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2Department of Computer Science, ETH Zürich, Zürich, Switzerland.
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Abstract

In a seminal paper in 2013, Witt showed that the (1+1) Evolutionary Algorithm with standard
bit mutation needs time (1 + o(1))n lnn/p1 to find the optimum of any linear function, as long
as the probability p1 to flip exactly one bit is Θ(1). In this paper we investigate how this result
generalizes if standard bit mutation is replaced by an arbitrary unbiased mutation operator. This
situation is notably different, since the stochastic domination argument used for the lower bound by
Witt no longer holds. In particular, starting closer to the optimum is not necessarily an advantage,
and OneMax is no longer the easiest function for arbitrary starting positions.
Nevertheless, we show that Witt’s result carries over if p1 is not too small, with different constraints
for upper and lower bounds, and if the number of flipped bits has bounded expectation χ. Notably,
this includes some of the heavy-tail mutation operators used in fast genetic algorithms, but not all of
them. We also give examples showing that algorithms with unbounded χ have qualitatively different
trajectories close to the optimum.

Keywords: Runtime analysis, Theory of Evolutionary Computation, Mutation Operators

1 Introduction

One of the most crucial ingredients of evolutionary algorithms is themutation operator, i.e., the procedure
that describes how to generate offspring from a single parent. On the hypercube {0, 1}n, for a long time
the undisputed default was to use standard bit mutation, which flips each bit of the parent independently
with the same probability. However, this convention has been challenged in the last years; for example
via the fast mutation operators [DLMN17], for which the number of flipped bits follows a heavy-tailed
distribution. The advantages of using heavy-tailed distributions are rather impressive [DN21]. They are
slightly worse for hillclimbing, but the expected runtime deteriorates only by a constant factor that can
be chosen close to one. However, they are massively better at escaping local optima. While it takes
eΩ(k ln k) steps to make a jump of size k with standard bit mutation of mutation rate Θ(1/n), it only takes
kO(1) steps with fast mutation operators. Consequently, they are faster on landscapes with local optima,
like the Jump function [DLMN17, AD20] and its generalizations [BBD22, AN21], or random MAX-3SAT
instances [ABD22].1 Heavy-tailed distributions can also help on unimodal landscapes like OneMax. For
example, the (1 + (λ, λ)) GA [DDE15] was shown to achieve linear expected runtime [ABD22] when
equipped with fast mutation operators, which is asymptotically best possible.

1When the required jump size k is known in advance, then choosing the mutation rate to be k/n is optimal, as shown in [DLMN17].
The advantage of the fast mutation operator is that k does not need to be known.
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Other benchmarks on which fast mutation operators or other unbiased mutation operators than
standard bit mutation have been found to be useful include theoretical benchmarks like Leadin-

gOnes [YDB19] and TwoMax [FQW18], network problems like maximum cut [FGQW18, FQW18,
QGWF21], minimum vertex cover [FQW18, Buz22], maximum independent set [YWDB20], maximum
flow [MB17] and SAT [SCP+21], landscape classes like submodular functions [FGQW18, QGWF21] and
random NK-landscapes [YWDB20], multi-objective settings [DZ21, DQ22, DHP22] and other problems
like subset selection [WQT18], the N-queens problem [YWDB20], the symmetric mutual information
problem [FGQW18, QGWF21] and many more [YWDB20, NSN+22, NXN22, KNSH21, DGB22, ABD21].
Such mutation operators are integrated into standard benchmarking tools like the IOHprofiler [DWY+18]
and Nevergrad [BDM+21], and they have been used as building blocks for more sophisticated
algorithms [COY21a, COY21b, DR22, NAN22, PCS22].

The large success of non-standard mutation operators raises the desire to analyze which operators
are (provably) optimal for a given problem setting. Such questions can be answered in the black-box
complexity framework proposed in [DJW06] (see [Doe20] for a survey on the role of black-box complexity
for evolutionary computation). Particularly interesting for the study of mutation operators is the unary
unbiased black-box complexity model defined in [LW12]. Unary unbiased black-box algorithms create
solution candidates by sampling uniformly at random or by selecting one previously evaluated point x
and a search radius r (both possibly random) and then sampling the solution candidate uniformly at
random among all points at Hamming distance r from x. The unary unbiased black-box complexity of
a collection F of functions is then the best (over all unary unbiased algorithms) worst-case (over all
problem instances in F) expected runtime. The study of unary unbiased black-box complexities has led to
important insights into the limitation of mutation-based algorithms [DJK+11, DW12, LW12, DKLW13,
DD14, DDK15, LS19, DDY20], which were exploited for the design of faster algorithms such as the
(1 + (λ, λ)) GA in [DDE15].

For OneMax, a tight bound for the unary unbiased black-box complexity was proven in [DDY20].
It was shown there that the drift-maximizing algorithm that at every step chooses the mutation oper-
ator that maximizes the expected progress achieves asymptotically optimal expected runtime, up to
small lower order terms. Zooming further into this problem for concrete dimensions, Buskulic and
Doerr [BD21a] showed that slightly better performance can be achieved by increasing the mutation
rates, i.e., by implementing a more risky strategy that, at several stages that are sufficiently far away
from the optimum, flips more bits (in the hope of making more progress and at the cost of a smaller
success probability). The approach developed by [BD21a] was later extended in [BD20] to compute the
optimal mutation rates for the (1 + 1)-EA and the (1 + λ)-EA optimizing OneMax. The best static
unary unbiased mutation operator for the (1 + λ)-EA for a number of different combinations of n and
λ was numerically approximated in [BD21b]. In particular, it was shown there that the optimal muta-
tion operators are none of the standard choices that are typically used in evolutionary algorithms. These
results demonstrate that even for the optimization of OneMax our understanding of optimal mutation
operators is rather limited, both in the static and in the dynamic case.

Our Results: We aim to extend in this work the above-mentioned results to the optimization of a
larger class of functions. The first natural extension of OneMax are linear functions, so we primarily
focus on these. Our particular aim is to derive tight bounds for the expected runtime of the (1 + 1)-EA
equipped with an arbitrary unary unbiased mutation operator.

To express our main result, we briefly recall from [Doe20] that every unbiased mutation operator can
be described by a sequence of n+1 probabilities p0, p1, . . . , pn that sum up to one. We thus identify the
mutation operator with the sequence D = (p0, p1, . . . , pn) and write (1+ 1)-EAD for the (1+ 1)-EA that
generates its solution candidates using the mutation operator mutD that first draws an index i ∈ [0, n]
according to the probabilities (i.e., it picks i with probability pi), and then flips a uniformly random
set of exactly i bits. Every (1 + 1)-EA equipped with an arbitrary but static unary unbiased mutation
operator can be expressed as a (1 + 1)-EAD. We show the following.
Theorem 1. Consider the (1+1)-EAD for a distribution D = (p0, p1, . . . , pn) with mean χ. If p1 = Θ(1)
and χ = O(1), then the expected runtime on any linear function on {0, 1}n with non-zero weights is

(1± o(1))
1

p1
· n lnn. (1)
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More precise versions of Theorem 1 will be presented in Corollary 10 and Theorem 14. In particular,
we will show that the lower bound holds for any function with unique global optimum if pn−1 = o(p1).
Moreover, the conditions on p1 and χ in Theorem 1 can be slightly relaxed. We show that the expected
runtime remains unchanged if χ3p−2

1 (1 − p0)
−1 = o(lnn/ ln lnn), which is probably not tight. However,

we also show that the condition is not superfluous either. If p1 becomes too small, or χ becomes too
large, then the behavior of the algorithm starts to change, see Section 3.1.

Theorem 1 can be seen as a generalization of Witt’s seminal work [Wit13] on linear functions, where
he showed that the expected runtime of the the (1 + 1)-EA using standard bit mutation with arbitrary
mutation rates c/n is (1±o(1)) ecc n lnn = (1±o(1)) 1

p1
n lnn, where p1 is the probability that the mutation

flips a single bit. Our proof of the upper bounds closely follows his, but we need to adapt his potential
function to account for the fact that the probabilities pi may follow any distribution.

For the lower bound we follow the proof strategy from [DDY20]. In particular, we use the same
symmetrized OneMax potential Xt = minx min{Om(x), n − Om(x)}, where Om(x) is the number of
one-bits in x and the minimum goes over all previously visited search points x. We show that for a wide
range of values of Xt, the drift is maximized either by single-bit flips or by (n− 1)-bit flips, and with a
parent that achieves the minimum in Xt. This allows us to compute an upper bound on the drift, and to
use the variable drift lower bound from [DDY20]. We obtain a lower bound for any function with unique
local optimum, but then p1 needs to be replaced by p1+ pn−1 in (1). This is not an artifact of our proof,
since we give examples showing that the dependence on pn−1 is real.

Finally, we also show (Section 4.2) that stochastic domination no longer applies when standard bit
mutation is replaced by other unary unbiased mutation operators, in the sense that starting closer to
the optimum can increase the expected runtime asymptotically. This even holds on OneMax. As a
consequence, non-elitist algorithms may be faster than elitist algorithms on OneMax.

Other Related Work. Apart from black-box complexities, only few things are known in general
about the class of unbiased mutation operators. Antipov and Doerr [AD21] investigated the mixing time
on plateaus for the (1 + 1)-EA with arbitrary unbiased mutation operator. Lengler [Len19] studied the
(1 + 1)-EA, the (1 + λ)-EA, the (µ + 1)-EA and the (µ + 1)-GA with arbitrary unbiased mutation
operators on monotone functions. He found that those algorithms can optimize all monotone functions
if the second moment of the number of bit flips is small compared to the first moment, but that they
need exponential time on HotTopic functions otherwise. In particular, all heavy-tail distributions lead
to exponential runtimes on HotTopic.

2 Preliminaries

We use the following notation. For a, b ∈ N with a ≤ b we write [a, b] = {a, a+1, . . . , b} and [b] = [1, b] =
{1, . . . , b}. We write a vector x ∈ {0, 1}n as x = (x1, . . . , xn). The OneMax value Om(x) :=

∑n
i=1 xi

of x is the number of one-bits in x. We write ~0 and ~1 for the vectors in {0, 1}n with Om(~0) = 0 and
Om(~1) = n, respectively. With high probability (w.h.p.) means with probability 1− o(1) as n→∞.

We identify probability distributions D on [0, n] with sequences (p0, p1, . . . , pn) such that pi ≥ 0 for
all i ∈ [0, n] and

∑

i∈[0,n] pi = 1, where the probability of obtaining i from D is pi. We associate to
any such distribution D the mutation operator mutD which draws k from D and then applies the flipk

operator which flips a uniform random set of exactly k positions. The probability that mutD flips the
i-th bit equals χ/n, where χ is the expected value of D, as we show in the following lemma.
Lemma 2. For any D with mean χ and every i ∈ [n], the associated mutation operator satisfies

Pr[i-th bit flips] = χ/n. (2)

Proof. Let K be the number of flipped bits. Using the law of total probability, the probability that the
i-th bit flips is equal to

n∑

k=0

Pr[i-th bit flips | K = k] · pk =

n∑

k=0

k

n
· pk =

χ

n
. (3)
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Algorithm 1: The (1 + 1)-EAD for a fixed distribution D and maximizing a function f :
{0, 1}n → R.

1 Sample x from {0, 1}n uniformly at random;
2 for t = 0, 1, 2, 3, . . . do
3 Sample k ∼ D;
4 Create y ← flipk(x);
5 if f(y) ≥ f(x) then x← y;

For a probability distribution D on [0, n], we define the (1 + 1)-EAD as the elitist (1 + 1) algorithm
which uses mutD as mutation operator, see Algorithm 1. Its runtime on a function f is the number of
fitness evaluations before it finds a global optimum. Following the discussion in [DDY20, Doe20], the class
of elitist (1+1) unary unbiased black-box algorithms with static mutation operators coincides exactly
with the collection of all (1 + 1)-EAD with D as above.

We call any population based algorithm that generates offspring exclusively using the operator mutD
a static unary unbiased algorithm with flip distribution D. In particular, such an algorithm is not required
to use elitist selection, may access any previously generated search point, and is allowed to generate more
than one offspring per generation. By using the adjective static, we emphasize that the distribution D
may not change throughout the run of the algorithm.

With linear functions we always refer to functions f : {0, 1}n → R; f(x) =
∑n

i=1 wixi for non-zero
weights wi ∈ R. By unbiasedness of the (1 + 1)-EAD, we may (and will) assume that the weights are
positive and sorted, 0 < w1 ≤ . . . ≤ wn.

In the following, we briefly recall the mathematical tools needed for our analysis.

2.1 Drift Analysis

As it is the case for Witt’s result [Wit13], our upper bound heavily relies on potential function arguments,
which are converted into upper bound using the multiplicative drift theorem.
Theorem 3 (Multiplicative Drift Theorem [DJW12]). Let S ⊂ R be a finite set with minimum 1. Let
(Xt)t≥0 be a sequence of random variables over S ∪ {0}. Let T := min{t ≥ 0 | Xt = 0} be the hitting
time of 0. Suppose that there is a real number δ > 0 such that

E
[
Xt −Xt+1 | Xt = s

]
≥ δs (4)

for all s ∈ S and all t ≥ 0 with Pr[Xt = s] > 0. Then, for all s0 ∈ S with Pr[Xt = s0] > 0,

E[T | X0 = s0] ≤
ln(s0) + 1

δ
. (5)

Moreover, for all r > 0,

Pr

[

T >
ln(s0) + r

δ

]

≤ e−r. (6)

In the proof of the lower bound we will apply the following lower bound for variable drift [DDY20,
Theorem 9].
Theorem 4 (Variable Drift, lower bound). Let (Xt)t≥0 be a sequence of non-increasing random variables
over [0, n], i.e., it holds Pr[Xt ≤ Xt−1] = 1 for all t > 0, and let T := min{t ≥ 0 | X(t) = 0} be
the hitting time of 0. Suppose that there are two functions c : [n] → [0, n] and monotonically increasing
h : [0, n]→ R

+
0 , and a constant 0 ≤ p < 1 such that

1. Xt+1 ≥ c(Xt) with probability at least 1− p for all t < T , and
2. E [Xt −Xt+1 | Xt] ≤ h(Xt) for all t < T .
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Let µ : [0, n] → [0, n] be defined by µ(x) := max{i | c(i) ≤ x}, and let g : [0, n] → R
+
0 be defined by

g(x) :=
∑x−1

i=0
1

h(µ(i)) . Then

E [T | X0] ≥ g(X0)−
g2(X0)p

1 + g(X0)p
. (7)

2.2 Concentration Bounds

In the proofs for Section 4, we make use of the following additive and multiplicative Chernoff bounds,
originally shown by Hoeffding [Hoe63].
Theorem 5 (Additive Chernoff Bound). Assume that X is a hypergeometrically distributed random
variable with parameters N,n,m, or let X be a sum of n independent random variables X1, . . . , Xn, with
each taking values in {0, 1}. Then we have for all ε > 0

Pr [X ≥ E[X ] + ε] ≤ e−2ε2/n, and (8)

Pr [X ≤ E[X ]− ε] ≤ e−2ε2/n (9)

Theorem 6 (Multiplicative Chernoff Bound). Assume that X is a hypergeometrically distributed random
variable with parameters N,n,m. Then we have for all δ > 0,

Pr[X ≥ (1 + δ)E[X ]] ≤
(

eδ

(1 + δ)1+δ

)E[X]

. (10)

3 Upper Bounds and Tightness Results

We first note the following, simpler version of the upper bound stated in Theorem 1 for OneMax, which
does not require any assumption on the distribution D. It straightforwardly follows from the standard
multiplicative drift theorem [DJW12], applied to the lower bound on the drift obtained by considering
only 1-bit flips.
Theorem 7. Let D = (p0, p1, . . . , pn) be a probability distribution on [0, n]. The runtime of the (1 +
1)-EAD on OneMax is at most

(1± o(1))
1

p1
n lnn (11)

in expectation and with high probability.

Proof. We consider Xt := n−OneMax(x(t)). We have

E[Xt −Xt+1 | Xt = s] ≥ p1 ·
s

n
. (12)

By Theorem 3, we have

E[T | X0] ≤
lnn+ 1

p1/n
= (1± o(1))

1

p1
n lnn. (13)

Taking r := ln lnn in Theorem 3 concludes the proof.

The key ingredient for generalizing the bound fromOneMax to all linear functions as in Theorem 1 is
the following theorem, which generalizes [Wit13, Theorem 4.1] to the (1+1)-EAD with (almost) arbitrary
D. Our proof follows [Wit13], with the following differences: First, we noted a mistake in the proof of
the upper bound in [Wit13]. Equation (4.2) there does not hold for the events Ai as defined in [Wit13].
We thank Carsten Witt for providing the following fix upon our inquiry (personal communication): By
conditioning the events Ai on the event that the offspring is accepted, equation (4.2) holds as in that
case, the expectation is zero if none of the Ai occur. Furthermore, the inequality (4.3) in [Wit13] still
holds, which can be shown by applying Bayes’ theorem and linearity of expectation.
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Apart from this issue, the biggest challenge was to adapt the potential function used in [Wit13], since
we need to deal with arbitrary unbiased mutation operators. In particular, our potential involves the
quantities χ and p1. With the modified potential, we can show the following generalization of [Wit13,
Theorem 4.1].
Theorem 8. Let D = (p0, p1, . . . , pn) be a probability distribution on [0, n] with expectation χ and with
p1 > 0. Then the runtime of the (1 + 1)-EAD on any linear function on n variables is at most

b(r) :=
n

p1
· α

α− 1
·
(

αnχ3

(n− 1)p21
+ ln

(
(n− 1)p21

χ3

)

+ r

)

(14)

with probability at least 1− e−r for any r > 0, and it is at most b(1) in expectation, where α > 1 can be
chosen arbitrarily.

To ease the comparison of our proof of Theorem 8 and Theorem 4.1 in [Wit13], we keep the same
notation. For the parts of the proof in [Wit13] that transfer directly to our case, we will simply cite them.

Proof of Theorem 8. Let f : {0, 1}n → R, f(x) = w1x1 + . . . + wnxn, with 0 < w1 ≤ . . . ≤ wn. The
proof works by applying the multiplicative drift theorem to a carefully chosen potential. To this end,
following [Wit13], we define a new (linear) function g, and consider the stochastic process Xt = g(x(t)),
where x(t) is the current search point of the (1 + 1)-EAD at time t. The weights gi of the function g are
as follows. For all 1 ≤ i ≤ n, we let

γi :=

(

1 +
αχ3

(n− 1)p21

)i−1

, (15)

put g1 := γ1 = 1, and for 2 ≤ i ≤ n we set

gi := min

{

γi, gi−1
wi

wi−1

}

≥ 1. (16)

We note that the gi are non-decreasing with respect to i, and define g(x) := g1x1 + . . . + gnxn and
Xt := g(x(t)). Then Xt = 0 if and only if f has been optimised. Let ∆t := Xt−Xt+1. First, we will show
that

E [∆t | Xt = s] ≥ s · p1
n
· α− 1

α
. (17)

In the following, we recall some notation from [Wit13]. Fix s ∈ [0, n] and a search point x(t) with

g(x(t)) = s. From now on, we implicitly assume that Xt = s. Let I := {i | x(t)
i = 1} be the index set

of the one-bits in x(t) and Z := [n] \ I be the zero-bits. Let x′ denote the random offspring generated
by the (1 + 1)-EAD from x(t), and let x(t+1) be the next search point after selection. We denote by
I∗ := {i ∈ I | x′

i = 0} the index set of one-bits that are flipped, and by Z∗ := {i ∈ Z | x′
i = 1} the

zero-bits. Let k(i) := max{j ≤ i | gj = γj} for all i ∈ I. Note that k(i) ≥ 1. Set L(i) := [k(i), n] ∩ Z and
R(i) := [1, k(i)− 1] ∩ Z.

For i ∈ I, we define the events Ai as
1. i is the leftmost flipping one-bit, and
2.
∑

j∈I∗ wj −
∑

j∈Z∗ wj ≥ 0, i.e. the offspring is accepted.
Note that the Ai are mutually disjoint. Furthermore, if none of the Ai occur we have ∆t = 0, as then
the offspring is either rejected or equal to the parent. Let

∆L(i) :=
∑

j∈I∗

gj −
∑

j∈Z∗∩L(i)

gj , and (18)

∆R(i) := −
∑

j∈Z∗∩R(i)

gj . (19)
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Conditioning on Ai, we have that ∆t = ∆L(i) +∆R(i), as in that case, the offspring is accepted. By the
law of total expectation,

E[∆t] =
∑

i∈I

E[∆t | Ai] · Pr[Ai] + E

[

∆t |
⋃

i∈I

Ai

]

︸ ︷︷ ︸
=0

·Pr
[
⋃

i∈I

Ai

]

=
∑

i∈I

E [∆L(i) + ∆R(i) | Ai] · Pr [Ai] (20)

=
∑

i∈I

E [∆L(i) | Ai] · Pr [Ai] + E [∆R(i) | Ai] · Pr [Ai] ,

where we used linearity of conditional expectation for the last step.
In the following, we want to estimate the terms appearing in the above sum. First, we turn our

attention to E[∆L(i) | Ai] · Pr[Ai]. It follows from the same argument as [Wit13] uses to show the non-
negativity of ∆L(i) that E[∆L(i) | Ai] ≥ 0. As in [Wit13], for the event Si := {Z∗ ∩ L(i) = ∅}, we
get

E[∆L(i) | Ai] Pr[Ai] ≥ gi · Pr[Ai ∩ Si]. (21)

To lower bound Pr[Ai∩Si], we note that Ai∩Si occurs if we flip exactly the i-th bit. The probability
of flipping exactly the i-th bit, which is p1/n, is thus a lower bound for Pr[Ai ∩ Si], yielding

E[∆L(i) | Ai] · Pr[Ai] ≥ gi ·
p1
n
. (22)

In the following lemma, we estimate E [∆R(i) | Ai].

Lemma 9. We have

E [∆R(i) | Ai] ≥ −
χ2

(n− 1)p1

∑

j∈R(i)

gj . (23)

Proof. It holds

E[∆R(i) | Ai] = E

[

−
∑

j∈Z∗∩R(i)

gj | Ai

]

= E

[

−
∑

j∈R(i)

1{j∈Z∗}gj | Ai

]

= −
∑

j∈R(i)

gj Pr [{j ∈ Z∗} | Ai] ,
(24)

where we used linearity and the definition of conditional expectation. Since for all i ∈ I, Pr[Ai] > 0 (it is
possible to flip just the i-th bit, as p1 > 0), we can apply Bayes’ theorem to the conditional probability
above, yielding

Pr[{j ∈ Z∗} | Ai] = Pr[{j ∈ Z∗}] · Pr[Ai | {j ∈ Z∗}]
Pr[Ai]

. (25)

By Lemma 2, Pr[{j ∈ Z∗}] = χ/n. We lower bound the denominator by p1/n. The numerator is at most

Pr[i-th bit flips | {j ∈ Z∗}], (26)

as it is necessary to flip the i-th bit for Ai to occur. We calculate using the law of total probability

Pr[i-th bit flips | {j ∈ Z∗}] = Pr[i-th bit flips | j-th bit flips]

7



=

n∑

k=2

Pr[i-th bit flips | j-th bit flips ∩ {k bits flip in total}] · pk

=

n∑

k=2

k − 1

n− 1
· pk =

1

n− 1

(
n∑

k=1

(k − 1)pk

)

≤ χ

n− 1
. (27)

Plugging the bounds obtained above into (25) and (24) completes the proof of Lemma 9.

We now continue with the proof of Theorem 8. By Lemma 2, we have Pr[Ai] ≤ Pr[i-th bit flips] = χ/n,
as the i-th bit needs to flip for Ai to occur. Plugging this, Lemma 9, and (22) into (20), we get

E[∆t] ≥
∑

i∈I

(

gi ·
p1
n
− χ

n
· χ2

(n− 1)p1

∑

j∈R(i)

gj

)

≥
∑

i∈I

(
p1
n
· gi
gk(i)

· γk(i) −
χ3

n(n− 1)p1

k(i)−1
∑

j=1

γj

)

.

(28)

It was shown on page 304 of [Wit13] that the i-th summand in (28) is at least

α− 1

α
· p1
n
· gi. (29)

Plugging this back into (28) gives us

E[∆t] ≥
∑

i∈I

α− 1

α
· p1
n
· gi =

α− 1

α
· p1
n
· g(x(t)), (30)

which shows (17).
Finally, we apply the multiplicative drift theorem (Theorem 3) to finish the proof. To this end, we

compute

X0 ≤
n∑

i=1

gi ≤
n∑

i=1

γi =

(

1 + αχ3

(n−1)p2
1

)n

− 1

αχ3

(n−1)p2
1

≤ e
n· αχ3

(n−1)p2
1

αχ3

(n−1)p2
1

. (31)

Hence,

lnX0 ≤ n · αχ3

(n− 1)p21
+ ln

(
(n− 1)p21

χ3

)

, (32)

as − lnα < 0 (because α > 1). We apply Theorem 3 with δ = ((α − 1)/α) · (p1/n), which concludes the
proof of Theorem 8.

From Theorem 8 we obtain the following upper bound, which relaxes the conditions on p1 and χ in
Theorem 1 and shows that the bound holds not only in expectation but also w.h.p.
Corollary 10. Let D = (p0, p1, . . . , pn) be a probability distribution on [0, n] with expectation χ. Assume
that p1 > 0 and χ3p−2

1 (1 − p0)
−1 = o(lnn/ ln lnn). Then the runtime of the (1 + 1)-EAD on any linear

function is at most

(1 + o(1))
1

p1
· n lnn (33)

in expectation and with high probability.
Note that since 1 − p0 ≥ p1, we could replace the requirement χ3p−2

1 (1 − p0)
−1 = o(lnn/ ln lnn) by

the stronger requirement χ3/p31 = o(lnn/ ln lnn). In particular, this is trivially satisfied if p1 = Θ(1) and
χ = O(1), as required in Theorem 1.
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Proof. We first treat the case p0 = 0, which implies χ ≥ 1. Let α := ln lnn. As in [Wit13], α/(α − 1) =
1 + O(1/ ln lnn), and α2/(α − 1) = O(ln lnn). Moreover, we may bound ln((n − 1)p21/χ

3) ≤ lnn, as
p1 ≤ 1 and χ ≥ 1. Thus b(r) in Theorem 8 is at most

n

p1
(o(lnn) + (1 + o(1)) (lnn+ o(lnn) + r)) (34)

Taking r := 1, we get the claimed expected runtime, and with r := ln lnn, it follow that the bound holds
w.h.p.

Now we turn to p0 > 0. In this case, we define an auxiliary distribution D′ = (p′0, p
′
1, . . . , p

′
n) by

p′0 := 0 and p′i := pi/(1− p0) for i ≥ 1. In other words, D′ is the same as the distribution D conditioned
on not drawing 0. It has expectation χ′ := χ/(1− p0). Therefore,

(χ′)3

(p′1)
2(1 − p′0)

=
χ3

p21(1 − p0)
= o

(
lnn

ln lnn

)

. (35)

Hence, D′ is covered by the case that we have already treated. Thus, the runtime of the (1 + 1)−EAD′

is at most

(1 + o(1))
1

p′1
· n lnn = (1 + o(1))

1− p0
p1

· n lnn, (36)

in expectation and with high probability.
Note that no-bit flips are just idle steps of the (1+1)-EAD, therefore the (1+1)-EAD and the (1+1)-

EAD′ follow exactly the same trajectory through the search space, except that the (1+1)-EAD performs
idle steps with probability p0. Note that the expected time until a non-idle step is 1/(1− p0). Hence, if
the (1+1)-EAD′ finds the optimum in T steps, then the (1+1)-EAD needs 1

(1−p0)
T steps in expectation,

and (1 + o(1)) 1
(1−p0)

T steps with high probability. Together with (36), this implies the claim.

Under some less restrictive conditions, we can give a polynomial upper bound on the expected runtime.
Corollary 11. Let D = (p0, p1, . . . , pn) be a probability distribution on [0, n] with expectation χ. The
runtime of the (1+1)-EAD on any linear function is O(nχ3/p31+n lnn/p1) in expectation and with high
probability. In particular, this expression is O(n4/p31), and thus polynomial in n if 1/p1 is polynomial in
n.

Proof. We take α := 2, and apply Theorem 8. Noting that χ ≥ p1 and thus (n− 1)p21/χ
3 ≤ n/p1, by (14)

we can bound the runtime of the (1 + 1)-EAD on any linear function by

2n

p1

(
2nχ3

(n− 1)p21
+ ln

(
n

p1

)

+ r

)

= O

(
nχ3

p31
+

n lnn

p1
+ r

)

, (37)

where the bound holds in expectation for r = 1, and with high probability for e.g. r = lnn. This proves
the first statement. The second statement holds since χ ≤ n.

3.1 Tightness

We now discuss that some requirements on p1 and χ are necessary.
Requirement on p1. We start with a proposition saying that the leading constant can change if

p1 = n−c for any c > 0. In fact, this is already the case for OneMax, as the following example shows.
Proposition 12. Let 0 < c < 1 be constant. Consider the (1 + 1)-EAD with distribution D =
(p0, p1, . . . , pn) defined by p1 = n−c and p2 = 1− p1. Then there is ε > 0 such that for sufficiently large
n the expected runtime on OneMax is at most

(1− ε) · 1
p1
· n lnn.
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Proof. We consider two phases of the algorithm: one for reducing the distance from the optimum from
n to d0 := n1−c/2, and the other for reducing it from d0 to 0. Let T1 and T2 be the respective time spent
in those two phases.

To bound T1, assume the current distance is d > d0. Then the probability that both bits of a 2-bit
flip are zero-bits is

(
d
2

)
/
(
n
2

)
≥ d20/n

2 = n−c. We need at most (n−d0)/2 such flips to leave the first phase,
and thus

E[T1] ≤
n− d0

2
· nc ≤ n1+c

2
= o

(
1

p1
n lnn

)

(38)

rounds. Hence, the first phase is asymptotically faster than the claimed runtime bound.
For the second phase, if Xt is the distance from the optimum in round t, then every single-bit flip

has a chance of Xt/n to reduce Xt by one. Since single-bit flips occur with probability p1, we have

E[Xt −Xt+1 | Xt = d] ≥ p1 ·
d

n
. (39)

The second phase starts with X0 ≤ d0, so by the multiplicative drift theorem the duration of the second
phase is at most

E[T2] ≤
1 + ln(d0)

p1/n
=

n+ (1− c/2)n lnn

p1
, (40)

where we used ln(d0) = (1− c/2) lnn. Taken together, we obtain

E[T1 + T2] ≤ (1 + o(1)) · 1− c/2

p1
· n lnn, (41)

and the proposition follows with ε := c/3.

The point of Proposition 12 is that we have a strictly smaller leading constant than in Corollary 10
and in Theorem 1. The reason for this effect is that if p1 = n−Ω(1), for Hamming distances in the range
[n1−c/2, n] from the optimum, two-bit flips are more effective than single-bit flips. This range is thus
traversed more quickly. With single-bit flips, the algorithm would need time Ω(n lnn/p1) to traverse this
region, but it can be traversed in time o(n lnn/p1) by two-bit flips. Hence, the time spent in this phase
becomes negligible. Even though this region is still far away from the optimum, it consumes a constant
fraction of the total expected runtime if the algorithm is restricted to single-bit flips. Hence, the speed-
up from two-bit flips eliminates this constant fraction from the total expected runtime, and thus reduces
the leading constant of the total expected runtime. This shows that the lower bound in Theorem 1 can
not hold if p1 = n−Ω(1). On the other hand, we will show in Theorem 23 below that it does hold for all
p1 = n−o(1), which is tight by the above discussion.

Requirement on χ. Other than for p1, we could not derive a statement about the runtime, but
the following proposition shows that, close to the optimum, the behavior of the algorithm changes
substantially if χ is large. Recall that from any parent at distance one from the optimum, we have a
probability of p1 · 1/n to create the optimum as offspring. Hence, one would naively expect to wait at
most for n/p1 rounds in expectation to find the optimum. However, this is wrong for large values of χ,
as the following proposition shows.
Proposition 13. Let x be a search point at Hamming distance one from the optimum ~1. Let D be
any probability distribution on [0, n] with mean χ. For a linear function f , let T x

D(f) be the number of
iterations until the (1 + 1)-EAD with starting position x finds the optimum.
(a) There is a linear function f depending on x such that E[T x

D(f)] = Ω(n lnχ).
(b) If χ = ω(1) then there is a linear function f depending on x such that T x

D(f) = ω(n) with high
probability.

(c) If χ = O(1) and p1 = Θ(1) then E[T x
D(f)] = O(n) for every linear function f .

Proof. (a) and (b). It is clear that the number of iterations is at least Ω(n), so we may assume χ ≥ 4.
Since x has Hamming distance one from ~1, it differs in exactly one position from ~1. We may assume
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that this is the first position. Then we define f via f(x) := n · x1 +
∑n

i=2 xi, i.e, we give weight n to the
first position and weight 1 to all other positions. When in x, the algorithm will accept any offspring that
flips the first position. Let us call R the number of bits that are flipped in this mutation. Then we may
compute the distribution of R via Bayes formula as

Pr[R = r] =
Pr[R = r and pos. 1 flipped]

∑

s∈[n] Pr[R = s and pos. 1 flipped]
. (42)

Note that Pr[R = s and pos. 1 flipped] = Pr[R = s] · Pr[pos 1 flipped | R = s] = ps · s/n, where the
conditional probability is s/n since the mutation operator is unbiased. Hence, (42) simplifies to

Pr[R = r] =
pr · r/n

∑

s∈[n] ps · s/n
=

pr · r
χ

. (43)

In particular, this implies for every γ ≤ 1,

Pr[R ≤ γχ] =

⌊γχ⌋
∑

r=1

pr · r
χ
≤ γχ

∑⌊γχ⌋
r=1 pr
χ

≤ γ.

Hence, with probability at least 1 − γ, the (1 + 1)-EAD proceeds from x to a search point in Hamming
distance at least γχ− 1 from ~1.

For claim (a) we set γ := 1/2 and obtain a search point in Hamming distance at least χ/2− 1 ≥ χ/4.
Once this search point is reached, the algorithm does not accept any mutation which flips position 1
again, since this would decrease the fitness. Hence, the algorithm simply has to solve OneMax on the
remaining n− 1 bits. In expectation, this takes time Ω(n lnχ) since the unbiased black-box complexity
for solving OneMax from a starting point in distance d > 1 from the optimum is Ω(n ln d) (implicit
in [LW12]). Since this case happens with probability at least 1− γ = 1/2, we obtain

E[T x
D(f)] ≥ 1

2 · Ω(n lnχ) = Ω(n lnχ).

For claim (b), we choose γ := χ−1/2. Then 1 − γ = 1 − o(1), so with high probability the (1 + 1)-
EAD proceeds from x to a search point in distance at least d := γχ − 1 = χ1/2 − 1 = ω(1) from ~1. As
for part (a), from this point onwards the algorithm needs to solve OneMax on n − 1 bits. Thus the
algorithm needs to traverse the interval from d′ := min{d, n1/3} to the optimum. We show that w.h.p.
this takes time at least t0 for some t0 = Ω(n ln d′) = ω(n). It can be shown that the probability to find
an improvement with r-bit flips for any r ≥ 2 is O((d′/n))2 ≤ n−4/3. Hence, in time t0 the expected
number of such improvements is O(t0n

−4/3) = o(1), and by Markov’s inequality no r-bit flip finds an
improvement for r ≥ 2. Hence, we may pessimistically assume that the algorithm only uses single-bit
flips, i.e., that it is random local search (RLS). By [Wit14, Theorem 1], w.h.p.RLS needs time Ω(n ln d′)
to find the optimum, which concludes the proof.

Claim (c) follows directly from the proof of Theorem 8, using the parameter α = 2. There it was
shown that with the potential g(x) =

∑n
i=1 gixi, the drift towards the optimum is at least p1

2n · g(x)
by (17). By design, the minimal positive potential is 1. Since we start in distance one from the optimum,
the initial potential is at most

ginit ≤ max{gi : i ∈ [n]} = gn ≤ γn, (44)

where

γn =

(

1 +
2χ3

(n− 1)p21

)n−1

≤ exp

(
2χ3

p21

)

= O(1) (45)
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by (15) and (16). Hence, the expected runtime is at most

E[T ] ≤ ln(ginit) + 1

p1/(2n)
=

O(n)

p1
= O(n) (46)

by the multiplicative drift theorem.

We did not aim for tightness in Proposition 13, but rather want to demonstrate the different regimes.
In particular, consider a distribution D with p1 = Θ(1) and with mean χ. If χ = O(1), then E[T x

D(f)] =
O(n) by (c), but for χ = ω(1) we have E[T x

D(f)] = ω(n) by (a). This shows that the size of χ is truly
relevant for the runtime, at least if the algorithms starts in an adversarial point. Moreover, (b) shows
that the high expectation in the case χ = ω(1) is not just due to low-probability events, but that it
comes from typical runs.

The most interesting and common unbiased mutation operators, except for standard-bit mutation,
are mutation operators where the number of bit flips has a heavy tail. Usually a power law is used, i.e, the
probability to flip k bits scales like k−α for some constant α > 1. There are two different regimes for the
parameter α. For α > 2, the expected number of bit flips satisfies χ = O(1). For α ∈ (1, 2), the expected
number of bit flips is unbounded and large, χ = nΩ(1).2 In either case, such power-law distributions
satisfy p1 = Θ(1). Notably, our main Theorem 1 applies to power-law distributions with α > 2, but not
to power-law distributions with α ∈ (1, 2). We believe that this reflects a real difference between those
two cases. As indication, note that in the situation of Proposition 13, we have E[T x

D(f)] = O(n) for
α > 2, but E[T x

D(f)] = Ω(n lnn) for α ∈ (1, 2). This does not rule out that Theorem 1 still might be true
for α ∈ (1, 2) due to the random starting point, but it suggests that trajectories of the algorithm can be
substantially different.

4 Lower Bound

The following theorem is the main result shown in this section.
Theorem 14. The expected runtime of any static unary unbiased algorithm with flip distribution
D = (p0, p1, . . . , pn) satisfying p1 + pn−1 = n−o(1) on any function f : {0, 1}n → R with unique global
optimum is at least

(1 − o(1))
1

p1 + pn−1
n lnn. (47)

Note that most common mutation operators satisfy pn−1 = o(p1), in which case (47) simplifies to
(1− o(1)) 1

p1
n lnn. We remark that a coarser lower bound of Ω(n lnn) follows from [LW12] and [DDY20].

However, in contrast to [LW12], we are interested in understanding the leading constant, and in contrast
to [DDY20], we are interested in the expected runtime for static unary unbiased distributions. A common
technique to prove lower bounds that apply to any function from some problem collection is to bound
the expected runtime of the algorithm on OneMax and to show that OneMax is the “easiest” among
all functions from the collection, in the sense that the expected runtime of the algorithm optimizing a
given function from the set cannot be smaller than its expected runtime on OneMax. In many cases,
e.g., when considering the (1+1)-EA with standard bit mutation, OneMax can even be shown to be the
easiest among all functions with unique global optimum; as was first shown in [DJW12] for mutation rate
p = 1/n and then in [Wit13] more generally for all (static or dynamic) mutation rates p ≤ 1/2. However,
in our situation it is not true that OneMax is the easiest function, as we will discuss in Section 4.2.

Our proof for Theorem 14 follows the strategy used in [DDY20]. In particular, we apply their lower
bound theorem for variable drift [DDY20, Theorem 9] in the same way. We quote their Lemma 13
directly, and the proof of our Theorem 21 below differs from the proof of their Theorem 14 only in the
calculations and bounds used. The key difference between their proof and ours is that we use a different
function h to bound the expected change in the potential. Most of the work goes into showing that this
function h is indeed applicable, and providing an upper bound on its values that allows us to translate
the result of Theorem 21 into the asymptotic formulation of Theorem 14.

2For α = 2 the expected number of bit flips is also unbounded, but grows only as χ = O(lnn). We will neglect this case here.
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To implement the proof strategy of [DDY20], we use the same potential function to measure the
progress of the optimization process. That is, we denote by (x(0), x(1), . . . , x(t)) the sequence of the first
t+ 1 search points evaluated by the algorithm and we denote by vt ∈ {x(0), . . . , x(t)} the parent chosen
by the algorithm in iteration t. We define the potential at time t as

Xt := min
0≤i≤t

d
(
x(i)
)
, (48)

where d is the distance function

d(x) := min{n−Om(x),Om(x)}. (49)

The reason for considering the symmetric distance to the optimum and its complement is that an optimal
unary unbiased black-box algorithm may first reach ~0, and then flip all bits at once. Furthermore, as we
show in Lemma 22, it is possible to make progress towards the optimum in a way that can be measured
in terms of d, while the Hamming-distance to the optimum increases.

Note that the sequence (Xt)t≥0 is non-increasing, so we may apply the variable drift lower bound
from [DDY20, Theorem 9] to it.

Next, we define the function h̃, which gives the precise drift in the case where the algorithm uses a
bitstring at distance Xt for generating the offspring in round t.
Definition 1. We define h̃ : [0, n]→ R≥0 as

h̃(d) =

n−1∑

r=1

(pr + pn−r)B(n, d, r), (50)

where

B(n, d, r) =

min{d,r}
∑

i=max{⌈r/2⌉,r+d−n}
(2i− r)

(
d
i

)(
n−d
r−i

)

(
n
r

) (51)

is the drift conditioned on flipping r bits.
The expression B(n, d, r) was already given in [DDY20] as the exact fitness drift with respect to

OneMax when flipping r bits.
Lemma 15. If a static unary unbiased algorithm with flip distribution D chooses a bitstring vt with
potential Xt for mutation in step t, then the drift is given by h̃ (Xt), i.e.,

E [Xt −Xt+1 | {Xt = d} ∧ {d (vt) = d}] = h̃(d). (52)

The proof relies on the fact that flipping n−r bits is the same as first flipping n bits and then flipping
r bits to adapt the computation of B(n, d, r) given in [DDY20].

Proof. We assume without loss of generality that d = Om(vt) (by the symmetry of d, the proof in the
case where d = n−Om(x) is the same after switching the roles of zero-bits and one-bits). The algorithm
makes progress if
1. Om

(
x(t+1)

)
< d, or

2. n−Om
(
x(t+1)

)
< d.

Assume that the algorithm flips r bits in the t-th round. For the first case, let i be the number of bits
that flip from 1 to 0, i.e., the number of bits that make progress towards ~0. Then r − i bits flip from 0
to 1. The probability of this event is

Pr[{flip i one-bits} | {flip r bits}] =
(
d
i

)(
n−d
r−i

)

(
n
r

) . (53)

In this event, we make i − (r − i) = 2i − r progress towards ~0. This is positive if and only if i > r/2.
Considering the conditions that i ≤ d and r − i ≤ n − d, we get from the law of total expectation
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(conditioning on the number r of bits flipped by the algorithm) for the first case

n−1∑

r=1

prB(n, d, r). (54)

Note that flipping r = 0 or r = n bits never yields progress with respect to d.
To deal with the second case, we observe that flipping n− r bits is equivalent to first flipping all n bits,
and then flipping r bits. Similarly, flipping r bits is the same as first flipping n bits, and then flipping
n− r bits. The progress that the algorithm makes towards ~0 after first flipping all n bits is the same as
the progress the algorithm makes towards ~1. Overall, we see that the progress towards ~1 of flipping r
bits is the same as the progress towards ~0 of flipping n − r bits. By the same argument as for the first
case, the latter is given by B(n, d, n− r). Hence, the second case contributes

n−1∑

r=1

prB(n, d, n− r). (55)

to the drift. Adding up (54) and (55) yields (50), as required.

Now, we are ready to define the bound h on the drift that we use in our application of the variable
drift theorem [DDY20, Theorem 9].
Definition 2. Let h : [0, n]→ R≥0,

h(d) =

{

h̃(d), for d ≤ d0

n, for d > d0,
(56)

where

d0 := ⌊(p1 + pn−1)n/ ln
2 n⌋. (57)

The following statement is adapted from Lemma 21 in [DDY20].
Lemma 16. There is an n0 ∈ N such that for all n ≥ n0, d ≤ d0, and r ≥ r0 = 12, it holds

B(n, d, r) < (d/n)2. (58)

Proof. Note that the probability in equation (53) is the same as the probability that a hypergeometric
random variable with parameters n, r, d is equal to i. Let X be such a random variable. We have E[X ] =
dr
n ≤ (p1 + pn−1)

r
ln2 n

≤ r
ln2 n

.

Let n0 = e20. Then d/n ≤ d0/n ≤ 1/ ln2 n ≤ 1/400. Making use of the above observation, the fact
that (2i− r) ≤ r for all i ≤ r, and then applying Theorem 6, we have

B(n, d, r) ≤ rPr[X ≥ r/2] = rPr
[

X ≥
(

1 +
( n

2d
− 1
))

· E [X ]
]

≤ r

(

exp
(

n
2d − 1

)

(
n
2d

) n
2d

) dr
n

≤ r
er/2
(

n
2d

)r/2
≤ r

(
2ed

n

)r/2

= 4e2r

(
2ed

n

)r/2−2

·
(
d

n

)2

< 4e2r
( e

200

)r/2−2

·
(
d

n

)2

.

< r
(
2−4
)r/2−3 · (d/n)2 =

212r

22r
· (d/n)2 ≤ (d/n)

2
.

(59)

For the last inequality, we used the facts that r ≥ r0 = 12 and r ≤ 2r.

The next lemma gives an upper bound on h(d) that holds once d is small enough.
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Lemma 17. There is an n0 ∈ N such that for all n ≥ n0, and all d ≤ d0,

h(d) ≤
(

1 +
1

lnn

)

· (p1 + pn−1) ·
d

n
. (60)

Proof. We start by showing that there is a constant C > 0 such that

h(d) ≤ (p1 + pn−1)
d

n
+ C(d/n)2 (61)

Note that B(n, d, 1) = d/n. We have from Lemma 16

h(d) = (p1 + pn−1)
d

n
+

12∑

r=2

(pr + pn−r)B(n, d, r) +

(
d

n

)2

. (62)

If there is some constant C′ such that B(n, d, r) ≤ C′(d/n)2 for all 2 ≤ r ≤ 12, then C := C′ +1 will do.
For r = 2, we calculate B(n, d, 2) = 2

(
d
2

)
/
(
n
2

)
≤ 2(d/n)2, as n > d. Let 3 ≤ r̃ ≤ 12. We have

B(n, d, r̃) ≤
r̃∑

i=⌈r̃/2⌉
(2i− r̃)

(
d
i

)(
n−d
r̃−i

)

(
n
r̃

) < r̃2 · max
⌈r̃/2⌉≤i≤r̃

(
d
i

)(
n−d
r̃−i

)

(
n
r̃

) (63)

Using the inequalities
(
n
k

)k ≤
(
n
k

)
≤
(
ne
k

)k
, we get

(
d
i

)(
n−d
r̃−i

)

(
n
r̃

) ≤
diei

ii ·
(n−d)r̃−ier̃−i

(r̃−i)r̃−i

nr̃

r̃r̃

≤ er̃ · r̃r̃ ·
(
d

n

)i

. (64)

As d/n ≤ 1 and ⌈r̃/2⌉ ≥ ⌈3/2⌉ = 2, we have that the maximum in (63) is at most er̃ · r̃r̃, so C′ = e121214

works.
We define n0 := eC . By our assumption that d ≤ d0, we have

h(d) ≤ (p1 + pn−1) ·
d

n
+

C

ln2 n
· (p1 + pn−1) ·

d

n

≤
(

1 +
1

lnn

)

· (p1 + pn−1) ·
d

n
,

(65)

where the last inequality holds for all n ≥ n0.

As we show in the following lemma, the function h is indeed an upper bound for the change in
the potential. We need to show that, under our assumptions, the expected change in the potential
conditioning on d(vt) = d + ∆ is maximal if ∆ = 0. The proof relies on a case distinction to deal with
different ranges of d and ∆. Depending on the case, we use an additive Chernoff bound, a multiplicative
Chernoff bound, or Lemma 17.
Lemma 18. There is an n0 ∈ N such that for all n ≥ n0, any static unary unbiased algorithm with flip
distribution D such that p1 + pn−1 = n−o(1), and all d ≤ d0, it holds

E [Xt −Xt+1 | Xt = d] ≤ h(d). (66)

Proof. We start by defining some notation

hd(d̃) := E

[

Xt −Xt+1 | {Xt = d} ∧ {d(vt) = d̃}
]

. (67)

Note that

E [Xt −Xt+1 | Xt = d] ≤ max
d≤d̃≤n/2

hd(d̃). (68)
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If d(vt) = d, it follows from Lemma 15 that the drift is exactly h(d), i.e., we have hd(d) = h(d). So it
remains to show that the above maximum is attained at d̃ = d. We write ∆ := d̃ − d. We need to show
for all n/2− d ≥ ∆ ≥ 1 that

hd(d+∆) ≤ h(d). (69)

We have

h(d) ≥ (p1 + pn−1)
d

n
≥ d

n1+o(1)
. (70)

We observe that to make progress beyond the best-so-far search point, the algorithm needs to flip at
least ∆ + 1, and at most n −∆ − 1 bits. Together with a similar calculation as in the proof of Lemma
15, this yields

hd(d+∆) =

n−∆−1∑

r=∆+1

(pr + pn−r)Bd(n, d+∆, r), (71)

where

Bd(n, d+∆, r) =

min{d+∆,r}
∑

i=max{⌈ r+∆
2 ⌉,r+d+∆−n}

(2i− r −∆)

(
d+∆
i

)(
n−d−∆

r−i

)

(
n
r

) . (72)

We remark that Bd(n, d+∆, r) ≤ B(n, d+∆, r) and hd(d+∆) ≤ h(d+∆).
As in the proof of Lemma 16, the fraction in equation (72) is equal to the probability of a hypergeo-

metric random variable X with parameters n, r, d+∆ being equal to i. Let X be such a random variable.

It holds E[X ] = r(d+∆)
n ≤ r

2 .
First, we consider the case where ∆ ≥ n/12. Using the same argument as for equation (59), and then

applying Theorem 5, we get

Bd(n, d+∆, r) ≤ rPr

[

X ≥ r +∆

2

]

≤ rPr

[

X ≥ E[X ] +
∆

2

]

≤ r exp

(

−∆2

2n

)

≤ n exp
(

− n

288

)

.

(73)

We have

hd(d+∆) ≤ n2e−Ω(n) = o(h(d)). (74)

Next, we consider the case n/12 > ∆ ≥ ln2 n. We proceed as in the proof of Lemma 16, applying
Theorem 6.

B(n, d+∆, r) ≤ rPr
[

X ≥ r

2

]

= rPr

[

X ≥ n

2(d+∆)
E[X ]

]

≤ r

(
2(d+∆)e

n

)r/2

≤ r
(e

3

)r/2

,

(75)

where we used our assumptions d,∆ ≤ n/12 for the last inequality. In particular, we have for r > ln2 n

B(n, d+∆, r) = O(n−Ω(ln n)). (76)

We have

hd(d+∆) = nO(n−Ω(lnn)) = o(h(d)). (77)
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It remains the case where 1 ≤ ∆ < ln2 n. We distinguish two subcases: (a) d < n1/4 − ln2 n, and (b)
d ≥ n1/4 − ln2 n.

In case (a), we have by the same argument as for (75)

B(n, d+∆, r) ≤ r

(
2(d+∆)e

n

)r/2

< n

(
2e

n−3/4

)r/2

. (78)

For r ≥ 9, we thus get B(n, d + ∆, r) ≤ Θ(n−2.375). For 3 ≤ r ≤ 8, we get B(n, d + ∆, r) ≤ Θ(n−9/8).
Furthermore, we have for r = 2, where only ∆ = 1 is relevant

Bd(n, d+ 1, 2) =

(
d+1
2

)

(
n
2

) ≤ n2/4e2

n2
≤ Θ(n−3/2). (79)

We compute

hd(d+∆) ≤ Θ(n−3/2) + 6 ·Θ(n−9/8) + nΘ(n−2.375) = Θ(n−9/8) = o(h(d)). (80)

In case (b), it holds by Lemma 17, and picking n0 large enough such that n
1/4
0 lnn0−n1/4

0 −ln3 n0 > 0,
which implies d(lnn− 1) > ln2 n,

hd(d+∆) ≤ h(d+∆)− (p1 + pn−1)
d+∆

n
≤ 1

lnn
· (p1 + pn−1)

d+∆

n

≤ 1

lnn
· (p1 + pn−1)

d+ ln2 n

n
<

1

lnn
· (p1 + pn−1)

d+ d(lnn− 1)

n
≤ h(d),

(81)

concluding the proof of this lemma.

Finally, we show that there is an n0 ∈ N such that for all n ≥ n0, the function h is monotonically
increasing.
Lemma 19. There is an n0 ∈ N such that for all n ≥ n0, the function h is monotonically increasing.

Proof. Let 1 ≤ d ≤ d0− 1. Take n0 = e2. Then we have d/n ≤ d0/n ≤ 1/ ln2 n ≤ 1/4. We will show that
h(d) ≤ h(d+ 1). Recall that

h(d) =

n−1∑

r=1

(pr + pn−r)B(n, d, r). (82)

Let 1 ≤ r ≤ n− 1. We will show that

B(n, d, r) ≤ B(n, d+ 1, r). (83)

Recall the definition

B(n, d, r) =

min{d,r}
∑

i=max{⌈r/2⌉,r+d−n}
(2i− r)

(
d
i

)(
n−d
r−i

)

(
n
r

) . (84)

The range of this sum for B(n, d, r) is contained in the range of this sum for B(n, d+1, r), as otherwise,
we would have r + d + 1 − n > ⌈r/2⌉ ≥ r/2. However, r + d + 1 − n ≤ r + n/4 − n < r − 3r/4 = r/4,
which yields a contradiction.

It remains to show that for all max{⌈r/2⌉, r + d− n} ≤ i ≤ min{d, r}, it holds

(2i− r)

(
d
i

)(
n−d
r−i

)

(
n
r

) ≤ (2i− r)

(
d+1
i

)(
n−d−1
r−i

)

(
n
r

) , (85)
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or equivalently,

d!

i!(d− i)!
· (n− d)!

(r − i)!(n− d− r + i)!
≤ (d+ 1)!

i!(d+ 1− i)!
· (n− d− 1)!

(r − i)!(n− d− 1− r + i)!
(86)

Equation (86) can be rewritten as

n− d

n− d− r + i
≤ d+ 1

d+ 1− i
. (87)

Multiplying by the denominators (which are always positive) and expanding the product, this is
equivalent to

dn− d2 + n− d− in+ di ≤ dn+ n− d2 − d− dr − r + di + i. (88)

Finally, we see that this is the same as

dr + r ≤ in+ i, (89)

or equivalently

r(d + 1) ≤ i(n+ 1). (90)

This inequality is indeed true, as

i(n+ 1) ≥ r

2
(n+ 1) = r(

n

2
+

1

2
) ≥ r(

n

4
+ 1) ≥ r(d + 1), (91)

concluding the proof of this lemma, as h(d0) ≤ n = h(d0 + 1), and h is equal to n on [d0 + 1, n].

With this lemma at hand and Lemma 13 from [DDY20], which bounds the probability to make large
jumps, we can then show the following theorem, using very similar computations as those that were used
in [DDY20].
Lemma 20 (Lemma 13, [DDY20]). There exists an n0 ∈ N such that for all n ≥ n0, for all r ∈ [0, n],
and for all x ∈ {0, 1}n, it holds that

Pr [d(flipr(x)) ≥ c̃(d(x))] ≥ 1− n−4/3 ln7 n, (92)

where

c̃ : [n]→ [0, n], i 7→ c̃(i) :=







i−√n lnn, if i ≥ n/6

i− ln2 n, if n1/3 ≤ i < n/6

i− 1, if i < n1/3.

(93)

Theorem 21. The expected runtime of any static unary unbiased algorithm with flip distribution D
satisfying p1 + pn−1 = n−o(1) on any function f : {0, 1}n → R with unique global optimum is at least

d0∑

d=1

1

h(d)
− o (n) . (94)

Proof of Theorem 21. Assume that n is large enough so that all the lemmas above apply. Note that the
time TA that a unary unbiased algorithm takes to optimize f is at least as large as the hitting time T of
0 of the potential Xt. Every algorithm A has to generate its inital search point x(0) uniformly at random.
We have E[d(x(0))] = E[X0] = n/2. By the bounds of Theorem 5, Pr[X0 < n/4] ≤ 2e−n/8. For now, we
will assume that X0 ≥ n/4.
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Let c : [n]→ [0, n], i 7→ c(i) := min{c̃(j) | j ≥ i}. Furthermore, c is monotonically increasing. It holds
c(i) ≤ c̃(i) for all i ∈ [n] by definition. By Lemma 20, for all r ∈ [0, n], x ∈ {0, 1}n, and d′ ≤ d(x),

Pr [d(flipr(x)) ≥ c(d′)] ≥ Pr [d(flipr(x)) ≥ c̃(d′)] ≥ 1− n−4/3 ln7 n. (95)

By the law of total probability, it follows

Pr [Xt+1 ≥ c(Xt)] ≥
n∑

r=0

pr Pr [d(flipr(vt)) ≥ c(d(vt))] ≥ 1− n−4/3 ln7 n
︸ ︷︷ ︸

=:p

. (96)

Together with Lemma 18, we see that all conditions of Theorem 4 are satisfied for (Xt)t≥0, h, c, and p.
It holds µ(x) = max{i | c(i) ≤ x} = max{i | min{c̃(j) | j ≥ i} ≤ x} = max{i | c̃(i) ≤ x}, yielding

µ(i) =







i+ 1 for i < n1/3 − ln2 n,

i+ ln2 n for n1/3 − ln2 n ≤ i < n/6−√n lnn,

i+
√
n lnn for n/6−√n lnn ≤ i < n/2−√n lnn,

⌊n/2⌋ for n/2−√n lnn ≤ i < n/2.

(97)

Recall that g(x) =
∑x−1

i=0 1/h(µ(x)). By Theorem 4, we have

E [T | X0] ≥ g(X0)−
g2(X0)p

1 + g(X0)p
. (98)

First, we will bound g2(X0)p
1+g(X0)p

. We have h(d) ≥ (p1 + pn−1) · B(n, d, 1) = (p1 + pn−1) · d
n . As h is

monotonically increasing, and µ(i) ≥ i, we have h(x) ≤ h(µ(x)). Hence,

g(X0) ≤
x−1∑

i=1

1

h(x)
≤ 1

p1 + pn−1

x−1∑

i=1

n

x
=

1

p1 + pn−1
O(n lnn) = n1+o(1). (99)

It follows that

g2(X0)p

1 + g(X0)p
= o(n). (100)

Next, we bound g(X0) below. As h is monotonic, and all summands are positive,

g(X0) =

X0−1∑

x=0

1

h(µ(x))
≥

n1/3−ln2 n∑

i=1

1

h(x)
+

n/6−√
n lnn+ln2 n
∑

x=n1/3

1

h(x)
+

X0∑

x=n/6

1

h(x)

≥
X0∑

x=1

1

h(x)
− ln2 n

h(n1/3 − ln2 n)
−

√
n lnn− ln2 n

h(n/6−√n lnn+ ln2 n)
.

(101)

We apply h(x) ≥ (p1 + pn−1)
d
n again and get

g(X0) ≥
X0∑

x=1

1

h(x)
− 1

p1 + pn−1
·
(

n ln2 n

n1/3 − ln2 n
+

n(
√
n lnn− ln2 n)

n/6−√n lnn+ ln2 n

)

≥
X0∑

x=1

1

h(x)
− 1

p1 + pn−1
·Θ
(

n2/3 ln2 n
)

≥
X0∑

x=1

1

h(x)
− o(n).

(102)
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Finally, we can conclude using the law of total expectation

E [TA | X0] ≥
(

1− 2e−n/8
)

·
(

n/4
∑

x=1

1

h(x)
− o(n)− o(n)

)

≥
d0∑

x=1

1

h(x)
− o(n), (103)

where we used that n/4 ≥ d0 for n large enough.

With this statement at hand, we can finally prove Theorem 14.

Proof of Theorem 14. By Lemma 17, we have for all 1 ≤ d ≤ d0 = np1+pn−1

ln2 n
,

1

h(d)
≥ n

(p1 + pn−1)d
−

1
lnn

1 + 1
lnn

n

(p1 + pn−1)d
= (1 − o(1))

n

(p1 + pn−1)d
. (104)

Applying Theorem 21 yields

E[T ] ≥
(

(1− o(1))
n

(p1 + pn−1)

d0∑

d=1

1

d

)

− o(n) = (1± o(1))
1

(p1 + pn−1)
n lnn. (105)

4.1 On pn−1

The following lemma shows that the term pn−1 in Theorem 14 is really necessary. In particular, there
are (artificial) functions on which a unary unbiased (1 + 1) algorithm with p1 = 0 can be as efficient as
random local search (RLS) on OneMax.
Lemma 22. Let n be even. Let RLS be the (1 + 1)-EAD with p1 = 1 and pi = 0 for i 6= 1, and let A be
the (1 + 1)-EAD with pn−1 = 1 and pi = 0 for i 6= n− 1. Let f : {0, 1}n → R be defined via

f(x) :=

{

Om(x), if Om(x) is even,

n−Om(x), if Om(x) is odd.

Let TRLS(Om) be the runtime of RLS on OneMax, and let TA(f) be the runtime of A on f . Then
TRLS(Om) and TA(f) follow the same distribution, i.e., for all T ∈ N,

Pr[TRLS(Om) = T ] = Pr[TA(f) = T ]. (106)

In particular, TA(f) = (1± o(1))n lnn in expectation and with high probability.

Proof. Let XRLS
t and XA

t be the fitness of RLS and A after t iterations, respectively. We will show by
induction over t that those two random variables follow the same distribution.

Note that f is obtained from OneMax by swapping the fitness levels k and n − k if k is odd. In
particular, the number of search points of fitness k does not change. Since the initial search point is
chosen uniformly at random, therefore XRLS

0 and XA
0 follow the same distribution.

Now let t ≥ 0 and assume that XRLS
t and XA

t follow the same distribution. We claim that for every
k, k′ ∈ [0..n], we have

Pr[XRLS
t+1 = k′ | XRLS

t = k] = Pr[XA
t+1 = k′ | XA

t = k]. (107)

20



Note that this implies that XRLS
t+1 and XA

t+1 follow the same distribution since then

Pr[XRLS
t+1 = k′] =

∑

k∈[0,n]

Pr[XRLS
t = k] · Pr[XRLS

t+1 = k′ | XRLS
t = k]

=
∑

k∈[0,n]

Pr[XA
t = k] · Pr[XA

t+1 = k′ | XA
t = k]

= Pr[XA
t+1 = k′].

(108)

Moreover, since this implies that XRLS
t and XA

t follow the same distribution for all t, by

Pr[TRLS(Om) > T ] = Pr[XRLS
T < n] = Pr[XA

T < n] = Pr[TA(f) > T ], (109)

it also implies the lemma. So it remains to show (107).
For RLS it is obvious that the left hand side of (107) is zero for all k′ ∈ [0..n] \ {k, k + 1}. Let

us assume that A is in a search point x such that XA
t = k. The algorithm A creates offspring y by

randomly flipping n−1 positions of x. This can be equivalently expressed by first flipping all n positions,
and then flipping back a uniformly random position. Flipping all n positions yields the antipodal search
point x′ with Om(x′) = n −Om(x). Since y is obtained from x′ by flipping exactly one bit, it satisfies
Om(y) = n −Om(x) ± 1. Since n is even, this implies that Om(x′) and Om(x) are either both odd or
both even. In either case, f(x′) = n− f(x) and thus f(y) = f(x)± 1 by definition of f . Since A is elitist,
it will reject any offspring of fitness f(x)− 1, so it accepts y if and only if f(y) = f(x) + 1. In particular,
this means that the right hand side of (107) is zero for all k′ ∈ [0..n] \ {k, k + 1}, as required.

For the remaining values k′ ∈ {k, k + 1}, it suffices to show equality for one of them, since the left
and right hand side of (107) both sum up to one if summed over all k′. If Om(x) is even, then the
offspring is fitter if and only if the bit that is not flipped is a zero-bit, which happens with probability
(n − Om(x))/n = (n − k)/n. If Om(x) is odd, then the offspring is fitter if and only if the bit that
is not flipped is a one-bit, which happens with probability Om(x)/n = (n − k)/n. So in either case,
Pr[XA

t+1 = k + 1 | XA
t = k] = (n − k)/n, which is the same as the probability for RLS. This concludes

the proof of (107) and of the lemma.

The following theorem strengthens Theorem 14 for the (1 + 1)-EAD on linear functions. It says that
in this case, pn−1 does not help to improve the asymptotic expected runtime.
Theorem 23. Consider the (1 + 1)-EAD with distribution D = (p0, p1, . . . , pn) such that p1 = n−o(1).
The expected runtime on any linear function on {0, 1}n is at least

(1− o(1))
1

p1
n lnn. (110)

Proof. Recall that the weights wi of f are positive and sorted. We may assume that the smallest weight
is w1 = 1, since we can multiply all weights with the same constant factor without changing the fitness
landscape. Moreover, for linear functions it is slightly more convenient to work with minimization instead
of maximization. Both versions are equivalent, so we may assume that f is minimized. Finally, if wn >
∑n−1

i=1 wi+1 then replacing wn by
∑n−1

i=1 wi+1 does not change the fitness landscape since in either case
all search points x with xn = 1 have higher objective than all search points with xn = 0. Hence we may
assume wn ≤

∑n−1
i=1 wi+1. Writing W :=

∑n
i=1 wi for the total weight, this implies 2wn ≤W +1 < 3

2W ,
and thus wn < 3

4W .

Fix some t, and let qi,t := Pr[x
(t)
i = 1] be the probability that the i-th bit is a one-bit in generation

t. Then a classical result by Jägersküpper [Jäg08] says that q1,t ≥ . . . ≥ qn,t. Jägersküpper proved it
for the (1 + 1)-EA with standard bit mutation, but the only ingredient in the proof was that for all
i, j ∈ [n], if we condition on the set of flips in [n] \ {i, j} then positions i and j have the same probability
of being flipped. This is true for all unbiased mutation operators, so Jägersküpper’s result holds for the
(1 + 1)-EAD as well. Moreover, the proof shows inductively for all times that for any substring x̃ on the
positions [n] \ {i, j}, the combination “xi = 0, xj = 1, x̃” is more likely than the combination “xi = 1,
xj = 0, x̃” if i < j. Since both options have the same number of one-bits, and since other options (with
xi = xj) contribute equally to qi,t and qj,t, it was already observed in [LS15] that qi,t ≥ qj,t still holds
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if we condition on the number of one-bits Om(x(t)) at time t. Moreover, the statement also still holds if
we replace t by the hitting time T = T (d) = min{t ≥ 0 | Om(xt) ≤ d}, so we have q1,T ≥ . . . ≥ qn,T .

We choose T = T (d) for d = n/ lnn. Then we have
∑

i∈[n] qi,T = E[Om(xT )] ≤ d by definition of T ,
and hence

E[f(x(T ))] =
∑

i∈[n]

wi · qi,T ≤
(∑

i∈[n] wi

)
·
(∑

i∈[n] qi,T
)

n
≤ Wd

n
=

W

lnn
, (111)

where the second step is Chebyshev’s sum inequality, since wi and qi,T are sorted opposingly.
By Markov’s inequality, at time T we have w.h.p.f(x(T )) ≤W/8. In the following we will condition on

this event. We claim that then after time T , any offspring obtained by an (n−1)-bit flip is rejected. To see
this, consider any x with f(x) ≤W/8. Any offspring y that is obtained from x by an (n− 1)-bit flip has
objective f(y) ≥W−W/8−wn, because the antipodal point of x has objectiveW−f(x) ≥W−W/8, and
flipping back a bit can decrease the objective by at most wn < 3

4W . Hence, f(y) ≥W−W/8−wn > W/8.
Therefore, the offspring y has higher (worse) objective, and is rejected. Hence, once the algorithm reaches
objective at most W/8, all offspring obtained from (n−1)-bit flips are rejected. In other words mutations
of n− 1 bits are idle steps. This means that after time T , the (1 + 1)-EAD behaves as the (1 + 1)-EAD′ ,
where we define D′ = (p′0, p

′
1, . . . , p

′
n) by

p′i :=







0 if i = n− 1,

p0 + pn−1 if i = 0,

pi otherwise.

(112)

At time T w.h.p.we have Om(x(T )) ≥ d− ln2 n, which follows from [DDY20, Lemma 13]. By Theorem 14,
the (1 + 1)-EAD′ needs in expectation at least (1 − o(1)) 1

p′

1+p′

n−1
n lnn = (1 − o(1)) 1

p1
n lnn steps to

find the optimum from level d − ln2 n, and hence the (1 + 1)-EAD needs the same time. Note that we
proved the lower bound conditional on w.h.p. events, but this just adds another (1− o(1)) factor for the
unconditional expectation.

4.2 No Stochastic Domination

Earlier work [Sud13, DJW10, Wit13] used stochastic domination arguments (cf. [Doe19]) to prove lower
bounds. In particular, Witt proved his lower bound by showing that OneMax is the easiest function
for the (1 + 1)-EA with standard bit mutation of arbitrary mutation rate p ≤ 1/2 [Wit13]. The key
ingredient was Lemma 6.1 in [Wit13], which considered offspring y and y′ that are created from x and x′

respectively by standard bit mutation with mutation rate p ≤ 1/2. For minimization, if Om(x) ≤ Om(x′)
then the lemma states Pr[Om(y) ≤ k] ≥ Pr[Om(y′) ≤ k] for all k ∈ [0, n]. So it is easier to reach Om-
level at most k when starting with a parent of smaller Om-value. This lemma implies on the one hand
that OneMax is the easiest function for standard bit mutation, but also that elitist selection is optimal
in this situation: the (1+1)-EA with mutation rate p ≤ 1/2 is the fastest algorithm on OneMax among
all unary algorithms using standard bit mutation with mutation rate p ≤ 1/2.

However, Witt’s lemma does not hold for general unbiased mutation operators. In particular, being
closer to the optimum does not mean that we have a higher chance of finding the optimum in the next
step. Consider the case where the algorithm flips one bit with probability p1 = n−2 and two bits with
probability p2 = 1−p1 = 1−n−2. The probability of finding the optimum from a search point in Hamming
distance one from the optimum is p1/n = n−3, whereas the probability of finding the optimum from a
search point in Hamming distance two from the optimum is p2/

(
n
2

)
= Θ(n−2), which is much larger.

Even worse, let us consider the time Td to find the optimum on OneMax if we start in Hamming
distance d. For d = 1 we have E[T1] = n/p1 = Θ(n3). For d = 2, the probability of making an improvement
is pimp = p1 · 2/n + p2/

(
n
2

)
= Θ(n−2). Hence, conditional on making an improvement, the algorithm

improves by one with probability (p1 · 2/n)/pimp = Θ(n−1). Therefore, we need to wait in expectation
1/pimp = Θ(n2) rounds for an improvement, and with probability Θ(n−1) we improve only by one and
need to wait another T1 rounds for reaching the optimum. Hence,

E[T2] = Θ(n2) + Θ(n−1) · E[T1] = Θ(n2), (113)
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which is asymptotically smaller than E[T1] = Θ(n3). So the expected time E[Td] is not monotone in d,
and can be asymptotically smaller if we start further away from the optimum.

Turning this example around, we can construct a situation whereOneMax is not the easiest function.
Consider an algorithm with p1 = n−3, p2 = n−1 and p3 = 1 − p1 − p2 = 1− o(1), starting in the string
x = (01 . . . 1) where all but the first bit are optimized. On OneMax, it needs to wait for a one-bit flip,
which takes time n/p1 = Θ(n4). But if the fitness function is f(x) := 3x1 +

∑n
i=2 xi, then the algorithm

accepts any mutation flipping two or three bits if it involves x1. Conditional on flipping x1, a two-bit flip
has only probability O(n−1) since p3/p2 = Θ(n). In that case (an improving two-bit flip) the algorithm
jumps to another neighbour of the optimum and needs to wait n/p1 = O(n4) rounds for the right one-
bit flip. This contributes O(n−1 · n4) = O(n3) to the expectation. However, in the more likely case of
a three-bit flip, the algorithm jumps to a search point in distance two from the optimum. By a similar
calculation as before, it now needs time O(n3) to find the optimum, so the expected runtime on f is
O(n3), which is asymptotically faster than on OneMax.

Finally, the same example can be used to show that a non-elitist (1 + 1) algorithm may be faster
than the (1 + 1)-EAD if both use the same unbiased mutation operator. Hence, Witt’s lemma and all
its consequences fail for general unbiased mutation operators. This is similar to the situation for the
compact genetic algorithm cGA, for which this form of domination also does not hold [Doe21].

5 Conclusions

We have extended Witt’s result bounding the runtime of the (1 + 1)-EA on linear functions to arbitrary
elitist (1+1) unary unbiased EAs and we have discussed various ways in which the requirements made
in Corollary 10 and Theorem 14 are tight. In particular, we have seen that for p1 = n−Ω(1), the expected
runtime can be smaller than 1

p1
n lnn by a constant factor. When interpreted in the light of black-box

complexity, our results can be seen as extensions of [DDY20] to linear functions. However, we have
focused in this work on static mutation operators. An extension of our result to dynamic parameter
settings would hence be a natural continuation of our work.

Another direction in which we aim to extend our results are combinatorial optimization problems
where we suspect to see a tangible advantage of unusual unary mutation operators. For example, the
optimal mutation operator for the minimum spanning tree problem (MST) is likely to satisfy p1 > 0
and p2 > 0. Similarly, there are functions like LeadingOnes where the optimal number of flipped
bits depends on the phase of the algorithm, and none of the phases is asymptotically negligible for the
runtime. In such cases, it may be interesting to see what the optimal distribution is.

Similarly, we also expect advantages of the (1 + 1)-EAD over standard (1 + 1)-EAs when optimizing
for average performance for problem collections with instances having different landscapes.
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