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ABSTRACT
In swarm robotics, random walks have proven to be efficient be-
haviours to explore unknown environments. By adapting the pa-
rameters of the random walk to environmental and social contin-
gencies, it is possible to obtain interesting collective behaviours. In
this paper, we introduce two novel aggregation behaviours based
on different parameterisations of random walks tuned through nu-
merical optimisation. Cue-based aggregation allows the swarm to
reach the centre of an arena relying only on local discrete sampling,
but does not guarantee the formation of a dense cluster. Neighbour-
based aggregation instead allows the swarm to cluster in a single
location based on the local detection of neighbours, but ignores the
environmental cue. We then investigate a heterogeneous swarm
made up of the two robot types. Results show that a trade-off can
be found in terms of robot proportions to achieve cue-based aggre-
gation while keeping the majority of the swarm in a single dense
cluster.
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1 INTRODUCTION
Aggregation is a recurring collective behaviour observed inmany bi-
ological systems [2] such as young honeybees clustering near the op-
timum inside a temperature field [29], or cockroaches forming dense
groups [15]. It is a fundamental building block on which more com-
plex forms of cooperation between individuals can emerge thanks
to its grouping effect. Aggregation can occur based on cues found
in the environment like humidity gradients or shelters (cue-based
aggregation), but it can also appear purely from the interactions be-
tween the individuals in the absence of such cues (neighbour-based
aggregation). These collective behaviours have been implemented
and studied in swarm robotics [30], making agents able to gather
information through local communication and local sensing, hence
resulting in a heterogeneous spatial distribution of the swarm.

Previous work on neighbour-based and cue-based aggregation in
swarm robotics focused on simple mechanisms to form large clus-
ters, but the proposed solutions do not always lend themselves to
minimalist swarms (e.g., swarms formed by micro and nano-robots
with limited computational abilities). In [6], aggregation has been
implemented by exploiting long-range signals among agents, and
the robots’ ability to navigate towards areas of high signal intensity.
However, these abilities may be not trivial to obtain at very small
scales. In [12], aggregation mechanisms have been designed using
probabilistic behaviours, based on themodulation of the time agents
spend in a cluster as a function of the cluster size. In some studies,
the emergence of clusters of agents are facilitated by the presence of
specific areas for aggregation such as shelters or other types of en-
vironmental cues [1, 11, 14, 27]. Although probabilistic behaviours
are relatively simple to design, some of them require some learning
to fine tune the parameters that underpin the robots adaptability to
local contingencies. These learning capabilities may be difficult to
be implemented in minimalist robots. Moreover, even in systems
that support learning, some probabilistic behaviours have already
shown limitations in coping with dynamic environments [3].

Minimalist robots at very small scales often lack the ability to
precisely sense the environment. They show limited accuracy in
movement and in reaching specific locations. Their behaviour can-
not be finely modulated. In spite of these limitations, interesting
collective behaviours can still be attained by regulating the indi-
vidual responses to easily perceivable physical and social cues,
such as changes of the diffusion properties [4, 10, 17]. Inspired by
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these approaches, we study to what extent it is possible to achieve
aggregation in a minimalist robot swarm solely as the result of
an adaptive random walk, whereby the robots change the motion
pattern according to environmental or social cues.

Random walks are basic behaviours, extensively used in swarm
robotics [5], since they require very little complexity to be imple-
mented. They allow the exploration of unknown environments
without requiring complex functions such as localisation or map-
ping. Most studies using random walks in swarm robotics are about
search and coverage problems [7, 22], where the swarm is either
required to find a point of interest in the environment or explore
as much as possible a specific area. Duncan et al. [7] compare
Brownian and Lévy walks through a continuum model and robotic
simulations. Their results show that the long displacements made
with the Lévy walks induce a faster exploration of the environment
by the swarm. Lévy walks turned out to be particularly suitable
also in a target detection problem, where robots must first locate
the target and then communicate its position through intermediate
relay robots to a base station [18, 19]. In [5], the authors investi-
gated the efficiency of different parameterisations of the random
walks in searching tasks in bounded and unbounded environments
using both simulated and physical robots. The study shows that the
random walk efficiency depends on the type of environment, with
a correlated random walk being the best strategy in the bounded
environment and the Lévy walk in the unbounded environment.
Random walks have also been used for indirectly mapping the envi-
ronment, with robots exploring and creating a map based on their
local experience and sharing their maps offline at the end of the
process [20].

The goal of this study is to generate aggregation dynamics
through minimalist behaviours leveraging different random walk
patterns. Our robots are programmed to dynamically transition
between an exploratory behaviour associated with a persistent ran-
dom walk to a local search in response to their perceptual states.
This adaptive walk has been used in swarms to underpin division
of labour, biasing the distribution of robots towards areas in which
more work is required [9]. Following a similar approach, we study
aggregation behaviours in three different conditions. First, we study
cue-based aggregation where cues are provided by an environmen-
tal feature distributed as a continuous quantity covering the entire
environment, with the minimum quantity in the centre of the arena.
Since we are considering minimalist robots, we evaluate the ability
of the swarm to aggregate in the range where the environmental
feature reaches its minimum using a low-resolution sensor. Sec-
ond, we study neighbour-based aggregation, i.e., an aggregation
behaviour triggered by the perception of spatially proximal robots.
This neighbour-based aggregation aims at the formation of robot
clusters of progressively higher density, possibly reaching a single
cluster including all the robots of the swarm. Finally, we merge
the two types of aggregation in a heterogeneous swarm, in which
the proportion of robots implementing the cue-based aggregation
and the neighbour-based aggregation are systematically varied to
study which ratio of the two behaviours results in the formation
of the largest possible single cluster located in the target area (i.e.,
where the environmental cue reaches its minimal quantity). Both
aggregation behaviours are fine-tuned through a series of param-
eters which bear upon the robot motion quality. The parameters’

space is explored with an iterative racing algorithm [21] that en-
ables us to optimise the performance metrics for cue-based and
neighbour-based aggregation. Recently, a similar research work
studied a swarm of robots required to follow a gradient based on
a local continuous-value environmental feature. These robots can
use knowledge about distance and the bearing of spatially-proximal
neighbours to develop navigation strategies [31]. Differently from
this and other previous studies, we focus on more minimalist robots,
as our agents can only rely on one type of sensor—either to per-
ceive the environmental cue or to detect the current number of
neighbours. Furthermore, the innovative contribution of this paper
lies in the evaluation of a heterogeneous swarm in which robots are
equipped with different controllers and sensing abilities, enabling
to obtain cue-based and neighbour-based aggregation at the same
time and with minimal complexity.

The paper is organised as follows. In Section 2, we discuss the
experimental setup of our experiments and we describe the imple-
mented behaviours with a particular focus on the metrics employed
to tune the different controllers. In Section 3, we present the con-
trollers’ tuned parameters for both behaviours and the swarm’s
performances for the cue-based aggregation, the neighbour-based
aggregation and the heterogeneous swarm. In Section 4, we discuss
our results and possible future work.

2 EXPERIMENTAL SETUP
We study aggregation through adaptive randomwalks in a 1m×1m
squared bounded arena. We consider two different simulators: a
simple simulator developed to speed up the optimisation process,
and the ARGoS simulator [24] to validate the optimised solutions
in an experimental setup closer to the physical robotic system.

Our swarm is composed of 𝑆 = 25 simulated Kilobots [26]. These
are small low cost robots that can move and locally exchange mes-
sages. The Kilobots are widely used by the swarm robotics commu-
nity for testing collective behaviours. In the abstract simulator, they
are approximated as circles, modelled as differential drive robots
with just three possible actions: move straight, rotate left, rotate
right, with robot rotation that takes place instantly on the spot.
Each robot has a speed of 1 cm/s and a communication radius of
10 cm. To lower computation costs, we do not consider collisions
among robots. Collisions with walls are managed by emulating the
behaviour of a bouncing sphere on a flat surface.

In the ARGoS simulator [24], we use the Kilobot plugin [23] to
model the robots. We employ the simulated version of the ARK
system [25] to equip the Kilobots with a virtual sensor able to
sample the environmental cue. The robots are also equipped with
virtual wall proximity sensors allowing them to avoid the walls
of the arena with a collision avoidance routine, similar to the one
adopted in the abstract simulator. However, collision avoidance
between the robots is not implemented, they are thus free to collide
with each other. Kilobots are not designed to rotate on the spot,
but pivot around the left or right legs at 𝜋

4 rad/s. To emulate the
rotation on the spot featured in the abstract simulator, for each
Kilobot we randomly define a fixed pivot rotation (i.e., clockwise
or anticlockwise). For example, a clockwise rotation of an angle 𝛽
will result in an anticlockwise rotation of 2𝜋 − 𝛽 if the Kilobot was
given a fixed anticlockwise pivot.
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The adaptive random walk behaviours performed by the robots
are based on a finite state machine (FSM) where each state corre-
sponds to a different parameterisation of the random walk. State
transitions are triggered by perceptual states, effectively modify-
ing the parameters of the random walk. In any FSM state, robots
perform a Lévy-modulated correlated random walk (LMCRW) [5],
which is characterised by two parameters controlling the distribu-
tion of turning angles and step lengths. Specifically, the turning
angle is drawn from a wrapped Cauchy distribution with the fol-
lowing probability density function:

𝑓 (𝜃, 𝜌) = 1
2𝜋

1 − 𝜌2

1 + 𝜌2 + 2𝜌 cos(𝜃 )
(1)

where 𝜌 determines the distributionwidth: for 𝜌 = 0 the distribution
becomes uniform and provides no correlation between consecutive
movements, while for 𝜌 = 1 a Dirac distribution is obtained, cor-
responding to ballistic motion. The step length 𝛿 follows a Lévy
distribution characterised by a power law 𝑃 (𝛿) ≈ 𝛿−(𝛼+1) , with
0 < 𝛼 ≤ 2. For 𝛼 = 2 the distribution becomes Gaussian, while for
𝛼 → 0 the random walk reduces to ballistic motion. Each FSM state
𝑖 corresponds to specific values of the random walk parameters pair
⟨𝛼𝑖 , 𝜌𝑖 ⟩. Each FSM controller is also characterised by a parameter 𝜎
influencing the scale of the step length distribution of the random
walk, which is shared by all states of the controller.

2.1 Cue-based aggregation
In this study, we tested the ability of agents to aggregate au-
tonomously in response to an environmental cue. The simulated
environment contains a continuous scalar cue with its minimum
in the centre of the arena as shown in Figure 1a. The cue increases
linearly from the centre (where the scalar value is 0) up to the
borders of the arena (where the scalar value is 1). The goal of the
robots is to aggregate where the environmental cue has the lowest
intensity. The aggregation behaviour has to be performed in spite
of the robot limited sensing abilities. That is, the robots can only
perceive the local value of the cue and do not perceive the gradient
direction. Additionally, we consider a very low resolution sensor
with 𝑛𝑑 ∈ {2, 3, 4} quantisation levels. As a consequence, the en-
vironment is perceived as formed by 𝑛𝑑 uniform areas delimited
by 𝑛𝑑 − 1 concentric circles (referred to as area 𝐴𝑖 for the corre-
sponding level 𝑖 , see Figures 1b–d). Finally, robots cannot sample
the environment at high rate, but are limited to get a new sample
only when they change motion direction (i.e., simulating a blind
relocation).

We devise an adaptive random walk by associating a different
parameterisation to each quantisation level. Specifically, when the
robot has to define a new movement (rotation and straight displace-
ment), it checks the quantisation level 𝑖 ∈ [1, 𝑛𝑑 ] and selects the
corresponding parameterisation ⟨𝛼𝑖 , 𝜌𝑖 ⟩. For instance, when 𝑛𝑑 = 2,
the robot perceives two uniform areas (𝐴1 and 𝐴2, respectively rep-
resented in black and white in Figure 1b). As soon as a robot finds
itself in the black area 𝐴1 (characterised by the quantisation level
1) it switches to a random walk governed by the ⟨𝛼1,𝜌1⟩ parameter
pair. Conversely, when the robot finds itself in the white area 𝐴2
(characterised by the quantisation level 2), it changes its motion
parameters to the ⟨𝛼2,𝜌2⟩ pair. Our objective is to find the set of

𝑛𝑑 ⟨𝛼𝑖 , 𝜌𝑖 ⟩ pairs (and the common 𝜎 value) so that robots aggre-
gate as much as possible in areas with a low cue intensity. To this
end, we tune the parameters of our controllers with the iterative
racing tuning algorithm iRace [21]. We minimise a metric based
on the cue values corresponding to the robot positions recorded
during the whole experiment, which corresponds to maximising
the aggregation of the swarm towards the centre of the arena in
the minimum feasible time. The swarm performance is computed
at the end of a trial with the following equation:

𝐺 =

∑𝑇
𝑡=0

∑𝑆
𝑠=0 𝑔𝑠,𝑡

𝑆 ·𝑇 (2)

where𝐺 ∈ [0, 1] is the sum of the overall ground-truth value of the
environmental cue 𝑔𝑠,𝑡 normalised by the number of robots 𝑆 and
the experiment time 𝑇 (in time steps).

2.2 Neighbour-based aggregation
Similarly to the cue-based aggregation behaviour, in the neighbour-
based aggregation the robots switch between different types of
random walks at the end of each forward movement. Differently
from the cue-based, the neighbour-based aggregation is triggered
by the perception of spatially proximal group-mates, which is pos-
sible thanks to short-range communication between robots [26].
In particular, the robots dynamically change the parameters of the
random walk in response to the perceived number of neighbours.

We tested two different FSM controllers for this behaviour. The
first one has three different possible random walk states and two
thresholds (𝑡𝑖 ) to switch between them (Figure 3a). The rationale for
this FSM is the following: a robot adopts an exploratory behaviour

(a) (b)

(c) (d)

Figure 1: (a) The environmental cue forms a continuous field
that increases radially from the arena centre. (b–d) Homoge-
neous areas corresponding to the 𝑛𝑑 ∈ {2, 3, 4} quantisation
levels. The quantisation levels are numbered in ascending
order from the innermost to the outermost area.
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in search of higher densities of neighbours whenever their number
is relatively low. Seemingly, a robot gradually adopts a more static
behaviour whenever the number of its neighbours rises. The second
controller has only two different states and two thresholds to switch
between them (Figure 3b). Ideally, a robot transitions to amore static
behaviour once the number of neighbours exceeds a threshold 𝑡0,
and remains in this state unless the number of neighbours decreases
under a smaller threshold 𝑡1.

As for the cue-based aggregation, also in the neighbour-based
aggregation the controller parameters are tuned with iRace [21]. To
obtain an aggregation process such that a single cluster is formed
by the majority of the swarm at the end of the experiment, we
maximise the cluster metric from [13] computed from the robots’
positions at the end of a trial. This metric is based on the graph
defined by the robots’ positions, in which two robots are connected
if they are within their communication range. A cluster is defined
as a connected subgraph with a dimension larger than one (i.e., at
least two robots are connected). Thus, the cluster metric can be
defined as the size of the biggest cluster (𝑆𝑀 ) divided by the swarm
size (𝑆):

𝐶 =
𝑆𝑀

𝑆
(3)

When the swarm is aggregated in a single cluster, 𝐶 = 1. When no
cluster is formed and all robots are isolated, 𝐶 = 0.

2.3 Heterogeneous swarm
We also study a heterogeneous swarm composed of robots with the
two previously described behaviours.We use the same experimental
setup detailed before for the ARGoS simulator, and the size of the
swarm remains fixed at 𝑆 = 25 robots. We systematically vary
the number 𝑆𝑠 = 𝑆𝐻 , with 𝐻 being the percentage of robots that
sense the number of neighbours. As a consequence, 𝑆𝑐 = 𝑆 − 𝑆𝑠
corresponds to the number of robots that sense the environmental
cue. Our objective is to find the best proportion of the two types of
robots to have a swarm that forms a single aggregate on the area
in which the environmental cue has its minimum value. In order
to allow the robots that sense the cue to signal their presence to
spatially proximal robots that sense neighbours, the former robots,
when included in the heterogeneous swarm, have been provided

(a) (b)

Figure 2: Representation of the two experimental setups in
ARGoS. The setup used for the cue-based aggregation is rep-
resented in (a) and the setup with an empty arena for the
neighbour-based aggregation is represented in (b).

α1, ρ1 α2, ρ2 α3, ρ3

n ≥ t0

n < t0

n ≥ t1

n < t1

α1, ρ1 α2, ρ2

n ≥ t0

n < t1

(a) (b)

Figure 3: First (a) and second (b) FSM of the neighbour-based
aggregation behaviour. 𝛼𝑖 and 𝜌𝑖 are the random walk pa-
rameters for each state, 𝑡𝑖 are the thresholds used in the
transitions and 𝑛 is the number of neighbours sensed by the
robot at the end of a step.

Table 1: Parameters bounds for the iRace algorithm

Parameters Type Bounds

𝛼𝑖 Real [1.0, 2.0]
𝜌𝑖 Real [0.0, 1.0[
𝜎 Integer [1, 20]
𝑡𝑖 Integer [1, 10]

with the additional capability to broadcast messages signalling their
presence.

3 RESULTS
3.1 Cue-based aggregation
We tune the FSM controller parameters for each quantisation level
𝑛𝑑 ∈ {2, 3, 4}. For each controller, we have a total of 2𝑛𝑑 + 1 param-
eters, bounded as detailed in Table 1, with a precision of 2 decimal
digits for 𝜌 and 𝛼 . Six independent runs of iRace are performed for
each𝑛𝑑 level, to evaluate the robustness of the optimisation method.
Each run has a budget of 105 evaluations and a total evaluation
time of 𝑇 = 104 time steps. The large evaluation budget derives
from the observation during preliminary tests that performance
is rather noisy, and many evaluations are required to ensure that
iRace finds differences among the evaluated solutions.

The performances of the best obtained parameters configurations
on 100 trials are shown in Figure 4. As a baseline, we consider an
initial guess with the ⟨𝛼𝑖 ,𝜌𝑖 ⟩ pairs linearly varying from a persistent
walk (𝛼𝑛𝑑 = 1.0, 𝜌𝑛𝑑 = 0.99) when the robot is in the outermost
area 𝐴𝑛𝑑 to a Brownian motion (𝛼1 = 2.0, 𝜌1 = 0.0) when the robot
finds itself in area 𝐴1, and 𝜎 set to 1. The parameters configuration
with the lowest median is also tested in the ARGoS simulator over
100 trials with an evaluation time of 𝑇 = 5000 seconds for each
controller (see Table 2).

Table 2: Parameters corresponding to the run with the lowest
median 𝐺 metric.

𝑛𝑑 ⟨𝛼1, 𝜌1⟩ ⟨𝛼2, 𝜌2⟩ ⟨𝛼3, 𝜌3⟩ ⟨𝛼4, 𝜌4⟩ 𝜎

2 ⟨1.01, 0.98⟩ ⟨1.99, 0.0⟩ 1
3 ⟨1.0, 0.96⟩ ⟨1.95, 0.02⟩ ⟨1.96, 0.29⟩ 1
4 ⟨1.01, 0.96⟩ ⟨1.02, 0.05⟩ ⟨1.95, 0.0⟩ ⟨1.99, 0.31⟩ 1
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Figure 4: Box plots of the cue-based metric at the end of 100 trials for different 𝑛𝑑 : (a) 𝑛𝑑 = 2; (b) 𝑛𝑑 = 3; (c) 𝑛𝑑 = 4. The box
plot labelled guess shows the performance of the swarm considering the controller with parameters set from the initial guess.
The box plots labelled [1,6] represent the performance of the controller corresponding to the six best configurations obtained
using iRace. The last box plot shows the performances of the lowest median controller among the previous six validated with
the ARGoS simulator. The blue solid line represents the mean 𝐺 value expected when robots are randomly distributed in the
environment, and represents an upper bound for a blind random walker. The other blue lines represents the mean 𝐺 value
corresponding to the expected performance when robots are in area 𝐴1 (dotted line), 𝐴1 or 𝐴2 (dashed line) and 𝐴1 or 𝐴2 or 𝐴3
(dash-dotted line).

With 𝑛𝑑 = 2, the performance of the controllers tuned by iRace
is similar to the initial guess, corresponding to a behaviour in which
robots perform a persistent walk in order to find the low-intensity
area; once in that area, robots switch to a Brownian motion. With
𝑛𝑑 = 3, the tuned controllers perform slightly better than the initial
guess. In this case, robots perform a persistent walk near the borders
of the arena (area 𝐴3, see Figure 1c) and a Brownian motion in the
centre. The parameters tuned for the intermediate area 𝐴2 are also
very close to a Brownian motion, indicating that the best controller
does not limit local movements in the centre, but also in a wider
area. Similarly, the best controller with 𝑛𝑑 = 4 presents a Lévy walk
in the outer part of the arena (areas𝐴3 and𝐴4, see Figure 1d), while
a Brownian motion in the inner part (areas 𝐴1 and 𝐴2). Hence,
for both 𝑛𝑑 = 3 and 𝑛𝑑 = 4, Brownian motion is not limited to
the smaller area 𝐴1. This corresponds to a performance not better
than with 𝑛𝑑 = 2 (see Figure 4). Indeed, having a higher sensor
resolution does not lead to higher performance. This is because the
likelihood of leaving the inner area increases when the radius gets
smaller. We estimated the residence time in each area recording
the time intervals a robot spends in each area, and using a Kaplan-
Meier estimator [16] to obtain the cumulative distribution of the
residence times (data not shown). Our results indicate that, with
𝑛𝑑 = 2, the average time required to enter the area 𝐴1 is smaller
than the exit time, hence supporting aggregation. Conversely, with
𝑛𝑑 > 2 the average time required to enter𝐴1 is higher than the exit
time, suggesting that it is harder to remain in the centre of the arena
when the radius of 𝐴1 is too small. Hence, the optimal strategy is
to perform a Brownian walk in the wider region including area 𝐴2.

When the best controllers are tested in the realistic simulations
with ARGoS, the swarm displays better aggregation performance
than in the abstract simulations (see Figure 4). This is due to the
embodiment of the robots and the collisions that occur between
them. Indeed, robots aggregating in the centre of the arena will tend
to stay in that area due to other neighbours colliding with them.
Moreover, rotation is not instantaneous in ARGoS, and such an
additional time spent turning helps the robot to stay in place when
it is performing Brownian motion, lowering the probability to leave

the inner area. For 𝑛𝑑 = 2, the aggregation behaviour in ARGoS is
good enough to approach the performance bound corresponding to
robots always residing in area 𝐴1. For larger values of 𝑛𝑑 , the best
controller corresponds to robots always residing in area 𝐴1 and 𝐴2.

3.2 Neighbour-based aggregation
We tuned the two controllers presented in Section 2.2 for a swarm
of 𝑆 robots. Our first controller has a total of 9 parameters and the
second one has only 7 (see Figure 3). For each one, we performed
10 runs of iRace with the parameters bounds found in Table 1 and
a budget of 105 evaluations over a total evaluation time 𝑇 = 104
time steps. Forbidden parameters configurations with the following
conditions were excluded: 𝑡0 ≥ 𝑡1 for the first FSM, 𝑡0 < 𝑡1 for the
second FSM.

The cluster metrics of the best obtained configurations over 30
trials are shown in Figure 5a. Poor performance is obtained for
the first FSM in all the configurations, indicating that the swarm
struggles to form a single cluster. The second FSM has overall better
aggregation performance with a cluster containing the majority of
the robots in most cases.

We also tested these configurations in the ARGoS simulator with
a total evaluation time 𝑇 = 3600 seconds (Figure 5b). Similarly, the
first FSM performs poorly overall. For the second FSM, the third
configuration performed the best with a median around 0.9. Even
for this type of aggregation, the swarm displays better performance
in the ARGoS simulator compared to the abstract simulator. This
is due to the embodiment of the robots, which has a stabilising
effect on larger clusters. In the abstract simulator, since collisions
between robots are not considered, clusters disband more easily
and the performance degrades.

The parameters values for the best configuration of the second
controller are the following: 𝑡0 = 4, 𝑡1 = 1, ⟨𝛼1, 𝜌1⟩ = ⟨1.13, 0.99⟩,
⟨𝛼2, 𝜌2⟩ = ⟨1.93, 0.02⟩, and 𝜎 = 1. With these parameters, a robot
will first perform a Lévy walk in order to find other neighbours to
aggregate. When it finds a group of at least 𝑡0 = 4 other robots, it
will transition to a Brownian motion. If, due to the constant motion
of the robots, the neighbour count reduces below 𝑡1 = 1 (that is, no
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Figure 5: Box plots of the clustermetric𝐶 computed at the end
of 30 trials for different parameters configurations obtained
with (a) the abstract simulator and (b) the ARGoS simulator.
The left panels correspond to the 10 best parameters config-
urations obtained with the first FSM, while the right panels
correspond to the best parameters configurations obtained
with the second FSM (see Figure 3).

neighbour is perceived), the robot will fall back to the initial Lévy
walk. In this way, clusters will originate in a stochastic manner due
to the close proximity of multiple robots and will grow in size to the
detriment of smaller clusters, eventually reaching a single dense
cluster containing the majority of the swarm. This is the controller
that we have selected for further tests in heterogeneous swarms
(see below).

The evolution of the cluster metric over time with the ARGoS
simulator is shown on Figure 6 for this particular configuration.
We obtain a reasonable convergence time of 1500 seconds and
the cluster metric stabilises around 0.9 but never fully attains a
perfect value of 1. This is due to the fact that robots never stop
moving since they constantly perform a randomwalk, in opposition
to other classic approaches in which robots do not move when
aggregated [3, 28].

3.3 Heterogeneous swarm
In this section, we study a swarm made up of 𝑆𝑐 robots adopting
the cue-based aggregation behaviour and 𝑆𝑠 robots adopting the
neighbour-based aggregation. The rationale is that robots perform-
ing neighbour-based aggregation can form a dense cluster, while
robots performing the cue-based aggregation can guide the group
towards areas with low cue intensity. The goal is to observe the
impact of the different proportions of robot types on the formation
of a dense cluster near the minimum of the environmental cue.
We tested multiple configurations of the swarm starting from a
homogeneous swarm of neighbour-based robots (𝑆𝑐 = 0, 𝑆𝑠 = 25)
and increasing 𝑆𝑐 until obtaining a swarm composed exclusively of
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Figure 6: Evolution of themedian of the cluster metric𝐶 with
the best tuned controller over 3600 seconds and 30 trials in
the ARGoS simulator.

robots performing the cue-based aggregation behaviour (𝑆𝑐 = 25,
𝑆𝑠 = 0). All experiments are performed with the ARGoS simulator
exploiting, for each aggregation behaviour, the configuration with
the best median obtained from iRace.

Figure 7 shows the evolution over time of the cue-based met-
ric 𝐺 and the cluster metric 𝐶 with varying 𝑛𝑑 . As expected, for
all the resolution levels, the worst performance in tracking the
environmental cue is displayed by the swarm composed of only
neighbour-based robots since no robot can sense the local value of
the cue (top row in Figure 7). Despite this fact, the final value of the
cue-based metric at the end of the experiment is a little bit lower
than the initial one when all the robots are randomly distributed in
the arena, due to the clustering of the robots. We can also observe
that with as few as 𝑆𝑐 = 5 robots performing cue-based aggregation,
the 𝐺 metric significantly decreases in all the plots. Increasing the
number of the 𝑆𝑐 robots increases the performances but the gain
becomes gradually smaller.

The evolution of the cluster metric over time is presented in the
bottom row of Figure 7. Clearly, the best performance is displayed
by a swarm made up exclusively of neighbour-based robots (𝑆𝑠 =
25), with the cluster metric stabilising just over 0.9. By adding
cue-based robots into the swarm, the cluster metric progressively
decreases. However, it is possible to notice differences when varying
the sensor resolution. With 𝑛𝑑 = 2, all configurations of the swarm
keep a good performance with the majority of the swarm forming
a single dense cluster. With 𝑛𝑑 = 4, the performance degrades
but at least 60% of the swarm remains inside the biggest cluster.
The worst performance is exhibited with 𝑛𝑑 = 3, with only small
clusters forming when 𝑆𝑠 < 15. Indeed, in this case the cue-based
aggregation is not very efficient, with robots scattered in a wide
area (𝐴1 and 𝐴2, see Figure 1c). In these conditions, the neighbour-
based aggregation is not efficiently performed, and a single tight
cluster seldom emerges.

We notice also that there is a trade-off between the two metrics
considered: optimising one metric leads to the degradation of the
other. Such trade-off is evident in the Pareto diagram shown in Fig-
ure 8. The ideal case to reach is the point located in the bottom right
corner (𝐶 = 1,𝐺 = 0) representing a swarm forming a single cluster
exactly in the centre of the arena. First of all, we can appreciate
that the best trade-offs are reached when 𝑛𝑑 = 2, which dominate
the other configurations. We can also notice a trade-off between
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Figure 7: Top row: evolution of themedian of the cue-basedmetric𝐺 over timewith different configurations of the heterogeneous
swarm in the ARGoS simulator over 100 trials with (a) two, (b) three and (c) four levels quantisation of the environmental
feature. Bottom row: evolution of the median of the cluster metric over time with different configurations of the heterogeneous
swarm in the ARGoS simulator over 100 trials with (a) two, (b) three and (c) four levels quantisation of the environmental
feature. The number of neighbour-based robots (𝑆𝑠 ) in the swarm is varied in the range [0,25].
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Figure 8: Pareto diagram for different configurations of the
heterogeneous swarm. The median of the cue-based metric
over the total experiment time is represented on the vertical
axis and the median of the cluster metric found at the end
of the experiment on the horizontal axis.

the composition of the swarm and its effect on the two metrics.
Starting from a swarm made up of only neighbour-based robots,
we obtain the best value of the cluster metric but also the worst
value of the cue-based metric. By introducing progressively more
cue-based robots, the cue-based metric improves but the cluster
metric decreases. Looking at the three Pareto fronts represented by
the lines in Figure 8 for each value of 𝑛𝑑 , specific configurations of
the swarm can be chosen by the designer in order to attain reason-
able performances in both metrics. Within our experimental setup,
it appears that the best compromise is a swarm made up of 𝑆𝑠 = 10
or 15 cue-based robots.

Overall, our results indicate that a swarm composed exclusively
of one of the two robot types will perform well in one metric
but poorly in the other. Neighbour-based robots form a big cluster
containing themajority of the swarm but do so at a random location;
cue-based robots aggregate near the centre of the arena but fail to
form a dense cluster. A heterogeneous swarm combining both robot
types offers a compromise between the two situations. Importantly,
a minority of cue-based robots is sufficient to obtain a single cluster
in correspondence to areas with low cue intensity. In other words,
the addition of a minority of cue-based robots is enough to steer the
whole swarm towards the desired areas while keeping a reasonably
dense cluster (see the video in the supplementary material [8]).

3.4 Scalability analysis
We conducted a scalability analysis for different arena and swarm
sizes, keeping fixed the environmental cue shape and extension, to
evaluate the impact of swarm density on performance. We choose
the case with 𝑛𝑑 = 2 and a heterogeneous swarm featuring a frac-
tion of 𝐻 = 0.4 social robots, as these provided the best trade-off
between the 𝐺 and 𝐶 metrics (see Figure 9). Additional plots for
different configurations are available as supplementary material
[8]. Results indicate that the cue-based metric gets slightly worse
with increasing swarm size. We observed that, for larger swarm
sizes, robots tend to form a large connected cluster in the centre
of the arena. However, neighbour-based robots tend to remain out-
side of the central black area because they still perceive enough
neighbours to perform a local walk. Moreover, the black area be-
comes more crowded with robots that are more likely to move out
or being pushed outside by other robots. This effect is consistent
across all studied arena dimensions. The 𝐺 metric also degrades
when increasing the arena size. Due to a lower chance of finding
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Figure 9: Scalability tested over 100 trials of 𝑇 = 5000 s for
different arena and swarm sizes, with a fraction of 𝐻 = 0.4
social robots and 𝑛𝑑 = 2.

the black area, robots remain outside for longer periods. Overall,
the fraction of aggregated robots degrades but a single cluster is
very often formed (see the videos in the supplementary material
[8]).

The cluster metric displays a very good performance for small
arena sizes and degrades progressively when increasing the size of
the arena. This is due to cue-based robots not finding the centre of
the arena and neighbour-based robots struggling to find each other
to form clusters. One large cluster is always formed in the centre
without containing the totality of the swarm. A higher variability
also appears for a swarm size of 25 robots due to the low density:
even when the robots are clustered in the black area, they are not
always forming a single cluster (see the videos in the supplementary
material [8]).

4 CONCLUSIONS
We have shown that the use of adaptive random walks relying on
the sensing of environmental cues or the presence of neighbours
can generate aggregation behaviours in a swarm of minimalist
robots. Our proposed method follows the principle of minimal
computing, using agents with low or no processing power that
are equipped with few simple sensors. This makes our approach
especially relevant for swarms of micro or nano-robots lacking the
ability to precisely sense or explore their environment. Based on the
sensed inputs, the robots performed different types of random walk,
displaying gregarious or exploratory behaviours. We devised two
controllers based on different sensor types to generate aggregation
dynamics within a swarm of Kilobots that we tuned with the use
of the iRace optimisation algorithm [21].

The first controller achieved cue-based aggregation following a
continuous environmental cue with a local minimum in the centre
of the arena. Robots were only equipped with a sensor measuring
the local scalar value of the cue at their position. Three different
sensor resolutions were studied in order to compare the effect of
the amount of information available to the robots on the aggre-
gation performance. Results show that the controllers relying on
high sensor resolution (i.e., 𝑛𝑑 > 2) did not produce better perfor-
mance in terms of proximity of the swarm to the minimum of the
environmental cue.

Our second controller achieved a neighbour-based aggregation
behaviour relying only on the sensing of other neighbours. In oppo-
sition to the previous cue-based aggregation behaviour aiming at
regrouping the swarm towards a certain location, neighbour-based
aggregation can occur anywhere in the environment with the only
goal being the formation of a dense cluster containing the majority
of the swarm. To do so, our chosen FSM is composed of two dif-
ferent random walk states where transitions happen based on two
different thresholds: when the number of neighbours is high, the ro-
bot will follow a Brownian motion; when it is low, it will perform a
persistent walk in search of higher densities. Our results show that
our swarm self-aggregates with a reasonable convergence time and
consistently forms a single cluster containing the majority of the
swarm. It can also be noted that performances were significantly
improved in the ARGoS simulator compared to the abstract one
due to the embodiment of the robots and the collisions that occur
between them, resulting in a better aggregation.

We also studied the effect of heterogeneity on the aggregation
of the swarm by forming a heterogeneous swarm with the two
different robot types, varying the proportions of cue-based and
neighbour-based robots. Our results indicate that a homogeneous
swarm made up of one of the two types will perform very well in
their own metric but will have the worse performance regarding
the other. Cue-based robots will group themselves near the centre
of the environmental cue but will fail to do so in a dense cluster,
while neighbour-based robots will form a single dense cluster but
at a random location in the environment. We show that a trade-off
is possible with a heterogeneous swarm composed of a minority of
neighbour-based robots, the aggregation dynamics being the fol-
lowing: the cue-based robots will first gather towards the minimum
of the environmental cue, generating a spatial distribution of the
robots with a higher density at this location; the neighbour-based
robots will then begin to cluster near them, generating a dense
cluster with the majority of the robots. Reasonable values are thus
attained for both studied metrics with this compromise.

With this paper, we argue that adaptive random walks can dis-
play interesting collective behaviours despite the low complexity
they entail. Aggregation can be achieved even with robots that
never stop moving. We believe that the dynamic nature of these
aggregation behaviours can be relevant in case of complex, dynamic
environments, in which the cue gradient can have irregular shapes
and can change over time. Indeed, by remaining in motion, robots
can continue to sample the environment and adapt to its changes.
Future work will test this intuition. We will also implement our
proposed controllers on physical Kilobots to see if performance is
consistent with what was observed in the ARGoS simulator.
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