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ABSTRACT
This paper presents a novel way for interactively identifying a most
preferable solution based on quality and behavioural characteris-
tics. Our algorithm combines the principles of Quality-Diversity
Search and Bayesian Optimization to create Gaussian Process sur-
rogate models of the behaviour and fitness space. Unlike traditional
Quality-Diversity methods which aim to find good solutions with
different behavioural characteristics, we propose a three-step inter-
active approach that allows a decision maker to efficiently identify
the most preferred solution(s). In the first stage, it uses an entropy-
based acquisition function to generate an illumination model, fol-
lowed by an interactive phase where the decision maker can specify
regions of interest and a target behaviour. These preferences are
then utilized by an improvement greedy acquisition function to
guide the optimization process and quickly identify a solution close
to the user-specified target. In a case study, with a simulated de-
cision maker, we demonstrate that our approach can find better
solutions much more quickly than by selecting the most preferred
solution from an archive generated with MAP-Elites.
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1 INTRODUCTION
Quality-Diversity optimization (QDO)[19] is a rapidly growing area
of research that attempts to find a set of behaviourally diverse solu-
tions that are high performing. By contrast, traditional optimization
is focused on pure optimization and returns a single point.

QDO is an interdisciplinary field that draws on techniques from
mathematics, computer science, engineering, and the natural sci-
ences and often uses evolutionary algorithms for optimization. It
has numerous applications in fields such as machine learning [14],
robotics [3, 16], chemical discovery [21], engineering design [6]
and game design [5, 7].
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A key outcome of QDO is an understanding of the relationship
between a solution’s behavioural characteristics and the maximum
achievable fitness with those characteristics. The process of learning
this, often complex, relationship is referred to as illumination and it
creates key insight to end-users on how choices in the behavioural
domains impacts the possible performance.

Recent methods using surrogate models have emerged from
both the evolutionary optimization community [6, 8] and the field
of Bayesian optimization [11]. These methods, while restricted
to lower dimensional problems due to the Gaussian Process (GP)
models employed, show vast improvements in sample efficiency
and produce high quality models of the underlying problem in
relatively few observations.

There are various motivations for searching for a diverse set of
good solutions, e.g., different solutions are needed at different times
(different roboticmotions depending on the task), a problem actually
requires a diverse set of solutions (a set of artificial players in game
design), or a decision maker (DM) wants to be able to examine a
diverse set of solutions before selecting one (in engineering design).

Over the past few years there has been interest in the area of
interactive optimization, or Human In the Loop (HILO), optimiza-
tion. This includes some works in the QDO literature [2] and the
interactive process can be used to discover behavioural qualities
that are of interest to the decision maker.

In the present work we propose an interactive method for iden-
tifying a most preferred solution based on fitness and behavioural
characteristics. It utilises ideas from QDO and Bayesian optimiza-
tion to rapidly build representative models of the mapping from
behaviour to maximum achievable fitness before allowing a human
DM to guide the search towards areas of interest and eventually a
specified target behaviour.

The main contributions of this paper are

• The first (to the best of our knowledge) framework for in-
teractive QDO in order to effectively and efficiently identify
the solution most preferred by a DM.

• A new entropy based acquisition function for use with the
BOP-Elites algorithm which balances model building and
fitness improvement.

• An ’adaptive resolution’ strategy which allows us to present
information to the decision maker.

• A simple stopping criterion for when we believe our models
are sufficiently insightful.

• AMonte Carlo acquisition function for searching for the best
solution adhering to the user-specified target behaviour.

Compared to the standard approach of running a QDO algo-
rithm to generate a behaviourally diverse archive of good solutions
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and picking the most preferred from the generated set, our ap-
proach has two key advantages. First, because it is interactive it
can quickly focus search on the most promising regions, thereby
saving many function evaluations unnecessarily illuminating less
relevant regions. Second, any pre-computed solution archive can
only provide a discrete set of solutions to choose from, while our
interactive framework allows the DM to specify a target in contin-
uous behavioural descriptor space, and we can very quickly locate
solutions extremely close to the desired target behaviour.

The paper is structured as follows. After a formal problem defini-
tion in Section 2, we survey related work in Section 3, then describe
our methodology in Section 4. We demonstrate the use of our inter-
active method in Section 5, and show that it is much more efficient
than standard approaches. The paper concludes with a summary
and some ideas for future work.

2 PROBLEM DEFINITION
We consider an 𝑛 dimensional box-constrained search domain X ⊂
R𝑛 with a fitness function

𝑓 (𝑥) : X → Y ⊂ R

describing the quality of a solution, and a function𝑔which produces
𝑚 additional descriptor values

𝑔(𝑥) : X → B ⊂ R𝑚

that define additional behavioral characteristics relevant to the DM.
We consider the case where both functions are black-box and ex-
pensive and can only be evaluated simultaneously. Our interaction
mechanism further assumes𝑚 ≤ 2. In principle, the framework
should be applicable also to higher descriptor spaces, although this
would be much harder for a DM to analylze and would require
appropriate interaction mechanisms.

Our goal is to help a human DM to identify their most preferred
solution, taking into account the solution’s quality (which we as-
sume w.l.o.g. to be maximized) and behavioral descriptor values
(on which the preferences of the DM are unknown a priori).

Note that combinations of descriptor values define an𝑚 dimen-
sional descriptor space and for each point 𝑏 ∈ B in descriptor
space there exists a solution 𝑥∗ (𝑏) with optimal fitness 𝑦∗ (𝑏). A
DM would only be interested in those best-fitness solutions for any
point 𝑏, so ideally we would like to find the function

ℎ : B → Y∗ (1)

with

ℎ(𝑏) = max
𝑥 |𝑔 (𝑥 )=𝑏

𝑓 (𝑥). (2)

A DM could then look at all 𝑏 ∈ B and the associated best-fitness
values ℎ(𝑏) and pick their most preferred solution. Unfortunately,
as ℎ and 𝑔 are expensive black-box functions, because of the max
operator, and the non-injective mapping, it is not possible to derive
function ℎ analytically.

3 RELATEDWORK
3.1 Quality-Diversity optimization
Quality Diversity optimization (QDO)[19] attempts to find a set
of points that have a high quality but also have a high diversity

in descriptor space. To this end, it partitions the descriptor space
into regions R = {𝑟1, 𝑟2, . . . , 𝑟 | R | }. The task of a QD illumination
algorithm is then to find for each descriptor region 𝑟 ∈ R the elite
point 𝑒𝑟 ∈ 𝑋 with the maximum fitness, i.e.,

𝑒𝑟 = argmax
𝑥∈𝑟

𝑓 (𝑥). (3)

These elite points are then stored in a solution archive E, a data
structure that holds the best identified solution for each discrete
region in descriptor space. This archive has the nice characteristic
of being easy to visualize in case of low descriptor dimensions and
thus being very insightful for DMs.

In a standard QDO setting, the performance of the algorithm can
be measured by the value of the set of elite points in the solution
archive E, and a common metric is the QD-Score [19].

QD-Score =
∑︁
𝑟 ∈R

𝑓 (𝑒𝑟 ), (4)

where, without loss of generality, we assume that 𝑓 is positive and
𝑓 (𝑒𝑟 ) is defined as zero if the algorithm has not yet found any
solution in region 𝑟 .

Most quality-diversity research occurs in the context of the MAP-
Elites algorithm [17] which is a powerful evolutionary approach.
This algorithm leverages the best points discovered in the solution
archive to create a new generation of candidate solutions, thus effi-
ciently filling the archive and directing the search towards optima.
Despite its computational efficiency, the MAP-Elites algorithm re-
quires a substantial number of function evaluations to converge to
a satisfactory outcome. In response to this challenge, recent devel-
opments in surrogate-assisted approaches have sought to enhance
the sample efficiency of the search process.

3.2 Surrogate Assisted QDO
The Surrogate Assisted Illumination (SAIL) algorithm, described
in [17], deviates from the traditional MAP-Elites approach by per-
forming the optimization over a Gaussian Process (GP) surrogate
model of the fitness function, rather than the computationally ex-
pensive original function. Utilizing the Upper Confidence Bound
(UCB) acquisition function, the algorithm strikes a balance between
exploring high-performing areas of the fitness landscape and re-
ducing uncertainty in the fitness predictions. The SAIL algorithm,
as well as the Surrogate Assisted Phenotype Niching (SPHEN) algo-
rithm [8], which extends SAIL to work with black-box descriptors,
demonstrate a marked improvement in sample efficiency in QDO
problems of small enough dimensions.

Surrogate Assisted QDO algorithms, in contrast to traditional
quality-diversity optimization algorithms, output a prediction archive
instead of a solution archive. The prediction archive constitutes a
set of points, each paired with its predicted fitness, and in the case
of the SPHEN algorithm, its predicted region membership. This
archive offers valuable insights into the problem being addressed
and can serve as a useful guide for future optimization efforts.

When the descriptor evaluations are black box, the region in
descriptor space a solution is predicted to lie in may be wrong.
This can be seen in Figure 1 (a), in which regions for which the
predicted elite 𝑒𝑟 did not actually fall into the region 𝑟 are displayed
as black squares. A simple method for evaluating the quality of the
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prediction archives in this case is to assign zero value to predicted
solutions that actually lie in a region different from the predicted
one:

PredictedQD-Score =
∑︁
𝑟 ∈R

𝜃 (𝑒𝑟 ) (5)

𝜃 =

{
𝑓 (𝑒𝑟 ) if 𝑔(𝑒𝑟 ) = 𝑟

0 otherwise.
(6)

While this metric is useful to test the performance of algorithms,
calculating it requires evaluating each predicted solution and is
therefore computationally expensive. Nevertheless, the prediction
map itself can be used to provide helpful visual feedback to a DM,
displaying the predicted values in each region, with a reminder that
it is prone to error, see for example Figure 1 (b). A comparison with
a high resolution map created by running MAP-Elites for 100,000
evaluations Figure 1 (c) shows that the prediction map provides a
very good approximation to the true mapping and therefore pro-
vides useful insights to the DM, although the prediction map misses
some lower performing regions in the top and right edge.

(a) Prediction map evaluated (b) Prediction map

(c) High resolution map

Figure 1: The evaluated prediction archive (a) shows good
performance and accuracy after only 209 optimization eval-
uations but some regions have been mispredicted leading to
drop in performance (black squares). The predicted solution
archive (b) smooths out the visualization, looking similar
to a high resolution evaluated map (c) and providing useful
insights.

An approach based on Bayesian Optimization was proposed in
[11] and further developed in [12]. The Bayesian Optimization of
Phenotypic Elites (BOP-Elites) uses an adapted version of the widely
used Expected Improvement acquisition function (see next section)
for choosing where to sample next. BOP-Elites was designed to
efficiently maximize the QD-Score of the solution archive and it
outperforms other surrogate based methods in this regard.

This work builds upon the framework of the BOP-Elites algo-
rithm, implementing an adaptation to the acquisition function (see
Section 4) which changes the focus from increasing the fitness of
the solution set to building a good predictive model for illumination,
interaction and eventual exploitation.

3.3 Bayesian optimization
Bayesian Optimization (BO) is a probabilistic model-based approach
to optimization that uses Bayesian inference to model the unknown
objective function and make informed decisions about the next eval-
uation point. BO is well-suited for black-box optimization problems
where the objective function is expensive to evaluate and gradient
information is not available. In BO, typically a Gaussian Process
(GP) model is used to represent the objective function and make
predictions about its behavior. The GP models are updated with
each new evaluation, providing a more accurate representation of
the objective function as more evaluations become available.

BO values points using a mathematically inspired heuristic cal-
culation called an acquisition function. The acquisition function
encodes the importance of exploration versus exploitation and the
most widely used example is the Expected Emprovement (EI):

𝐸𝐼 (𝑥) = E
[
max(𝑓 (𝑥) − 𝑦∗, 0)

]
(7)

where 𝑦∗ is the fitness of the best solution found so far. This may
be calculated in closed form [10, 15]

𝐸𝐼 (𝑥) = (𝜇 − 𝑦∗)Φ
(
𝜇 − 𝑦∗

𝜎

)
+ 𝜎𝜙

(
𝜇 − 𝑦∗

𝜎

)
, (8)

where 𝜇 and 𝜎 are the posterior mean and variance of the GP
model and 𝜙 and Φ are the PDF and CDF of the standard normal
distribution.

In the context of QDO, BO can be used to efficiently search for
a high-quality solution archive. QD algorithms aim to generate
a diverse set of high-performing solutions for a given problem,
rather than a single optimal solution. By using BO to search the QD
solution space, it is possible to find regions of high performance in
an efficient and effective manner.

A BO acquisition function for QDO exists in the form of Expected
Joint Improvement of Elites (EJIE)[11, 12]:

𝐸𝐽 𝐼𝐸 (𝑥) =
∑︁
𝑟 ∈R
P(𝑥 ∈ 𝑟 |𝐷)𝐸𝐼𝑟 (𝑥). (9)

which takes the sum of Expected Improvements to each region
of some point 𝑥 , weighted by the probability that it is in this region.

3.4 Interactive optimization
Interactive optimization, also known as human-in-the-loop opti-
mization, refers to a class of optimization algorithms that allow
for human input in the optimization process. This type of opti-
mization is especially useful in applications where the optimization
objectives or constraints are subjective or difficult to quantify.

There has been growing interest in the development of interac-
tive optimization algorithms. Researchers have proposed various
approaches to incorporate human input in the optimization process,
including interactive genetic algorithms and evolutionary compu-
tation [13, 20], interactive multi-objective optimization [1, 9, 18],
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Quality-diversity [2] and others. These algorithms allow humans
to provide guidance to the optimization process by specifying pref-
erences, constraints, or even fitness evaluations.

Interactivity is especially crucial in expensive quality-diversity
domains, as although descriptor dimensions are predetermined, the
actual quality and behavior of generated solutions may be unclear.
Providing predictions of optimal achievable quality in different
regions provides the DM with valuable insights that are useful in
forming preferences over the descriptor space.

Identifying solutions the DM can trust involves two critical el-
ements: the quality of the information provided to the DM and
the autonomy over the final solutions returned. In this work, we
concentrate on constructing a model of the underlying mapping
from descriptor space to best achievable fitness, and provide visual
feedback through the prediction maps. Interactivity takes the form
of directly guiding the illumination of the algorithm before the DM
takes total control of the exploitation stage by defining a target
descriptor and tolerance over distance from the preferred target.

4 METHOD
We propose Bayesian Optimization through Interactive iLlumina-
tion (BOIL), a BayesianQDO algorithm that allows for an interactive
illumination process, eventually allowing the DM to understand the
problem, and guide the search towards the most preferred solution.

More specifically, BOIL comprises of three stages:
(1) Initial illumination. This stage aims to quickly produce an ap-

proximate predictive map that allows the DM to understand
likely trade-offs and identify regions in descriptor space that
appear preferable.

(2) Focused illumination. This stage allows the DM to highlight
preferable regions in descriptor space, so that the algorithm
can refine its predictive map specifically for those regions.

(3) Target search. Finally, the DM can specify a target P in de-
scriptor space, and the algorithm will attempt to identify the
highest fitness solution with the targeted descriptor values.

In the following, we will describe each of these stages in turn.

4.1 Initial illumination
We approach the illumination problem using the BOP-Elites frame-
work [11, 12] which approximates the fitness and descriptor func-
tions using GP models.

The (EJIE) acquisition function (9) proposed in the original BOP-
Elites paper [11] is an improvement-greedy method that effectively
identifies high-performing points to add to its observations set.
However, its focus on the highest-performing regions may result
in weaker early model building. The authors have proposed an
’upscaling’ method [12] to address this issue, but we additionally
offer a modified version of the acquisition function that specifically
aims to mitigate errors in region predictions.

These region mis-predictions are attributed to the posterior un-
certainty in the descriptormodels. As QDOmethodswith structured
archives have a finite number of regions, the uncertainty in region
membership can be quantified using entropy,

𝐻 (𝑥) =
∑︁
𝑟

P(𝑟 ) log
(

1
P(𝑟 )

)
, (10)

where P(𝑟 ) is the posterior probability of point 𝑥 being in region 𝑟 .
Given that the magnitude of the entropy increases with the

number of regions, we normalize the entropy and incorporate it as
a factor in the evaluation of the acquisition function, resulting in

𝐸𝐽 𝐼𝐸𝐻 =
∑︁
𝑟 ∈R

𝐸𝐼𝑟 (𝑥)P𝑟 (𝑥)
(
1 + 𝐻 (𝑥)

𝐻𝑚𝑎𝑥

)
. (11)

This modified acquisition function will prioritize points that not
only show potential for improving a specific region, but also hold
the potential for reducing errors in region membership predictions.
This steers the algorithm towards more informative points near
region boundaries, while still exploring high-performing regions.

Following [12], we perform progressive upscaling of the solution
archive. That is, although we wish to predict solutions for a 40x40
solution archive, we begin by running BOIL over a 5x5 archive.
The region filling nature of the acquisition function rapidly fills
the 25 regions 1 and as they are spread out in descriptor space, the
algorithm benefits from a model built on diverse points.

Another novel contribution of this work is a proposed stopping
criterion. Once all regions in the solution archive have been filled,
the scale of the acquisition function changes and the entropy calcu-
lation pushes the algorithm to balance exploring region boundaries
and improving the solution set. Once the boundaries are well ex-
plored and the models predict that the solutions in the archive are
near-optimal, the maximum acquisition function value drops sub-
stantially. We use this drop as an indicator of a well filled solution
archive, and increase the resolution of the solution archive (upscal-
ing) or involve the DM when the maximum acquisition function
value falls below a certain threshold (in this work we use a threshold
0.1, and as the training values for the GP models are standardised,
this worked well in multiple domains).

The upscaling process involves transitioning from a 5x5 grid to a
10x10 grid, which is efficient because many of the region boundaries
remain the same and each elite in the 5x5 archive corresponds to a
solution in the 10x10 archive. Further upscaling to a 20x20 and, if
necessary, a 40x40 grid is possible. However, it should be noted that
a domain with 40x40 reachable regions may prove challenging for
a GP based method to fill, due to limitations in the model’s capacity
to handle a large number of points. The objective of the method,
however, is not to fill the regions with observations, but rather to
make predictions, and this can be achieved with a prediction map
based on a small set of points.

4.2 Focused illumination
Fine granular models generated based on points gained from rela-
tively coarse solution archives can provide rich insights into the
mapping from descriptor space to best achievable fitness. The pre-
diction map, which is derived from these models, enables a DM
to gain an understanding of the emerging behaviour-fitness land-
scape very early on (i.e., after only very few evaluations). When the
maximal acquisition function value drops, indicating good model
building, we offer the DM the option to select regions of the be-
havioural space for targeted illumination. This allows for the DM
to focus the search effort to the most relevant regions. Figure 1

1This is due to the expected improvement calculation comparing against an empty
cell.
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provides an example. The left part of the figure shows the solu-
tion archive after having evaluated only 309 solutions (100 initial
solutions plus 209 steps of BOP-Elites iterations). Based on this
information, it is possible to generate an informative prediction
map displayed in Figure 1 (right). The DM can analyze the two parts
of the figure and identify regions that seem particularly interesting
and worth more exploration (rectangular areas).

Figure 2: The observed solution archive (left) and the pre-
dicted solution archive (right) with the rectangular focus-
areas that have been chosen for focused illumination (Sec-
tion 4.2).

The BOP-Elites program continues to operate, but the calcula-
tions for 𝐸𝐽 𝐼𝐸𝐻 are limited to the areas specified by the user. A
higher-resolution partition of regions is then created, usually at
20x20 resolution, consisting only of the regions within the selected
focus areas. This way, BOP-Elites will continue to accumulate data
points that will improve the model’s performance specifically in
these chosen areas of the descriptor space. The same termination
criteria are applied, and model building stops when the acquisition
function reaches the threshold. At this point, the DM is given the
chance to evaluate the effect on the prediction map and determine
whether to choose a new focus area, refine a current focus area, or
move on to the next stage of the algorithm. Figure 3 compares the
user-defined right focus-area from Figure 1 before focused illumina-
tion (left) and after (right). Only 57 new evaluations have been used
to provide a much more granular illumination of the focus-area.

Figure 3: A chosen focus-area (the right focus-area from Fig-
ure 1) before optimization (left) and after 57 additional ob-
servations in the focus-area (right). The gaps are filled with
high performing points, the prediction model will now be
significantly improved in this region.

4.3 Target search
Once the DM has sufficiently explored the prediction map they may
pick a solution with the desired predicted fitness and descriptor
value combination, the target descriptor point P. Our algorithm

will then search for the best possible solution with the requested
target behavior. However, since the behaviour is a characteristic of
the solution and cannot be controlled explicitly, it is not possible to
guarantee that we find a solution with a specific target behavior.
Therefore, we additionally ask the DM for a trade-off parameter
𝛼 ∈ [0,∞] and optimize a linear combination of the solution’s
fitness and distance to the desired target behavior (in a sense, a
utility 𝑈 (𝑥)), and we aim to maximize this utility:

max
𝑥

𝑈 (𝑥) = 𝑓 (𝑥) − 𝛼 | |P − 𝑔(𝑥) | |. (12)

A larger 𝛼 value will emphasize search for a point close to P,
while a value of 𝛼 = 0 assumes complete indifference regarding
distance from the target and seeks a global fitness optimum.

If the DM does not provide a preference, we may solve the prob-
lem for a variety of 𝛼 values and present the DM with a series of
options with different trade-offs.

Unfortunately calculating the EI including the predicted distance
calculation is not analytically tractable and so we must approximate
this value by Monte Carlo sampling. We are able to sample from
the fitness GP and descriptor GPs and posterior models at a point
𝑥 are independent univariate Gaussians. In order to make each
optimization run deterministic, we sample a number of 𝑧 values
from the standard normal distribution 𝑍 ∈ N(0, 1) and sample the
posterior distributions at these 𝑧’s.

𝑦 (.) ∼ N(𝜇𝑦, 𝜎𝑦) (13)

where 𝜇𝑓 and 𝜎𝑓 are the mean and standard deviation of the poste-
rior predictive fitness model of the GP at 𝑥 . We can take samples
as:

𝑦 (𝑥) = 𝑧𝜎𝑦 + 𝜇𝑦 (14)
The same approach is applied to the descriptor models.We take 1600
samples of the fitness evaluation and 40 for each of the descriptor
models, recombining them to make 1600 predicted distances

𝛿 (𝑥) =
√︃∑︁

[P − 𝑔(𝑥)]2 (15)

and calculate the utility sample as:

𝑢 = 𝑦 − 𝛼𝛿 (𝑥) (16)

and the expected improvement in utility as:

𝐸𝑈 𝐼 =
1
𝑛

∑︁
𝑖

max{𝑢 − 𝑢∗, 0} (17)

where 𝑢∗ is the utility of the best solution found so far.
This quantity can now be optimized with standard continuous

optimizers. As each optimization run will have different 𝑧’s, we
run with multiple restarts and compare the final points of each run
with a final set of 𝑧’s to choose the best next point to sample. Once
observed, the point is added to the model and the process continues
until the budget has been spent.

5 EXPERIMENTAL RESULTS
5.1 Experimental design
We provide a usage scenario for BOIL over a 10 dimensional search
space with fitness and descriptor functions generated from 3 in-
dependent randomly generated Gaussian process functions with
randomised lengthscales in the range [0, 1]. This forms a synthetic
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function problemwith 10 input dimensions over the unit hypercube,
1 fitness function and 2 descriptor functions.

Following the general wisdom on initial designs, 10𝑑 = 100
points are selected via Sobol sampling. We define a [5x5] solution
archive with boundaries uniformly distributed in descriptor space.
The best points in each region become an elite and are added to the
archive. We now run BOP-Elites using 𝐸𝐽 𝐼𝐸𝐻 until the acquisition
function valuation drops below 0.1. At this stage we upscale the
archive to a [10x10] grid defined over the entire descriptor space.
Figures 4 and 5 provide an example of the upscaling process. Initially,
BOIL attempts to fill a [5x5] archive, after 165 evaluations (100
initial and 65 BOIL iteration) resulting in Figure 4 (left). The actual
distribution of the evaluated points can be better seen in Figure 4
(right), which uses a [40x40] grid. Upscaling to the [10x10] results
in the archive depicted in Figure 5 (left), and after an additional 144
evaluations, this archive now looks as in Figure 5 (right).

Figure 4: A visualisation of the solution archive at two dif-
ferent resolutions. (left) is the [5x5] solution archive when
the acquisition value drops. This happens after 65 steps of
the BOIL algorithm, (right) is the [40x40] solution archive
which is sparsely populated with the same points.

Figure 5: (left) is the [10x10] solution archive at the same
stage as Figure 4 after 65 steps of the BOIL algorithm, (right)
is the [10x10] solution archive after an additional 144 evalu-
ations. This is now ready to upscale to the [20x20] resolution
as indicated by the drop in maximal acquisition function
value

We continue the illumination stage until the acquisition drops
below 0.5 for the [10x10] grid. At this stage we visualise the predic-
tion map at the [40x40] resolution. We now simulate a DM creating
2 focus-areas in descriptor space and use focused illumination over
these areas (see rectangles in Figure 6). Focused illumination occurs
in the next available resolution level, given we are currently exiting
the [10x10] scale we create focus-areas at the [20x20] resolution.

The same stopping criteria apply and we perform this action on
both focus-areas.

BOIL produces a good general model from the illumination stage
and has benefited from the focused illumination on two areas of in-
terest. Next, we simulate the decision-maker selecting a single point
with a continuous descriptor value and a single alpha value. We
perform 20 steps with a continuous optimizer over the acquisition
function (Equation 17) and return the best solution found.

Figure 6: A visualisation of 3 potential target points selected
by the DM. As the black point in the left region shows, the
DM’s target point need not be in reachable space. The 𝛼 value
will define their preference over the trade off between prox-
imity to the point and fitness.

We compare the performance of BOIL’s final output against the
MAP-Elites algorithm. In our experiments BOIL never exceeded 350
additional observations (450 total) until it has converged to a solu-
tion and we give MAP-Elites the same budget over a 20x20 solution
archive to aid it in covering the descriptor space. As Figure 7 shows
visually, the solution archive created by MAP-Elites using at least
as many evaluations as BOIL is less diverse and of lower quality.
In order to select a final point, we search the resulting MAP-Elites
solution archive for the point which provides the best utility given
the DMs preferences, and report on the average utility, fitness and
distance from target point obtained.

Figure 7: Visualization of MAP-Elites solution archive (left).
As MAP-Elites was run at the [20x20] resolution, we compare
the observation set of BOIL (Right) at the same resolution
after convergence.
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5.2 Empirical results
The regions, points and alphas are not known a priori to either
algorithm. 2 rectangular regions were generated and 3 target points
were randomly chosen from within the focus areas to simulate the
behaviour of a DM. In order to produce a clear comparison we
run the same experiment with these same regions and points and
declare the average performance.

BOIL MAP-Elites
Point 𝜶 Avg. Avg.
Black 3 0.4790 ±0.0001 0.1562 ±0.0026
White 0.2 0.8407 ±0.0002 0.4116 ±0.0039
Red 1 0.7670 ±0.0007 0.4155 ±0.0124

Table 1: Average utility of the returned points and the stan-
dard error (SE) around the mean by BOIL and MAP-Elites
for the single target problem, colors of points as in Figure 6,
average over 30 runs

As can be seen in Table 1, the BOIL algorithm finds a far better
solution in terms of ultility compared to MAP-Elites in every case,
targeting an optimal trade-off between the DM’s preference for
fitness and distance from descriptors. The utilities are a combination
of fitness and distance and we report the average performance in
each metric in Table 2.

Figure 8 visually displays, for each of the three target point
examples (black, white and red), the returned solutions by the two
algorithms. For the black example with 𝛼 = 3 (a strong penalty for
distance from the target), both algorithms find solutions relatively
close, but the one found by BOIL is closer. For the red target point
with 𝛼 = 1, the points returned are much further away, but of a
much better fitness (lighter green) than potential alternative points
closer to the target. The point returned by BOIL is not only closer,
but also has higher fitness. Finally, in the example of the white
target the DM indicated that distance to the target is not very
important by setting 𝛼 = 0.2, and correspondingly solutions are
far away once more. BOIL now seems to have returned a point
close to the global optimum, whereas the points returned by MAP-
Elites are significantly worse. Note that the figure shows several
returned solutions for MAP-Elites in the red and white example,
from different runs. On the other hand, BOIL consistently returns
the same solution.

Black 𝛼 = 3 White 𝛼 = 0.2 Red 𝛼 = 1
Avg. Avg. Avg.

BOIL fit 0.481 ±0.0004 0.928 ±0.001 0.805 ±0.0003
BOIL Dist. 0.001 ±0.00002 0.437 ±0.003 0.038 ±0.0007
ME Fit. 0.577 ±0.015 0.451 ±0.005 0.777 ±0.010
ME Dist. 0.140 ±0.007 0.197 ±0.013 0.362 ±0.012

Table 2: Average fitnesses and distances with standard errors
(SE) from the target for the single target problem, colors of
points as in Figure 6

Table 2 further confirms that BOIL, on average, finds both higher
fitness points and closer solutions for the higher values of 𝑎𝑙𝑝ℎ𝑎.

Figure 8: A selection of indicative points from the returned
solutions.

When 𝑎𝑙𝑝ℎ𝑎 = 0.2, for the white target, BOIL finds a point closer
to the global maximum and cares less about distance, as per the
preference of the DM.

6 CONCLUSION AND FUTUREWORK
We presented a novel, interactive optimization strategy that em-
powers a decision maker to understand the diversity in behavioural
space and the effect of these variations on the maximum achievable
fitness. By incorporating human interaction and prioritizing effi-
cient optimization, our approach outperforms MAP-Elites with a
subsequent selection from the generated archive and provides the
DM with assurance that the behavior space has been thoroughly
explored in the most promising regions identified. Additionally,
this strategy exhibits excellent efficiency in terms of the number of
samples required.

Our method incorporates a powerful entropy based adaptation
to the BOP-Elites acquisition function which enables better model
building and an interactive scaling method for focusing exploration
on regions of interest.

The final point returned to the DM is found by searching using
a Monte Carlo acquisition function that returns the best trade-off
between fitness and distance from the DM’s target descriptor given
the DM’s preferences.

This novel and effective optimization technique integrates con-
cepts from Bayesian Optimization, Quality-Diversity, and interac-
tive Multi-Objective Optimization. For future work, multi-objective
Bayesian optimization (e.g., a variant of [4]) could be used to directly
provide the DM with a set of non-dominated solutions regarding
fitness and distance to the DM’s target descriptor, alleviating the
need for the DM to specify a weighting factor. In our paper, we
have only considered the use case where the DM will eventually
pick a single solution. However, the approach can also be applied
in a lifelong learning scenario, where different solution behaviors
are required at different points in time, and the BOIL can be used
to quickly and precisely generate the specific behavior required
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each time, accumulating knowledge over time. Finally, further in-
vestigation should also consider a wider range of benchmarks and
domains, including real-world applications.
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