNA

Un
ifo

rm

So
bo

l

Ha
lto

n

NGOpt14

Un
ifo

rm

So
bo

l

Ha
lto

n

DifferentialEvolution

Figure 5: Relative final discrepancy value found by each of the used optimizers, compared between different samplers. Values
of 0 correspond to finding the optimal solution, while 1 corresponds to the worst achievable value (0 discrepancy). Boxplots are
aggregations of 10 runs on 10 instances, all for 𝑛 = 500.

As we have motivated in the introduction, computing the 𝐿∞
star discrepancy of a given point set is crucial for the design of
low-discrepancy point sets, which have numerous applications
in a broad range of industrial and academic problems, including
evolutionary computation [2, 27]. Apart from providing a chal-
lenging configurable problem suite for benchmarking black-box
optimization approaches, the design of problem-specific evolution-
ary strategies or similar approaches would be highly desirable.
Both the discrepancy community, via a better understanding of the
structure of the discrepancy function, and any application relying
on numerical integration or Quasi-Monte Carlo integration would
benefit greatly from effective solvers for this problem.

ACKNOWLEDGMENTS
Our work is financially supported by ANR-22-ERCS-0003-01 project
VARIATION, by the CNRS INS2I project IOHprofiler, and by
Campus France Pessoa project DISCREPANCY. This work is par-
tially funded by the FCT - Foundation for Science and Technol-
ogy, I.P./MCTES through national funds (PIDDAC), within the
scope of CISUC R&D Unit – UIDB/00326/2020 or project code
UIDP/00326/2020.

REFERENCES
[1] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,

P. Unnikrishnan, and G. Zhang. 2009. The Design of OpenMP Tasks. IEEE
Transactions on Parallel and Distributed Systems 20, 3 (March 2009), 404–418.
https://doi.org/10.1109/TPDS.2008.105

[2] J. Bossek, C. Doerr, P. Kerschke, A. Neumann, and F. Neumann. 2020. Evolving
Sampling Strategies for One-Shot Optimization Tasks. In Proc. of Parallel Problem
Solving from Nature (PPSN) (LNCS, Vol. 12269). Springer, 111–124. https://doi.
org/10.1007/978-3-030-58112-1_8

[3] O. Bousquet, S. Gelly, K. Kurach, O. Teytaud, and D. Vincent. 2017. Critical Hyper-
Parameters: No Random, No Cry. CoRR abs/1706.03200 (2017). arXiv:1706.03200
http://arxiv.org/abs/1706.03200

[4] K. I. Chatzilygeroudis, A. Cully, V. Vassiliades, and J.-B. Mouret. 2020. Quality-
Diversity Optimization: a Novel Branch of Stochastic Optimization. CoRR
abs/2012.04322 (2020). arXiv:2012.04322 https://arxiv.org/abs/2012.04322

[5] F. Clément, C. Doerr, and L. Paquete. 2022. Star Discrepancy Subset Selection:
Problem Formulation and Efficient Approaches for Low Dimensions. Journal of
Complexity 70 (2022), 101645. https://doi.org/10.1016/j.jco.2022.101645

[6] F. Clément, D. Vermetten, J. de Nobel, A. D. Jesus, L. Paquete, and C. Doerr. 2023.
Reproducibility files and additional figures. https://doi.org/10.5281/zenodo.
7630260.

[7] J. de Nobel, F. Ye, D. Vermetten, H. Wang, C. Doerr, and T. Bäck. 2021. IOHex-
perimenter: Benchmarking Platform for Iterative Optimization Heuristics. CoRR
abs/2111.04077 (2021). arXiv:2111.04077 https://arxiv.org/abs/2111.04077

[8] J. Dick and F. Pillichshammer. 2010. Digital Nets and Sequences. Cambridge
University Press.

[9] D.P. Dobkin, D. Eppstein, and D.P. Mitchell. 1996. Computing the Discrepancy
with Applications to Supersampling Patterns. ACM Trans. Graph. 15 (1996),
354–376.

[10] C. Doerr, M. Gnewuch, and M. Wahlström. 2014. Calculation of Discrepancy
Measures and Applications. In A Panorama of Discrepancy Theory, W. Chen,
A. Srivastav, and G. Travaglini (Eds.). Springer, 621–678. https://doi.org/10.1007/
978-3-319-04696-9_10

1337

https://doi.org/10.1109/TPDS.2008.105
https://doi.org/10.1007/978-3-030-58112-1_8
https://doi.org/10.1007/978-3-030-58112-1_8
https://arxiv.org/abs/1706.03200
http://arxiv.org/abs/1706.03200
https://arxiv.org/abs/2012.04322
https://arxiv.org/abs/2012.04322
https://doi.org/10.1016/j.jco.2022.101645
https://doi.org/10.5281/zenodo.7630260
https://doi.org/10.5281/zenodo.7630260
https://arxiv.org/abs/2111.04077
https://arxiv.org/abs/2111.04077
https://doi.org/10.1007/978-3-319-04696-9_10
https://doi.org/10.1007/978-3-319-04696-9_10

Computing Star Discrepancies with Numerical Black-Box Optimization Algorithms GECCO ’23, July 15–19, 2023, Lisbon, Portugal

[11] C. Doerr and F.-M. De Rainville. 2013. Constructing Low Star Discrepancy Point
Sets with Genetic Algorithms. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO). ACM, 789–796. https://doi.org/10.1145/2463372.2463469

[12] C. Doerr, H. Wang, F. Ye, S. van Rijn, and T. Bäck. 2018. IOHprofiler: A
Benchmarking and Profiling Tool for Iterative Optimization Heuristics. CoRR
abs/1810.05281 (2018). http://arxiv.org/abs/1810.05281 Available at http:
//arxiv.org/abs/1810.05281. A more up-to-date documentation of IOHprofiler
is available at https://iohprofiler.github.io/.

[13] G. Dueck and T. Scheuer. 1990. Threshold accepting: a general purpose optimiza-
tion algorithm appearing superior to simulated annealing. J. Comput. Phys. 90
(1990), 161–175.

[14] B. Fox. 1986. Algorithm 647:Implementation and Relative Efficiency of Quasiran-
dom Sequence Generators. ACM Trans. Math. Software 12, 4 (1986), 362–376.

[15] S. Galanti and A. Jung. 1997. Low-discrepancy sequences: Monte-Carlo simulation
of option prices. J. Deriv (1997), 63–83.

[16] P. Giannopoulos, C. Knauer, M. Wahlström, and D. Werner. 2012. Hardness of
discrepancy computation and 𝜀-net verification in high dimension. J. Complex.
28 (2012), 162–176.

[17] M. Gnewuch, A. Srivastav, and C. Winzen. 2009. Finding Optimal volume subin-
tervals with k points and calculating the star discrepancy are NP-hard problems.
J. Complex. 25 (2009), 115–127.

[18] M. Gnewuch, M.Wahlström, and C.Winzen. 2012. A New Randomized Algorithm
to Approximate the Star Discrepancy Based on Threshold Accepting. SIAM J.
Numerical Analysis 50 (2012), 781–807. https://doi.org/10.1137/110833865

[19] J. H. Halton. 1960. On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals. Numer. Math. 2 (1960), 84–90.

[20] N. Hansen and A. Ostermeier. 2001. Completely Derandomized Self-Adaptation
in Evolution Strategies. Evolutionary Computation 9, 2 (2001), 159–195. https:
//doi.org/10.1162/106365601750190398

[21] E. Hlawka. 1961. Funktionen von beschrankter Variation in der Theorie der
Gleichverteilung. Ann. Mat. Pum Appl. 54 (1961), 325–333.

[22] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proc. of ICNN’95
- International Conference on Neural Networks, Vol. 4. 1942–1948. https://doi.org/
10.1109/ICNN.1995.488968

[23] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. 1983. Optimization by Simulated
Annealing. Science 220 (1983), 671–680.

[24] J. F. Koksma. 1942. Een algemeene stelling inuit de theorie der gelijkmatige
verdeeling modulo 1. Mathematica (Zutphen) 11 (1942), 7–11.

[25] P. Larrañaga and J.A. Lozano. 2001. Estimation of distribution algorithms: A new
tool for evolutionary computation. Vol. 2. Springer Science & Business Media.

[26] L. Meunier, H. Rakotoarison, P. K. Wong, B. Roziere, J. Rapin, O. Teytaud, A.
Moreau, and C. Doerr. 2021. Black-box optimization revisited: Improving algo-
rithm selection wizards through massive benchmarking. IEEE Transactions on
Evolutionary Computation 26, 3 (2021), 490–500.

[27] A. Neumann, W. Gao, C. Doerr, F. Neumann, and M. Wagner. 2018. Discrepancy-
based evolutionary diversity optimization. In Proc. of Genetic and Evolution-
ary Computation Conference (GECCO). ACM, 991–998. https://doi.org/10.1145/
3205455.3205532

[28] A. Neumann, W. Gao, M. Wagner, and F. Neumann. 2019. Evolutionary diversity
optimization using multi-objective indicators. In Proc. of Genetic and Evolution-
ary Computation Conference (GECCO). ACM, 837–845. https://doi.org/10.1145/
3321707.3321796

[29] H. Niederreiter. 1972. Discrepancy and Convex Programming. Ann. Mat. Pura
Appl. 93 (1972), 89–97.

[30] H. Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Meth-
ods. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.
9781611970081

[31] L. Paulin, N. Bonneel, D. Coeurjoly, J.-C. Iehl, A. Keller, and V. Ostromoukhov.
2022. MatBuilder: Mastering Sampling Uniformity over projections. ACM Trans-
actions on Graphics (proceedings of SIGGRAPH) (2022).

[32] M. J. D. Powell. 1994. A Direct Search Optimization Method That Models the
Objective and Constraint Functions by Linear Interpolation. In Advances in
Optimization and Numerical Analysis, S. Gomez and J.-P. Hennart (Eds.). Springer
Netherlands, Dordrecht, 51–67. https://doi.org/10.1007/978-94-015-8330-5_4

[33] J.K. Pugh, L.B. Soros, and K.O. Stanley. 2016. Quality Diversity: A New Frontier
for Evolutionary Computation. Frontiers Robotics AI 3 (2016), 40. https://doi.org/
10.3389/frobt.2016.00040

[34] J.K. Pugh, L.B. Soros, P.A. Szerlip, and K.O. Stanley. 2015. Confronting the
Challenge of Quality Diversity. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO). ACM, 967–974. https://doi.org/10.1145/2739480.2754664

[35] J. Rapin and O. Teytaud. 2018. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad.

[36] T.J. Santner, B.J. Williams, and W.I. Notz. 2003. The Design and Analysis of
Computer Experiments. Springer Series in Statistics, Springer.

[37] O. Shir. 2012. Niching in Evolutionary Algorithms. In Handbook of Natural
Computing, Grzegorz Rozenberg, Thomas Bäck, and Joost N. Kok (Eds.). Springer,
1035–1069. https://doi.org/10.1007/978-3-540-92910-9_32

[38] I.M. Sobol. 1967. On the distribution of points in a cube and the approximate
evaluation of integrals. U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (Jan. 1967),
86–112.

[39] J.C. Spall. 1992. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Trans. Automat. Control 37, 3 (1992),
332–341.

[40] R. Storn and K. Price. 1997. Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization 11, 4 (1997), 341–359. https://doi.org/10.1023/A:1008202821328

[41] H. Wang, D. Vermetten, F. Ye, C. Doerr, and T. Bäck. 2022. IOHanalyzer: Detailed
Performance Analyses for Iterative Optimization Heuristics. ACM Trans. Evol.
Learn. Optim. 2, Article 3 (2022). https://doi.org/10.1145/3510426

[42] P. Winker and K.T. Fang. 1997. Applications of Threshold-Accepting to the
evaluation of the discrepancy of a set of points. SIAM J. Numerical Analysis 34
(1997), 2028–2042.

1338

https://doi.org/10.1145/2463372.2463469
http://arxiv.org/abs/1810.05281
http://arxiv.org/abs/1810.05281
http://arxiv.org/abs/1810.05281
https://iohprofiler.github.io/
https://doi.org/10.1137/110833865
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1145/3205455.3205532
https://doi.org/10.1145/3205455.3205532
https://doi.org/10.1145/3321707.3321796
https://doi.org/10.1145/3321707.3321796
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1137/1.9781611970081
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.3389/frobt.2016.00040
https://doi.org/10.1145/2739480.2754664
https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1007/978-3-540-92910-9_32
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1145/3510426

	Abstract
	1 Introduction
	2 L-infinity Star Discrepancy
	2.1 Definition and properties
	2.2 Discrete Embedding

	3 Problem-Specific Algorithms
	3.1 The DEM Algorithm
	3.2 Parallelizing DEM
	3.3 The TA Algorithm

	4 Numerical Black-Box Optimization Approaches
	5 Results
	6 Conclusions
	Acknowledgments
	References

