
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Learning-Based Neural Ant Colony Optimization
Yi Liu

Fudan University
Shanghai, China

liuyi_@fudan.edu.cn

Jiang Qiu
Fudan University
Shanghai, China

21210860074@m.fudan.edu.cn

Emma Hart
Edinburgh Napier University

Edinburgh, UK
e.hart@napier.ac.uk

Yilan Yu
Fudan University
Shanghai, China

ylyu22@m.fudan.edu.cn

Zhongxue Gan
Fudan University
Shanghai, China

ganzhongxue@fudan.edu.cn

Wei Li
Fudan University
Shanghai, China

fd_liwei@fudan.edu.cn

ABSTRACT
In this paper, we propose a new ant colony optimization algo-
rithm, called learning-based neural ant colony optimization (LN-
ACO), which incorporates an "intelligent ant". This intelligent ant
contains a convolutional neural network pre-trained on a large set
of instances which is able to predict the selection probabilities of the
set of possible choices at each step of the algorithm. The intelligent
ant is capable of generating a solution based on knowledge learned
during training, but also guides other ‘traditional’ ants in improv-
ing their choices during the search. As the search progresses, the
intelligent ant is also influenced by the pheromones accumulated
by the colony, leading to better solutions. The key idea is that if
tasks or instances share common features either in terms of their
search landscape or solutions, then information learned by solving
one instance can be applied to substantially accelerate the search on
another. We evaluate the proposed algorithm on two public datasets
and one real-world test set in the path planning domain. The results
demonstrate that LN-ACO is competitive in its search capability
compared to other ACO methods, with a significant improvement
in convergence speed.

CCS CONCEPTS
• Computing methodologies→ Search methodologies.

KEYWORDS
Ant colony optimization, swarm intelligence, intelligent ant, deep
learning

ACM Reference Format:
Yi Liu, Jiang Qiu, Emma Hart, Yilan Yu, Zhongxue Gan, and Wei Li. 2023.
Learning-Based Neural Ant Colony Optimization. In Genetic and Evolution-
ary Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3583131.3590483

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590483

1 INTRODUCTION
Ant colony optimization (ACO) algorithms have proved successful
in numerous optimization tasks [2, 27] such as travelling salesman
problems [9], vehicle routing [30] and internet routing, as well as
allocation and scheduling [6, 11]. Numerous variations of the basic
ACO method [4, 10] have been proposed. For example, Elite AS
methods [5] use information recorded from the best journeys found
so far to modify the pheromone update step in order to accelerate
convergence. MAX-MIN approaches [22] try to avoid premature
stagnation by limiting the pheromone concentration to a fixed
range, reinitializing the pheromone if the search enters a dormant
state, and also modifying the update step of the pheromone matrix.
In recent years, several new ACO algorithms have been proposed.
PF3SACO [31] dynamically adapts the system parameters while
FACO [21] attempts to reduce the difference between a newly con-
structed solution and a previous one, resulting in a more focused
search. GSACO [15], based on an adaptive greedy strategy, contin-
uously adjusts and changes the algorithm’s parameters to increase
the diversity of the population. Additionally, an enhanced heuristic
ant colony optimization (EH-ACO) [13] algorithm has also been
proposed. Other methods (e.g. [18, 19]) have attempted to create
a pre-initialized pheromone distribution matrix. However, these
methods fail to incorporate experiences from previous problem in-
stances or modify the route choices made in subsequent iterations.
Despite this range of modifications, many ant colony algorithms
generally still suffer from slow convergence and issues with so-
lution accuracy. Furthermore, like many other population-based
search algorithms, ant colony approaches are typically initialized
randomly each time a new instance needs to be solved and all infor-
mation learned during the search to solve the instance is discarded
once a solution is found. Given that many instances may contain
shared features — for example, the shape and size of obstacles —
there is a missed opportunity for a colony solving an instance to em-
ploy information learned from previously solving other instances.
There have been some attempts in this direction. For example, [24]
uses a machine learning (ML) method to predict the termination
point for an unseen instance using a model trained on landscape
features derived from a set of training instances. Other methods use
ML to improve the initial search pheromone matrix [14, 23]. More
specifically, the former approach concentrates on the orienteering
problem, while the latter aims to address personalized journey route
planning on multimodal public transport networks.

Our proposed method combine ML with ACO to reduce the
computational time of the ant colony search and find high-quality

1

https://doi.org/10.1145/3583131.3590483
https://doi.org/10.1145/3583131.3590483

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Yi and Jiang, et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

solutions by introducing an intelligent ant into a ‘traditional colony’.
We utilize a deep learning approach to learn a brain module for
the intelligent ant: the brain consists of a convolutional neural
network which is pre-trained on a large set of instances with data
describing environmental information and accumulated pheromone
information of a colony. The trained brain module, which effectively
integrates global and local distance information, guides ant towards
the most promising direction by predicting the selection probabili-
ties of potential choices during the search process. In contrast to
state-of-the-art methods that focus on pheromone optimization,
the proposed approach results in an improvement of several orders
of magnitude in the time taken to find a solution in some cases.
We term the ant colony algorithm mixed with intelligent ant(s)
learning-based neural ant colony optimization (LN-ACO).

The contributions of this paper are as follows:

• The first attempt to construct an intelligent ant with the
ability to predict the selection probabilities of feasible nodes
from a given state for a new instance. The intelligent ant
contains a brain module consisting of a trained convolu-
tional neural network that captures the historical experi-
ence of an ant colony solving many previous instances.

• A hybrid ant colony model that combines ‘traditional’ and
‘intelligent’ ants, benefiting from the exploration capabili-
ties of the ‘traditional’ ants and the exploitation capability
of the ‘intelligent’ ant.

• A comprehensive evaluation demonstrates that LN-ACO is
able to obtain similar solutions to existing methods using
only half the number of ants and iterations.

The paper is structured as follows. In Section 2, we introduce
relevant literature. Next, in Section 3, we describe the classical
ACO algorithm. Then, in Section 4, we present the framework and
training process of LN-ACO. Additionally, in Section 5, we compare
LN-ACO to other ant colony optimization algorithms and present
findings from an ablation study. Finally, we conclude the paper in
Section 6 and discuss potential directions for future research.

2 RELATEDWORK
Within the field of ACO, significant effort has been devoted to en-
hancing the core components of ACO algorithms. This has led to a
series of improved ACO algorithms, such as modifying hyperpa-
rameters, updating pheromone strategies, and improving ants’ local
search [20] and action transfer probability strategies [16, 17]. Other
researchers have focused on directly optimizing the information in
the global pheromone matrix, e.g. by restricting the range of val-
ues [22] or by initializing the pheromone matrix before search [18].
Luo et al. [18] suggested an unequal allocation of initial pheromones
based on the relative distance of nodes and optimizing the state
transition rule to solve local optima and slow convergence. In addi-
tion, they utilized the optimal and worst solutions to improve the
method for updating global pheromones. Other approaches aim to
integrate ACO with other traditional methods [8, 20, 25]. However,
in all of these works, information learned from solving one instance
cannot be re-used on new instances. The ants thus fail to learn from
the colony’s historical experience and from previously encountered
features in the environment.

Sun et al. [23] proposed a machine learning model to initialize
the initial pheromone matrix for meta-heuristic ACO to boost its
performance. Instances are solved using a generic exact solver
(CPLEX) to generate a training set. An ML model is then trained
to classify edges either as part of optimal route. Similarly, He et
al. [14] proposed using a machine learning based Max-Min Ant
System (ML-MMAS) to learn a pheromone function that directly
predicts global pheromone trails for the initial pheromone matrix
to solve a multi-criteria journey planning problem.

In contrast to previous work, we attempt to improve the search
capability of an individual, through predicting the selection proba-
bility of feasible nodes based on different environmental states,
and utilizing this intelligent individual to further enhance the
group’s search. In comparison to the strategy of only initializing
the pheromones of the colony, an intelligent ant participates in
the entire search phase of the colony, forming a hybrid colony
with traditional ants. The intelligent ant accelerates convergence
by efficiently locating good solutions. Meanwhile, in order to avoid
falling into local optima, traditional ants explore a broader space.
The intelligent ant further improves its performance based on the ac-
cumulated pheromone information as the search progresses. Thus,
we propose that the hybrid colony will be more effective and effi-
cient by combining exploration of traditional ants with exploitation
of intelligent ants.

3 PRELIMINARIES
The basic ACO description is given as this is used to create datasets
to train the intelligent ant (see Section 4.3). In the first iteration,
ants randomly choose the next step from the set of feasible actions,
each of which has the same probability. The pheromone concentra-
tion is updated when all the ants have finished their search at the
end of each iteration. The pheromone update formula is given by
Equation (1):

𝜏𝑖 𝑗 = (1 − 𝜌) · 𝜏𝑖 𝑗 +
𝑚∑︁
𝑘=1

Δ𝜏𝑘𝑖 𝑗 , 0 < 𝜌 < 1 (1)

where the maximum number of ants is𝑚, 𝜌 is the volatility factor
of the pheromone, 𝜏𝑖 𝑗 is the pheromone between node 𝑖 to 𝑗 and
Δ𝜏𝑘

𝑖 𝑗
denotes the amount of pheromone left by each of ants on route

𝑖 → 𝑗 .

Δ𝜏𝑘𝑖 𝑗 =

{
𝑄/𝐿𝑘 , 𝑖 𝑓 𝑎𝑛𝑡 𝑘 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2)

where 𝑄 is a hyperparameter and 𝐿𝑘 is the path length conducted
by ant 𝑘 .

In the following iterations, the ants choose the search direction
based on a selection mechanism influenced by the pheromones left
by the previous ants. Assuming that when ant 𝑘 is located at node
𝑖 , the set of feasible nodes of node 𝑖 is 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘 denoting the nodes
around node 𝑖 that can be visited by ant 𝑘 , the probability of going
to node 𝑗 is given by:

𝑝𝑘𝑖 𝑗 =


𝜏𝛼
𝑖 𝑗
·𝜂𝛽

𝑖 𝑗∑
𝑙 ∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

𝜏𝛼
𝑖𝑙
·𝜂𝛽

𝑖𝑙

, 𝑖 𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Learning-Based Neural Ant Colony Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

The solutions and pheromone trails
(𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝝅𝝅) of traditional ant colony The solutions of LN-ACO

Intelligent Ant

Brain Module

𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛

Ant Colony

Intelligent Ant

𝜑𝜑(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑗𝑗) � τ(𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗) � 𝜂𝜂(𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗)

Hybrid Ant Colony

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝜋𝜋,𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛 = −
1
𝑏𝑏
�
𝑖𝑖

𝑏𝑏

𝜋𝜋𝑇𝑇 log𝜑𝜑𝑛𝑛𝑛𝑛𝑛𝑛

① Generating the training
dataset based on
instances ③ Mixing well-trained

intelligent ant into
the colony

④ Testing the performance of the hybrid
colony on the new instances

② Training

τ(𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗) � 𝜂𝜂(𝑎𝑎𝑖𝑖 , 𝑎𝑎𝑗𝑗)
Traditional Ant

[3 × 3 Conv+ReLU]
[1 × 1 Conv+ReLU]

[FC + log_softmax]
[Reshap]

Figure 1: The framework of the LN-ACO algorithm. ① The traditional ant colony solves instances and produces data in the
format (𝑠𝑡𝑎𝑡𝑒, 𝜋). 𝑠𝑡𝑎𝑡𝑒 represents environmental information and provides input to the brain module. 𝜋 is the pheromone
distribution of the colony. ② The training process is performed through cross-entropy loss of the predicted selection probability
𝜑 and the pheromone distribution 𝜋 , as shown in Equation (6). The intelligent ant learns the solution (𝑠𝑡𝑎𝑡𝑒, 𝜋) and evolves the
ability to predict the selection probability. ③ Following training, a hybrid ant colony consisting of intelligent ant(s) with a
trained brain module and traditional ants is formed . ④ LN-ACO solves the new instances (detailed in Section 4.1).

Algorithm 1: LN-ACO algorithm.
Input :Problem instances.
Output :The near-optimal path.

1 Initialization:The problem environment, problem instances
and the ant colony;

2 for 𝑖𝑡𝑒𝑟 ← 1 to𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
3 for 𝑘 ← 1 to𝑀𝑎𝑥𝑁𝑢𝑚𝑏𝑒𝑟𝐴𝑛𝑡 do
4 if IntelligentAnt then
5 if 𝑎𝑙𝑙𝑜𝑤𝑘 ≠ ∅ ∧ 𝑎𝑐𝑡𝑢𝑎𝑙_𝑛𝑜𝑑𝑒 ≠ destination then
6 Well-trained intelligent ant (in Section 4.4)

𝑎𝑛𝑡𝑘 predicts selection probability of the
next movements;

7 Select the next move according to
Equation (5);

8 end
9 else
10 if 𝑎𝑐𝑡𝑢𝑎𝑙_𝑛𝑜𝑑𝑒 ≠ destination then
11 𝑎𝑛𝑡𝑘 selects the next move based on the

result of Equation (3);
12 end
13 end
14 Record the path of 𝑎𝑛𝑡𝑘 ;
15 end
16 Update pheromones on each iteration according to

Equation (1);
17 end

where 𝛼 and 𝛽 are hyperparameters to control the relationship
between the pheromone and the heuristic function; 𝜂 is a heuristic

function, expressed as the reciprocal of the distance between node
𝑖 to node 𝑗 , which is given by:

𝜂𝑖 𝑗 = 1/𝑑𝑖 𝑗 (4)

𝑑𝑖 𝑗 means the distance of node 𝑖 and node 𝑗 .

4 LN-ACO
Figure 1 presents the framework of LN-ACO, which consists of four
steps. Firstly, a training dataset to train the brain module of the
intelligent ant is defined using solutions obtained from solving a
large set of instances using traditional ACO (as described in Section
3). As previously noted, ants select the next move in the traditional
method based on pheromone concentration and distance between
nodes 𝑎𝑖 and 𝑎 𝑗 , as shown in Equation (3). Secondly, using the
dataset described in step (1), the brain module of the intelligent
ant is trained to predict the probability distribution of pheromone
trails for a given instance. With training, the brain module becomes
more discriminative, and consequently, the intelligent ant predicts
the probability of node selection more accurately. Thirdly, after
training, the trained intelligent ant is combined with a traditional
ant colony to establish a hybrid ant colony. Finally, the performance
of the hybrid ant colony is evaluated on new instances that were not
included in the training dataset. The intelligent ant selects its next
move based on its predicted selection probability, the concentration
of pheromone accumulated by the colony, and the distance between
nodes, as shown in Equation (5).

The significant difference between LN-ACO and traditional ACO
is that the ants in traditional ACO move based on the pheromone
concentration and distance between nodes 𝑎𝑖 and 𝑎 𝑗 , while LN-
ACO adds trained intelligent ants that can predict the selection
probability of nodes, therefore making a more informed decision.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Yi and Jiang, et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

In the initial stages of LN-ACO, the well-trained intelligent ant
obtains better quality solutions than the traditional ant, which can
accelerate the convergence speed of the colony in these early stages.
To avoid the problem of falling into local optima, LN-ACO retains
the functionality of traditional ants to improve the exploration
ability of the hybrid ant colony. As the iterations progress, the
intelligent ant and the traditional ants collectively promote the
convergence of pheromones and eventually find a near-optimal
solution to the problem.

The inference process of the LN-ACO algorithm is described
in Algorithm 1. The hybrid ant colony of LN-ACO combines an
intelligent ant and traditional ants. The intelligent ant explores the
solution space based on the prediction results and previously accu-
mulated pheromones (lines 3-7). Traditional ants follow their search
process as outlined in lines 9-11. Ants’s results are used to update
the pheromone matrix (line 15). The intelligent ant guides tradi-
tional ants to find near-optimal solutions faster, while traditional
ants explore more extensively than the intelligent ant.

4.1 Intelligent ant with brain module
The transfer probability of intelligent ant from node 𝑖 to node 𝑗 is:

𝑎 𝑗 ∼ 𝑝𝑘𝑖 𝑗 =


𝜑𝑖 𝑗 ·𝜏𝛼𝑖 𝑗 ·𝜂

𝛽

𝑖 𝑗∑
𝑙 ∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

𝜑𝑖𝑙 ·𝜏𝛼𝑖𝑙 ·𝜂
𝛽

𝑖𝑙

𝑖 𝑓 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(5)

where 𝛼 and 𝛽 are hyperparameters; 𝑗 is one of the feasible nodes
of node 𝑖; 𝑘 is the number of ant; 𝑝𝑖 𝑗 is the transfer probability from
node 𝑖 to node 𝑗 ; 𝜏𝑖 𝑗 is the pheromone concentration accumulated
by the colony; 𝜑𝑖 𝑗 is the selection probability of feasible nodes
predicted by intelligent ant 𝑎𝑛𝑡𝑘 ; and 𝜂𝑖 𝑗 is the reciprocal of the
distance from node 𝑖 to node 𝑗 .

The value of the initialized pheromone is set as 1. For cases when
the number of ants and search iterations in LN-ACO are both 1, the
algorithm is referred to as LN-ACO-1-1. In the LN-ACO-1-1 algo-
rithm, the single intelligent ant calculates the transfer probability
denoted by 𝑝𝑖 𝑗 . It is based on the predicted selection probability by
the brain module and the distance between nodes. By default, all ex-
periments using LN-ACO have one intelligent ant in the colony. The
intelligent ant combines pheromones left by the other ants during
the search process. This combination aims to further optimise the
predicted results, which in turn guides the colony to find a better
solution. If required, this method can be generalised to include mul-
tiple intelligent ants. Specifically, during the initial search stages,
the initialized pheromone provides little guidance with respect to
the best search direction. The traditional ants search randomly,
while the intelligent ant predicts the selection probability of the
feasible choices. As a result, the intelligent ant guides the colony
to find the solution more efficiently. The intelligent ant has more
influence on the colony during the early part of the search. As the
number of iteration increases and pheromone accumulates, tradi-
tional ants continue to search a broader space, while the intelligent
ants modify their predicted results using accumulated pheromone
trails. Eventually, under both traditional and intelligent ants, the
colony finds a near-optimal solution. The search process of hybrid
ants can be interpreted as the emergence of heterogeneous swarm
intelligence.

(W, H, 32) (W, H, 128)(W, H, 64) (W, H, 4)

(4×W×H) (W×H)

𝒑𝒑

(W, H, 64)Input

𝑺𝑺𝒕𝒕

Input

𝟑𝟑 × 𝟑𝟑 Conv+ReLU 𝟏𝟏 × 𝟏𝟏 Conv+ReLU

Reshape FC + Softmax

Output

Figure 2: The architecture of the brain module.

4.2 Brain module architecture
The architecture of the brain module is illustrated in the “LN-ACO”
framework of Figure 2. 𝑆𝑡 is the environment information and the
input of the brain module. 𝑝 is the output of the module, which
represents the selection probability. The brain module follows the
typical architecture of a convolutional network. It consists of three
3× 3 convolutions, a 1× 1 convolution, each followed by a rectified
linear unit (ReLU), and a fully connected layer. The brain module
takes an input S ∈ R𝑊 ×𝐻×4 (detailed in Section 4.3), and outputs
a vector p ∈ R𝑍×1, where Z equals𝑊 × 𝐻 . Specifically, the input
feature S travels through three convolutions to extract the local
features in S. In this process, the features are transformed into a
higher dimensional space to discover more expressive features. Sub-
sequently, the channel number is gradually reduced and reshaped
to the expected input size of the fully connected layer. Lastly, a fully
connected layer is used to fuse the global information.

It is worth noting that the brain module is more lightweight than
other potential network models such as the Transformer [12] and
DeepLab [7] networks which are commonly used for visual tasks.
As the input feature map of our task is more structured than the
typical input feature map used in visual tasks, a lightweight model
is shown to be sufficient.

Algorithm 2: Training process of brain module.
Input :Training dataset (𝑄) of instances.
Output :Brain module.

1 Initialization: Initialize the parameters of brain module 𝑓𝜃 ;
for 𝑗 ← 1 to 𝜁 do

2
{
𝑄𝑖 = (𝑠𝑖 , 𝜋𝑖) | 𝑖 = 1, . . . , 𝑏

}
← Sample-data (𝑄);

3 𝜑 ← BrainModule (𝑠);
4 𝑙𝑜𝑠𝑠 ← LossFounction (𝜋 , 𝜑);
5 𝑓 ′

𝜃
← TrainingBrain (𝑙𝑜𝑠𝑠);

6 end

4.3 Training data
We evaluate the performance of LN-ACO on the path planning prob-
lem [1, 18, 26, 29]. An environment is represented as a grid in which
it is possible to move in eight directions from a given point. The dis-
tance from each node to nearby nodes is either 1 or

√
2 depending

on the direction of a move. We use AS (as described in Section 3)
to obtain training solutions and the accumulated true pheromone
concentration in the𝑊 ×𝐻 environment map. The resulting near-
optimal paths are converted to(S, 𝜋) format and form part of the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Learning-Based Neural Ant Colony Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

ground truth (training) dataset. (S, 𝜋) is constructed from the state
environment S and the information from accumulated pheromone 𝜋 .
The input state consists of four channels, S ∈ R𝑊 ×𝐻×4, 𝑠𝑖 𝑗 ∈ {0, 1}.
The first channel represents the origin’s location of the instance; the
second represents the destination; the third represents the current
location of the ant and the location of the nodes on the historical
route; the fourth represents the location of all obstacles on the
map. The ant with the brain module (intelligent ant) predicts the
selection probability of nearby nodes based on the input S. In the
training stage, the ant’s predicted selection probability 𝜑 is com-
pared with the true distribution of pheromone concentration 𝜋

using cross-entropy loss calculation. The details of training process
are given in Section 4.4.

4.4 Training process
The training process of an intelligent ant is shown in Algorithm 2.
𝜁 is the iterations of training process (line 1). A mini-batch of data
(𝑠𝑖 , 𝜋𝑖) is sampled from the training datasetQ (line 2). 𝑠𝑖 is the input
to the brain module, and 𝜋𝑖 is the ground truth label of state 𝑖 . The
brain module outputs the prediction 𝜑 based on the input 𝑠𝑖 (line
3). The loss of 𝜑 and 𝜋 is calculated according to the loss function
Equation (6) (line 4). Finally, the parameters 𝜃 of the brain module
are updated (line 5). The training proceeds until the end condition
is reached (line 6).

Cross-entropy is chosen as the loss function:

𝑙𝑜𝑠𝑠 = − 1
𝑏

𝑏∑︁
𝑖=1

𝜋𝑖
𝑇 log 𝜑𝑖 (6)

where 𝑏 is the number of samples. The network parameters 𝜃 are
adjusted based on the loss of Equation (6) to maximise the similarity
between the predicted 𝜑𝑖 and the ground truth 𝜋𝑖 .

5 EXPERIMENTS
5.1 Datasets
5.1.1 Various Obstacles (VO) Dataset. We created ten 10 × 10 en-
vironment maps with different layouts for training the LN-ACO
algorithm, denoted as the VO (various obstacles) dataset. The VO
dataset includes one obstacle-free map, five maps representing five
different obstacles and four mixed obstacle maps. The training and
validation sets are generated from the first eight environment maps,
while the last two mixed obstacle maps were used for the test set.
We further increased the diversity of the maps using data augmen-
tation methods, such as horizontal and mirror rotation. In detail,
maps are rotated by angles of 90, 180 and 270, and flipped hori-
zontally and vertically during the training process. As a result, the
dataset contains 80,000 training data samples, 10,000 validation and
10,000 test data samples.

5.1.2 Motion Planning (MP) Dataset. This collection of grid-world
environments was proposed by [3, 28]. It consists of 24 maps. We
generated the training and validation sets from the first 18 maps,
and the test set from the last six maps. We resized these maps
to 20 × 20 to complete the experiment in a reasonable amount
of time. We also increased the diversity of these maps using the
same data augmentation methods as on the VO dataset. As a result,
320,000 training data examples, 40,000 validation and 40,000 test

data samples were generated. Following usual protocols from ma-
chine learning, the datasets are created such that the data in the
training and test sets have different layouts, and the beginning and
end of instances in the same maps are different, so the training and
test sets do not overlap.

5.2 Experimental setups
We employed PyTorch to code all algorithms in Python 3.7 and
trained them on a high performance computing server with two
GeForce RTX 3090 GPUs and two 4-core dual-threaded CPUs 3.80
GHz. The inference phase of LN-ACO and the other experiments
were performed on a personal computer with an Intel Core i7-8700
@ 3.20GHz CPU and an RTX 2080 SUPER GPU.

We used AS, described in Section 3, to generate the data for
training the brain module. The parameters of AS on the VO dataset
are set as follows: the number of ants is 30, and the number of search
iterations is 20 (denoted "AS-30-20"). We denoted the different ant
colony algorithms by "algorithm name - population size - number
of search iterations". The parameters of AS on the MP dataset are
set as follows: the number of ants is 50, and the number of search
iterations is 50 ("AS-50-50"). 𝛼 is 0.1, and 𝛽 is 3. The pheromone
evaporation rate is set to [0.1, 0.4), and the hyperparameter𝑄 is 20.
We parallelised the process of collecting traditional ACO data to
accelerate the training process. After 6 hours of training on the VO
dataset, the loss of LN-ACO converged.

To assess the performance of the LN-ACO algorithm on the path
planning problem, we used four ant colony algorithms as base-
lines, including AS, Elite AS, MMAS and the PPACO (as described
in [18]). The performance of LN-ACO is evaluated by comparing
the average path length (AP), average time consumption for each
instance (Time), and the percentage of successfully solved instances
(Success) in a group of 100 random instances. A smaller average
path length reflects a better solution quality of the algorithm. The
average time consumption is defined as the average of the time
ratio of the time taken by the two algorithms across n instances,
revealing the difference in the time taken by the algorithms. We
also analysed the standard deviation of path lengths (SD-P) and
time consumption (SD-T). We employed the Mann Whitney U test
as a significance test to determine the mean difference between the
experimental results for algorithms. The significance level is set to
0.05.

5.3 Results and discussion
5.3.1 Training results. We utilized LN-ACO-1-1 to evaluate the
performance of the intelligent ant in the training process. We ran-
domly selected a test group of 100 instances from each validation
and test set. We evaluated the training results of the LN-ACO by
four metrics. The loss quantifies the error produced by the model.
A high loss value usually means that the model’s output differs
significantly from the true label, while a low loss value indicates
that the model produces a result with a small error compared with
the ground truth. The success ratio is the number of instances in
which an algorithm is able to find a reasonable solution. The path
ratio is the mean ratio of LN-ACO-1-1’paths versus the AS’paths.
The time ratio is the average of the ratios of the LN-ACO-1-1’time
consumption to the AS’time consumption for n instances. Smaller

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Yi and Jiang, et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) (b) (c) (d)

(e) (f) (g) (h)

Success ratio on training set
Success ratio on test set

Success ratio on training set
Success ratio on test set

LN-ACO vs. AS on training set
LN-ACO vs. AS on test set

Training
Validation

Training
Validation

LN-ACO vs. AS on training set
LN-ACO vs. AS on test set

Iteration

Iteration

Iteration

Iteration Iteration

Iteration Iteration

Iteration

Lo
ss

Lo
ss

Su
cc

es
s R

at
io

Su
cc

es
s R

at
io

Pa
th

 R
at

io
Pa

th
 R

at
io

Ti
m

e
R

at
io

Ti
m

e
R

at
io

LN-ACO vs. AS on training set
LN-ACO vs. AS on test set

LN-ACO vs. AS on training set
LN-ACO vs. AS on test set

Figure 3: Training results of LN-ACO on the VO and MP datasets. Figures a, b, c and d show the variation of the brain module’s
loss value during the training process (Loss), the percentage of successfully solved instances among total instances (Success
Ratio), the path length of LN-ACO-1-1 in comparison to the AS algorithm (Path Ratio) and the average time consumption ratios
of LN-ACO and AS for 100 instances (Time Ratio) during the training iterations on the VO dataset. Similarly, figures e, f, g and
h present the variation of the loss, success ratio, path ratio and time ratio on the MP dataset.

values of the path and time Ratio indicate that LN-ACO outperforms
AS.

Figures 3(a), 3(b), 3(c) and 3(d) show the training results of LN-
ACO on the VO dataset. Figure 3(a) shows the loss value of LN-
ACO on the training and validation sets. The loss values decrease
significantly in the first 500 iterations, and then start to converge.
Figure 3(b) shows the increase of the success ratio of LN-ACO on
the training and test sets. The success ratio increases as the number
of training iterations increases. The success ratio reaches 1.0 on the
training set, and 0.9 on the test set. Figure 3(c) shows the path ratio
on the training and test sets. The path ratio on the training and
test sets gradually converges to 1. This shows that the length of
LN-ACO is almost the same as that of AS after the training process.
Figure 3(d) shows the variation of the average time ratio. This result
shows that LN-ACO takes much less time than AS — by a factor
of almost one thousand. Figures 3(e), 3(f), 3(g) and 3(h) show the
training results of LN-ACO on the MP dataset. Figure 3(e) shows
the loss value of LN-ACO on the training and validation sets. The
loss values decrease significantly in the first 1000 iterations before
converging. Figure 3(f) shows the growth of the success ratio of
LN-ACO on the training and test sets. The success ratio for the
training set reaches 0.93; and the success ratio for the test set is 0.80.
Figure 3(g) shows the path ratio of LN-ACO in the training and test
sets. The intelligent ant’s path length at the beginning of training is
about 5 times longer than AS. Finally, it gradually converges to 2.32
on the training set and converges to 3.47 on the test set. Figure 3(h)
shows the time ratio of LN-ACO. The time consumption of LN-ACO
is much less than that of AS: in fact, it is almost one ten-thousandth
of AS.

These experimental results on the VO and MP datasets show
that the training process of LN-ACO-1-1 is effective, and its per-
formance significantly improves. The initial LN-ACO-1-1 solves
instances with low success ratios and poor solution quality. In

Figures 3(b) and 3(f), the initial success ratios of LN-ACO-1-1 are
typically less than 0.2, which means that the initial LN-ACO cannot
solve most of the instances. However, its success ratios and path
ratios improve dramatically after training. In Figures 3(b) and 3(f),
its solution length before training is about five times longer than
AS, and eventually shrinks to the same as that of AS. Figures 3(a)
and 3(e) indicate that both the training and the validation loss are
reduced and stabilized. Futhermore, the time ratios before and after
training (Figures 3(d) and 3(h)) indicate that the search process of
LN-ACO-1-1 is significantly faster than traditional ACO.

5.3.2 Comparisons with the baselines. Table 1 shows the results
of LN-ACO on the VO and MP datasets. One hundred instances
with different starting and destinations are randomly selected as
a test group. This experiment compares the performance of LN-
ACO with other competitor algorithms in terms of the average
path length (AP), average time (Time) of each instance, percentage
of successfully solved instances (Success), the standard deviation
of path length (SD-P) and time (SD-T), and significance results
(p-value).

On the VO dataset, amongst the competitor methods, PPACO-
30-20 has the best AP (6.55), followed by Elite AS (AP = 6.56). Their
APs have little difference from the other algorithms with the same
number of populations and iterations. AS-30-20 had the longest
average time consumption for each instance, taking 14.76𝑠 . In con-
trast, Elite AS has the lowest time consumption, taking only 6.56𝑠 .
This is likely due to the fact that Elite AS records the best journey
found so far to modify the update steps of the pheromone, which
accelerates the convergence. Unlike other methods, LN-ACO bal-
ances path length and time consumption well. The average path
length of LN-ACO-1-1 is 6.47, which is less than that of Elite AS.
Additionally, the average time consumption for each instance of
LN-ACO-1-1 is only 6𝑚𝑠: in contrast, Elite ACO consumes nearly

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Learning-Based Neural Ant Colony Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Results of algorithms on the VO and MP datasets,
including the average path length (AP) of each algorithm, av-
erage time consumption (Time) of each instance, percentage
of successfully solved instances (Success (%)), the standard
deviation of path length (SD-P) and time (SD-T), and signifi-
cance results (p-value). The best APs are highlighted in bold.

VO Dataset

AP Time (s) Success (%) SD-P SD-T p-value

AS-15-10 8.06 3.257 100 4.30 2.91 0.001
AS-30-20 6.60 14.768 100 3.20 10.73 0.222

Elite AS-30-20 6.56 6.273 100 3.13 6.95 0.254
MMAS-30-20 6.59 8.914 100 3.17 7.93 0.233
PPACO-30-20 6.55 9.038 100 3.12 9.92 0.258

LN-ACO-1-1 6.47 0.017 92 6.43 0.31 0.002
LN-ACO-8-5 6.40 0.754 100 3.75 0.53 0.331

LN-ACO-15-10 6.25 2.836 100 3.52 1.59 -

MP Dataset

AP Time (s) Success (%) SD-P SD-T p-value

AS-25-25 20.17 66.156 100 12.52 40.28 0.008
AS-50-50 19.21 259.243 100 12.76 155.48 0.017

Elite AS-50-50 16.21 129.537 100 10.37 87.85 0.493
MMAS-50-50 16.35 133.436 100 10.42 91.62 0.470
PPACO-50-50 16.24 137.117 100 10.35 193.90 -

LN-ACO-1-1 26.02 0.045 87 54.51 0.38 0.000
LN-ACO-8-8 18.87 7.328 100 11.54 4.57 0.045

LN-ACO-25-25 17.52 66.125 100 10.75 39.11 0.396

1,000 times more than LN-ACO-1-1, and AS takes nearly 540 times
longer. LN-ACO-15-10 has lower average path length and aver-
age time consumption than other traditional ACO algorithms with
30 ants and 20 iterations. Furthermore, the AP and average time
of LN-ACO-15-10 are better than those of AS-15-10. In addition,
the SD-P of LN-ACO-15-10 is similar to that of other traditional
ACO algorithms with 30 ants and 20 iterations, while the SD-T of
LN-ACO-15-10 is better than theirs. On the MP dataset, LN-ACO-
25-25 has a significantly lower average time consumption than
the baselines with 50 ants and 50 iterations. Among the baseline
methods, PPACO-50-50 has the best average path length of 16.24.
Note PPACO is specifically designed for path planning problems
and uses various methods, including adaptive adjustment of the
ratio of deterministic and random choices and introducing optimal
and worst solutions to improve global pheromone updates. The
average time for each instance of PPACO-50-50 is 137.117𝑠 . The
average time for each instance of LN-ACO-1-1 is 45𝑚𝑠 , while Elite
ACO consumes nearly 3,000 times more than LN-ACO: the average
path length of LN-ACO-1-1 is 26.02, which is only 1.60 times that
of Elite AS. The average path length of LN-ACO-8-8 is lower than
that of AS-50-50, and its time consumption is only 2.8% of AS-50-50.
Further, LN-ACO-25-25 produces a better solution than LN-ACO-8-
8 and AS-50-50. The AP of LN-ACO-25-25 is comparable to that of

0 2 4 6 8 10 12 14 16

6

7

8

9

10

(a)

0 40 80 120 160 200 24015

20

25

30

35

(b)

Figure 4: (a) represents the AP versus time (s) on VO dataset.
(b) represents the AP versus time (s) on MP dataset.

PPACO-50-50, but its time value is half of PPACO-50-50. The SD-P
of LN-ACO-25-25 is generally consistent with that of traditional
ACO algorithms with 50 ants and 50 iterations. These results show
that LN-ACO can achieve comparable or superior performance
to the traditional ACO using a smaller population size and fewer
iterations. However, since the intelligent ant can visit each node
in the map only once, the success ratio of LN-ACO-1-1 is lower
than that of other LN-ACO algorithms. Mann Whitney U tests were
performed to obtain the results between the algorithm with the
best AP (shown in bold italics) and each baseline. In Table 1, we
marked the results in bold whenever two results were not signifi-
cantly different with a significance level of 0.05. On the VO dataset,
LN-ACO-15-10 is determined to be the best method. The results
of the significance test show that there is no significant difference
between AS-30-20, Elite AS-30-20, MMAS-30-20, PPACO-30-20 and
LN-ACO-8-5. Similarly, on the MP dataset, PPACO-50-50 is the best
method, while there is no significant difference between PPACO-
50-50, Elite AS-50-50, MMAS-50-50, and LN-ACO-25-25. On both
the VO and MP datasets, LN-ACO performed comparably to tra-
ditional ACOs while using half the number of ants and iterations.
The experiments show that LN-ACO is more efficient in its search
than other algorithms and can achieve the same results as other
algorithms with only half the number of ants and iterations.

As shown in Figures 4a and 4b, the traditional ACO algorithms
are distributed in the lower right corner, which means that the
traditional ACO trades off solution quality against time. LN-ACO
focuses on a speed/accuracy trade-off which is distributed in the
lower left corner, particularly LN-ACO-15-10 on the VO dataset and
the LN-ACO-8-8 and LN-ACO-25-25 on the MP dataset. Overall, LN-
ACO outperforms the baselines in terms of time consumption and
path quality and improves the trade-off between path optimality
and search efficiency.

5.3.3 Test on real-world environment maps. This section further
verifies the generality of the LN-ACO algorithm by randomly select-
ing real-world maps containing different types of obstacles from
Google Maps. As shown in Figure 5, we compare the planning re-
sults and the convergence speed between LN-ACO, AS, Elite AS,
MMAS, PPACO [18] and LN-PPACO. PPACO algorithm focuses on
the path planning problem. It optimizes the results from several
aspects based on domain knowledge, while LN-ACO only optimizes
the AS algorithm using intelligent ants to improve the search pro-
cess. Therefore, we constructed LN-PPACO for further comparison

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Yi and Jiang, et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

AS
Elite AS
MMAS
PPACO
LN-ACO
LN-PPACO

AS
Elite AS
MMAS
PPACO
LN-ACO
LN-PPACO

AS
Elite AS
MMAS
PPACO
LN-ACO
LN-PPACO

(a) (d)

(b) (e)

(c) (f)

Figure 5: The convergence curves (Figures (a), (b) and (c))
and path planning results (Figures (d), (e) and (f)) of five
algorithms run on a real world environment maps.

with PPACO. LN-PPACO is an improved PPACO algorithm. Its
ant colony consists of one intelligent ant and traditional ants. The
search of these ants follows the process of PPACO. Its ant colony
consists of 30 ants, and its search iteration is 30. Figures 5(a), 5(b)
and 5(c) show the convergence curves. Figures 5(e), 5(f) and 5(g)
show the path planning results. Figure 5 (a) represents the length
of the optimal paths searched by each ant colony algorithm during
their search iterations on the map (Figure 5(d)) with the starting
(19, 5) and the destination (0, 18), and the path planning results
are shown in Figure 5(d). Figures 5(b), 5(e) and Figures 5(c), 5(f)
show the instances from(0, 18) to (16, 7) and from (0, 0) to (17, 14),
respectively. As shown in Figures 5(a), 5(b), and 5(c), the ant colony
of LN-ACO obtained shorter paths than the baselines after the first
iteration. Moreover, LN-ACO converges earlier than AS, Elite AS
and MMAS, while the length of the optimal path of LN-ACO is the
best among them. The paths generated by the LN-ACO algorithm
have fewer turning points, and appear more reasonable compared
to those of the baselines, as shown in Figures 5(d), 5(e) and 5(f).
Moreover, the path of LN-PPACO can achieve identical performance
as the PPACO, and the path length also has less fluctuation dur-
ing operation. This experiment demonstrates that the convergence
speed and the global optimal search capability of LN-ACO have
greatly improved compared to the original algorithm and are better
than Elites AS and MMAS. Moreover, the comparison of LN-PPACO
to PPACO indicates that the intelligent ant promotes the colony to
search more purposefully and makes the colony converge faster.

Table 2: Ablation study. Performance comparison of the intel-
ligent ant working in different roles in ant colony on the MP
dataset, including the average path length (AP) of each algo-
rithm, the average time consumption (Time) of each instance,
the percentage of successfully solved instances (Success (%)),
the standard deviation of path length (SD-P) and time (SD-T).

AP Time (s) SD-P SD-T Success (%)

LN-ACO-8-8 21.83 7.52 10.42 2.75 100
IP LN-ACO-8-8 27.13 7.04 17.11 2.85 100

LN-ACO-25-25 19.38 65.75 8.91 22.11 100
IP LN-ACO-25-25 24.13 67.46 14.70 24.01 100

5.3.4 Ablation study. We performed an ablation study to compare
the performance of two configurations: LN-ACO and IP LN-ACO.
The ’IP’ LN-ACO is configured to use the intelligent ant only to
generate the initial pheromone (IP) matrix. This intelligent ant’s
purpose is to generate a reasonably initialized pheromone concen-
tration distribution that can guide future iterations. On the other
hand, LN-ACO utilizes the intelligent ant in every iteration during
the search process. Experiments were conducted on ten instances
randomly selected from the MP dataset. We showed the results of
the experiments in Table 2. Although LN-ACO and IP LN-ACO use
nearly the same amount of time to solve the instances, LN-ACO
has superior results in terms of AP, SD-P and SD-T. These results
indicate that LN-ACO produces better and more stable results than
IP LN-ACO. This approach’s effectiveness is attributable to the in-
telligent ant’s decision-making process, which is influenced by the
pheromones accumulated by the colony. As a result, this improved
method produces superior results overall.

6 CONCLUSION
This paper proposed a novel ant colony algorithm, LN-ACO, which
integrates an intelligent ant trained on extensive datasets to pre-
dict selection probabilities for potential solutions accurately. The
experimental results indicate that the proposed LN-ACO approach
outperforms other ACO methods in terms of both convergence
speed and solution quality. It demonstrates that the colony is capa-
ble of learning from historical information gleaned from solving
past instances, and that this information can be exploited by the in-
telligent ant to improve convergence speed. The proposed approach
contributes to a growing trend in optimization to develop methods
that are capable of learning and reusing past information. Future
research will be directed toward exploring the integration of the
proposed brain module into other swarm intelligence algorithms.

ACKNOWLEDGMENTS
This research was supported in part by Shanghai Municipal Science
and Technology Major Project (No.2021SHZDZX0103), and in part
by Scientific Research Development Center in Higher Education
Institutions by theMinistry of Education, China (No.2021ITA10013),
and in part by Engineering Research Center for Intelligent Robotics,
Ji Hua Laboratory, Foshan, China (No.X190011TB190). Emma Hart
is partially funded by EPSRC EP/VO26534/1.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Learning-Based Neural Ant Colony Optimization GECCO ’23, July 15–19, 2023, Lisbon, Portugal

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Khaled Akka and Farid Khaber. 2018. Mobile robot path planning using an

improved ant colony optimization. International Journal of Advanced Robotic
Systems 15, 3 (2018), 1729881418774673.

[2] Anoushka Alavilli and Mai Vu. 2022. PLAN: a leafcutter ant colony optimization
algorithm for ride-hailing services. In Proceedings of the Genetic and Evolutionary
Computation Conference. Association for Computing Machinery, New York, NY,
USA, 4–12.

[3] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. 2017. Learning
heuristic search via imitation. In Conference on Robot Learning. PMLR, PMLR,
271–280.

[4] Christian Blum. 2005. Ant colony optimization: Introduction and recent trends.
Physics of Life reviews 2, 4 (2005), 353–373.

[5] Bernd Bullnheimer, Richard F Hartl, and Christine Strauss. 1997. A new rank
based version of the Ant System. A computational study. 1 (1997).

[6] Lizhi Chen, Wei-Li Liu, and Jinghui Zhong. 2022. An efficient multi-objective
ant colony optimization for task allocation of heterogeneous unmanned aerial
vehicles. Journal of Computational Science 58 (2022), 101545.

[7] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. 2017. Deeplab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected crfs. IEEE transactions on
pattern analysis and machine intelligence 40, 4 (2017), 834–848.

[8] Xuezhen Cheng, Jiming Li, Caiyun Zheng, Jianhui Zhang, and Meng Zhao. 2021.
An Improved PSO-GWO Algorithm With Chaos and Adaptive Inertial Weight
for Robot Path Planning. Frontiers in Neurorobotics 15 (2021).

[9] Quoc Trung Dinh, Duc Dong Do, and Minh Hoàng Hà. 2021. Ants can solve
the parallel drone scheduling traveling salesman problem. In Proceedings of the
Genetic and Evolutionary Computation Conference. Association for Computing
Machinery, New York, NY, USA, 14–21.

[10] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. 1996. Ant system: opti-
mization by a colony of cooperating agents. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 26, 1 (1996), 29–41.

[11] Marco Dorigo and Thomas Stützle. 2019. Ant colony optimization: overview and
recent advances. Handbook of metaheuristics (2019), 311–351.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[13] Wenxiang Gao, Qing Tang, Beifa Ye, Yaru Yang, and Jin Yao. 2020. An enhanced
heuristic ant colony optimization for mobile robot path planning. Soft Computing
24 (2020), 6139–6150.

[14] Peilan He, Guiyuan Jiang, Siew-Kei Lam, and Yidan Sun. 2022. ML-MMAS: Self-
learning ant colony optimization for multi-criteria journey planning. Information
Sciences 609 (2022), 1052–1074.

[15] Wei Li, Le Xia, Ying Huang, and Soroosh Mahmoodi. 2022. An ant colony
optimization algorithm with adaptive greedy strategy to optimize path problems.
Journal of Ambient Intelligence and Humanized Computing (2022), 1–15.

[16] Chao Liu, Lei Wu, Xiaodong Huang, and Wensheng Xiao. 2022. Improved
dynamic adaptive ant colony optimization algorithm to solve pipe routing design.
Knowledge-Based Systems 237 (2022), 107846.

[17] Jianhua Liu, Jianguo Yang, Huaping Liu, Xingjun Tian, and Meng Gao. 2017. An
improved ant colony algorithm for robot path planning. Soft computing 21, 19
(2017), 5829–5839.

[18] Qiang Luo, Haibao Wang, Yan Zheng, and Jingchang He. 2020. Research on
path planning of mobile robot based on improved ant colony algorithm. Neural
Computing and Applications 32, 6 (2020), 1555–1566.

[19] Teng Ren, Tianyu Luo, Binbin Jia, Bihao Yang, Ling Wang, and Lining Xing.
2023. Improved ant colony optimization for the vehicle routing problem with
split pickup and split delivery. Swarm and Evolutionary Computation 77 (2023),
101228.

[20] Samia Sammoud and Inès Alaya. 2022. A new Ant colony optimization meta-
heuristic based on pheromone guided local search instead of constructive ap-
proach. In Proceedings of the Genetic and Evolutionary Computation Conference.
Association for Computing Machinery, New York, NY, USA, 13–21.

[21] Rafał Skinderowicz. 2022. Improving Ant Colony Optimization efficiency for
solving large TSP instances. Applied Soft Computing 120 (2022), 108653.

[22] Thomas Stützle and Holger H Hoos. 2000. MAX–MIN ant system. Future
generation computer systems 16, 8 (2000), 889–914.

[23] Yuan Sun, Sheng Wang, Yunzhuang Shen, Xiaodong Li, Andreas T Ernst, and
Michael Kirley. 2022. Boosting ant colony optimization via solution prediction
and machine learning. Computers & Operations Research 143 (2022), 105769.

[24] Marco Veluscek, Tatiana Kalganova, and Peter Broomhead. 2015. Improving
ant colony optimization performance through prediction of best termination
condition. In 2015 IEEE International Conference on Industrial Technology (ICIT).
IEEE, 2394–2402.

[25] Lina Wang, Hejing Wang, Xin Yang, Yanfeng Gao, Xiaohong Cui, and Binrui
Wang. 2022. Research on smooth path planning method based on improved ant

colony algorithm optimized by Floyd algorithm. Frontiers in Neurorobotics 16
(2022).

[26] Tian Xue, Liu Li, Liu Shuang, Du Zhiping, and Pang Ming. 2021. Path planning of
mobile robot based on improved ant colony algorithm for logistics. Mathematical
Biosciences and Engineering 18, 4 (2021), 3034–3045.

[27] Xinhua Yang, Yufan Zhou, Ailing Shen, Juan Lin, and Yiwen Zhong. 2021. A
hybrid ant colony optimization algorithm for the knapsack problem with a single
continuous variable. In Proceedings of the Genetic and Evolutionary Computation
Conference. Association for Computing Machinery, New York, NY, USA, 57–65.

[28] Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura,
and Asako Kanezaki. 2021. Path planning using neural a* search. In International
conference on machine learning. PMLR, PMLR, 12029–12039.

[29] Mohd Nayab Zafar and JC Mohanta. 2018. Methodology for path planning and
optimization of mobile robots: A review. Procedia computer science 133 (2018),
141–152.

[30] Huizhen Zhang, Qinwan Zhang, Liang Ma, Ziying Zhang, and Yun Liu. 2019. A
hybrid ant colony optimization algorithm for a multi-objective vehicle routing
problem with flexible time windows. Information Sciences 490 (2019), 166–190.

[31] Xiangbing Zhou, Hongjiang Ma, Jianggang Gu, Huiling Chen, and Wu Deng.
2022. Parameter adaptation-based ant colony optimization with dynamic hybrid
mechanism. Engineering Applications of Artificial Intelligence 114 (2022), 105139.

9

	Abstract
	1 Introduction
	2 RELATED WORK
	3 PRELIMINARIES
	4 LN-ACO
	4.1 Intelligent ant with brain module
	4.2 Brain module architecture
	4.3 Training data
	4.4 Training process

	5 EXPERIMENTS
	5.1 Datasets
	5.2 Experimental setups
	5.3 Results and discussion

	6 CONCLUSION
	Acknowledgments
	References

