
Generating Diverse and Discriminatory Knapsack Instances by
Searching for Novelty in Variable Dimensions of Feature-Space

Alejandro Marrero
Universidad de La Laguna

San Cristóbal de La Laguna, Spain

Eduardo Segredo
Universidad de La Laguna

San Cristóbal de La Laguna, Spain

Emma Hart
Edinburgh Napier University
Edinburgh, United Kingdom

Jakob Bossek
RWTH Aachen University

Aachen, Germany

Aneta Neumann
The University of Adelaide

Adelaide, Australia

ABSTRACT
Generating new instances via evolutionary methods is commonly
used to create new benchmarking data-sets, with a focus on attempt-
ing to cover an instance-space as completely as possible. Recent
approaches have exploited Quality-Diversity methods to evolve sets
of instances that are both diverse and discriminatory with respect
to a portfolio of solvers, but these methods can be challenging when
attempting to find diversity in a high-dimensional feature-space.
We address this issue by training a model based on Principal Com-
ponent Analysis on existing instances to create a low-dimension
projection of the high-dimension feature-vectors, and then apply
Novelty Search directly in the new low-dimension space. We con-
duct experiments to evolve diverse and discriminatory instances of
Knapsack Problems, comparing the use of Novelty Search in the
original feature-space to using Novelty Search in a low-dimensional
projection, and repeat over a given set of dimensions. We find that
the methods are complementary: if treated as an ensemble, they
collectively provide increased coverage of the space. Specifically,
searching for novelty in a low-dimension space contributes 56%
of the filled regions of the space, while searching directly in the
feature-space covers the remaining 44%.

KEYWORDS
Instance generation, instance-space analysis, knapsack problem,
novelty search, evolutionary computation

ACM Reference Format:
Alejandro Marrero, Eduardo Segredo, Emma Hart, Jakob Bossek, and Aneta
Neumann. 2023. Generating Diverse and Discriminatory Knapsack Instances
by Searching for Novelty in Variable Dimensions of Feature-Space. InGenetic
and Evolutionary Computation Conference (GECCO ’23), July 15–19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3583131.3590504

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590504

1 INTRODUCTION
Methods for generating new sets of synthetic instances for a given
problem domain have attracted significant attention in the Evolu-
tionary Algorithm (EA) literature: they can be used to generate new
instances to cover areas of an instance-space currently lacking in
instances [4] and to generate instances that are hard or easy for a
particular solver or discriminatory with respect to a portfolio of
solvers [6, 15]. This helps to provide new insights into the relation-
ships between solver performance and instance characteristics. It
also informs the development of both better algorithm-selection
and algorithm-configuration methods.

The majority of existing methods tend to focus on one or the
other of the above tasks: either they generate instances that are
discriminatory without explicitly requiring diversity [2] or they
generate instances that are diverse but not necessarily discrimina-
tory [26]. However, very recent work has demonstrated that the
field of instance-generation could benefit from the class of EAs
known as Quality-Diversity (QD) algorithms [9]. Since their intro-
duction around a decade ago, these algorithms are now prolific
in the field of robotics due to their ability to increase exploration
(by rewarding diversity in a feature-space of interest defined by a
user) while simultaneously promoting quality, with the benefit of
returning multiple high-quality solutions in a single run [11, 32].
They have recently begun to gain traction within combinatorial
optimisation, e.g. [30] in increasing user-choice and most recently,
to generate instances that are both diverse and discriminatory with
respect to an algorithm portfolio [5, 20]. The term QD refers to
two main sub-classes of algorithms — MAP-Elites [22] and Novelty
Search (NS) [18]. In the former, a dynamically expanding population
of solutions is mapped to an 𝑛−dimensional archive discretised into
cells. Each dimension refers to a user-defined feature derived from
a solution. Each cell retains the solution with the highest objective
value found (i.e. its ability to discriminate between solvers). On the
other hand, in NS, a fixed size population of solutions is augmented
with a dynamically growing archive. A feature-vector is calculated
from each solution, and used to calculate the novelty of the solution
with respect to the current population and the archive. Selection to
create future generations is driven by a combination of objective
fitness and novelty.

MAP-Elites has shown promise in generating instances for the
Travelling Salesperson Problem (TSP) [5] but does not scale well
as the number of axes used to define the archive increases: for
example, in the former paper, just combinations of two features are
explored from a set of over 150 potential candidates to create the

https://doi.org/10.1145/3583131.3590504
https://doi.org/10.1145/3583131.3590504
https://doi.org/10.1145/3583131.3590504

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Marrero and Segredo, et al.

archive. On the other hand, [20] demonstrated that NS could be
used to generate knapsack instances using an 8d feature-vector to
calculate novelty. While this yielded promising results, the method
relies on calculating novelty as the distance between two feature-
vectors: this metric is problematic for high dimensional vectors
when distances become diminishingly small (the well known curse
of dimensionality [1]).

In this paper, we address these weaknesses. The innovation of
the work is to modify the approach proposed by Marrero et al. [20]
to search for novelty in a new low-dimensional space obtained
by projecting from the original feature-space associated with an
instance. This builds on the intuition that it is easier to explore
in a low-dimension space and therefore to locate new instances.
Furthermore, it opens up the possibility of scaling the method to
situations where the feature-vector contains a large number of
features1 by enabling all features to be captured in a low number of
dimensions in which it is meaningful to measure distance between
points. The contribution of this work is to evaluate an approach
to transforming the novelty space into a lower dimension, and
to show that by using an ensemble of models that create different
transformations, we are able to significantly improve instance space
coverage.

We test our hypothesis in the zero-one knapsack domain. A
thorough set of experiments examines whether the length of the
original feature-vector transformed to 2D influences results. Our
findings show that in fact the methods are complementary: NS
conducted in various 2D spaces is able to find instances in regions
of the instance-space not covered by NS conducted directly in the
original space and vice-versa, while there are some areas of the
space that both methods cover. We conclude that using an ensemble
of methods results in the widest coverage of the space.

We provide an overview of related work, followed by some brief
background regarding NS. This is followed by a detailed description
of the methods employed and analysis of the experimental results.

2 RELATEDWORK
As noted in the previous section, existing approaches to instance-
generation tend to focus either on generating discriminatory in-
stances or space-filling. With respect to the former, Smith-Miles
et al. [27] evolved instances for TSP that are either easy or hard
for two heuristic solvers. In the knapsack domain, a similar ap-
proach is used to evolve instances that are discriminatory with
respect to a portfolio of solvers [24], while in bin-packing, a large
set of instances are evolved to discriminate between four heuristic
solvers [2]. However, while successful in delivering discriminatory
instances, the approaches just mentioned make no effort to also
deliver diversity, hence new instances can be concentrated in small
regions of the potential space. Some attempts have been made to
implicitly address this: in [14], a new selection method is proposed
that favours offspring that maintains diversity with respect to a
chosen feature (as long as the offspring have a performance gap
over a given threshold), while Bossek et al. [4] proposed novel muta-
tion operators for the TSP domain which encourage exploration of
the feature-space while still optimising for discrimination without
explicit diversity preservation methods.

1For example, the R package salesperson returns more than 150 features for the TSP.

Algorithm 1: Novelty Search
Input :𝑁 , 𝑘 ,𝑀𝑎𝑥𝐸𝑣𝑎𝑙𝑠 , 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 , 𝑝𝑐𝑎
initialise(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑁);
evaluate(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜);
archive = ∅ ;
for 𝑖 = 0 to𝑀𝑎𝑥𝐸𝑣𝑎𝑙𝑠 do

parents = select(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛);
offspring = reproduce(𝑝𝑎𝑟𝑒𝑛𝑡𝑠);
offspring = evaluate(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔, 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 , 𝑘 , 𝑝𝑐𝑎)
(see Algorithm 2);

population = update(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔);
archive = update_archive(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑎𝑟𝑐ℎ𝑖𝑣𝑒);
solution_set = update_ss(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡);

end
return 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑠𝑒𝑡

On the other hand, another line of work from Smith-Miles et
al. [26] focuses directly on evolving diverse instances that fill re-
gions of an instance-space where there are currently gaps, without
considering portfolios of solvers. Specifically, an instance-space
is created by first describing instances using a high-dimensional
feature-vector, and then projecting those instances into a 2D space,
e.g. using Principal Component Analysis (PCA) [26]. A target loca-
tion in the 2D space is identified and then an EA is used to search for
instances that match the target. However, there is no guarantee the
evolved instances will be discriminatory with respect to a portfolio
of interest.

There are two recent examples of attempts to evolve instances
that are both diverse and discriminatory, addressing weaknesses in
the approaches described above, both of which use methods from
the growing field of QD and discussed in Section 1. A MAP-Elites
algorithm was used to generate new discriminatory TSP instances
that were diverse with respect to multiple combinations of two
features chosen by the authors in [5]. NS was used by Marrero et
al. [20] to generate new knapsack instances that are diverse with
respect to an 8-dimensional feature-vector while discriminatory
with respect to a portfolio of four EA solvers. Clearly there is scope
for improvement. Existing QD literature indicates that defining
suitable descriptors for both QD methods (i.e. to define the axes of
the archive in MAP-Elites or the novelty descriptor in NS) is both
crucial and challenging, and can have significant influence on the
dynamics of the algorithm [25]. More recent work in the QD field
in the context of robotics and generative design has indicated that
searching in a transformed low-dimensional space derived from
the solution-space can also improve results [10]. Here we propose
to use PCA to transform a high-dimensional feature-vector in 2D
and measure novelty in this space. While alternative dimension-
ality reduction approaches are possible (e.g. autoencoders [29] or
UMAP [21]), we selected PCA given that it is both quick to train
and computationally inexpensive to calculate the transformations
of new instances produced by the EA.

3 NOVELTY SEARCH: BACKGROUND
The paper builds directly on the work of Marrero et al. [20], which
uses NS to discover instances that are novel w.r.t instance features,
and show discriminatory behaviour regarding a portfolio of solvers.

Generating Diverse and Discriminatory Knapsack Instances by Searching for Novelty in Variable Dimensions of Feature-Space GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 1: Flow of NS algorithm: dotted lines show the exe-
cution of the 𝑁𝑆𝑓 method (high-dimensional novelty vec-
tor), while dashed lines show the run of the 𝑁𝑆𝑃𝐶𝐴 method
(low-dimensional projected novelty vector). Solid lines show
common paths. The low-dimensional projection model is
pre-trained before the execution of each NS method.

NS was first introduced by Lehman et al. [18] as an attempt to
mitigate the problem of finding optimal solution in deceptive land-
scapes, with a focus on the control problems. The core idea replaces
the objective function in a standard evolutionary search process
with a function that rewards novelty rather than a performance-
based fitness value to force exploration of the search-space.

An overview of the algorithm proposed by Marrero [20] is given
in Algorithm 1. In brief, a population defining new instances is
evolved that are discriminatory with respect to a target algorithm
selected from a portfolio. Uniform crossover and Uniform One
mutation are applied to create new child instances. The evaluation
function (Algorithm 2) assigns a fitness value based on a linearly
weighted combination of novelty and objective fitness. The former
measures the novelty of an instance with respect to a user-defined
descriptor that denotes a set of characteristics of a solution, e.g. a
set of features describing the instance. For each solution, novelty
is calculated as the average distance between its descriptor and
that of its 𝑘 nearest neighbours. Neighbours are calculated w.r.t
the current population and an archive of previously discovered
solutions, which is updated at each generation of the algorithm and
provides a historical record of places visited in the search-space.
On the other hand, objective fitness is calculated as the difference
in performance between the target solver and the next best solver
in the portfolio, with the goal of maximising this value. After each
iteration, the archive of past solutions is updated in two manners.
Firstly, we randomly select a sample of individuals from the current
population and insert it in the archive with a probability of 1%
following common practice in the literature [28]. Then, whichever
individual from the current generation with a novelty score greater
than a pre-defined threshold 𝑡𝑎 is also included to the archive. The
algorithm returns a set of solutions.

The process is depicted diagrammatically in Figure 1. As noted
in Section 1, the key modification to the original approach proposed
in this paper is to alter the descriptor used to calculate novelty. We
pre-train a dimensionality reduction method to reduce the feature-
vector described in [20] to two dimensions. Hence, each time a new
instance is produced, its feature vector is calculated and then it is

Algorithm 2: Evaluation
Input :𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔, 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 , number of nearest

neighbours 𝑘 , low-dimension model 𝑝𝑐𝑎
for 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 in 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔 do

for 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 in 𝑝𝑜𝑟𝑡 𝑓 𝑜𝑙𝑖𝑜 do
apply 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 to solve 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑅 times;
calculate mean profit of 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

end
if 𝑁𝑆𝑃𝐶𝐴 then

descriptors← reduceDimensionality(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔,
𝑝𝑐𝑎)

else
descriptors← featureVector (𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔)

end
calculate the novelty score(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟𝑠 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 , 𝑘);
calculate the performance score(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔);
calculate fitness(𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔);

end
return 𝑜 𝑓 𝑓 𝑠𝑝𝑟𝑖𝑛𝑔

projected to 2D using the pre-trained model. This projection is then
used in the novelty calculation in step 11 of Algorithm 2.

Specific details of the dimensionality-reduction approach used,
as well as details of the algorithm portfolio and instance definition
are given in the next section.

4 METHODS
This section provides specific detail on each of the steps of the
approach described above.

4.1 Instance Representation
We apply the approach to generating instances for the zero-one
Knapsack Problem (KP) domain, a commonly studied [8, 23] com-
binatorial optimisation problem with many practical applications.
The KP requires the selection of a subset of items from a larger
set of 𝑁 items, each with profit 𝑝 and weight 𝑤 in such a way
that the total profit is maximised while satisfying a constraint that
the weight remains under the knapsack capacity 𝐶 . Each instance
is described by an array of real numbers of size 2 × 𝑁 , where 𝑁
is the dimension (number of items) of the instance of the KP we
want to create, with the weights and profits of the items stored at
the even and odd positions of the array, respectively. The capacity
𝐶 of the knapsack for each new individual generated is defined
as 80% of the sum of the weights of all items since using a fixed
capacity would tend to create insolvable instances. This value can
be tweaked to create easier or harder instances to be solved for
each solver. We evolve randomly generated and fixed size instances
containing 𝑁 = 50 items, hence each individual describing an in-
stance contains 100 values describing pairs of (profit, weight). In
addition, upper and lower bounds were set to delimit the maximum
and minimum values of both profits and weights.2

2The description of an instance follows the general method of [24], except that they
converted the real-valued profits/weights to a binary representation.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Marrero and Segredo, et al.

Table 1: Pearson correlation coefficients 𝑃𝑓 ,𝑡𝑝 of each feature
𝑓 to the target performance 𝑡𝑝 .

Feature 𝑓 𝑃𝑓 ,𝑡𝑝

𝐶 0.849306
std 0.186009
mean 0.084504
min_p 0.054122
max_w 0.036205
min_w 0.007127
avg_eff -0.005272
max_p -0.054382

4.2 Algorithm Portfolio
While the portfolio can contain any number or type of solvers; i.e
Marrero et al. used a portfolio of EA configurations [19], we restrict
experiments to a portfolio containing a set of four deterministic
heuristics described in [24]. Default (Def) selects the first item
available to be inserted into the knapsack; Max Profit (MaP) sorts
the items by profit and selects those items with largest profit first;
Max Profit per Weight (MPW) sorts the items according to efficiency
(ratio between the profit and weight of each item) and selects those
items with largest ratio first; and finally, Min Weight (MiW), which
selects items with the lowest weight first. The reason behind this
portfolio definition is to lighten the computational work required
for the experimental evaluation. The selected KP heuristics are
considerable fast algorithms in comparison to previous portfolios
of EA solvers [20]. Moreover, the deterministic nature of the solvers
allows an instance to be evaluated only once, instead of performing
several repetitions per instance and solver.

4.3 Novelty Descriptors
As noted, two different types of novelty descriptors are defined.

• High-dimension: An 𝑛-dimensional descriptor defined by
Marrero et al. [20] where 𝑛 ∈ {4, 6, 8}.
• Low-dimension: A 2D descriptor which is calculated by
projecting an 𝑛-dimensional feature-vector to two dimen-
sions using a pre-trained dimensionality reduction model. To
investigate the influence of the reduction in dimensionality,
we evaluate models that project from 8D, 6D and 4D to 2D.

For the high-dimensional methods, the 8D descriptor is defined
using a set of 8 commonly used features from the literature: capacity
of the knapsack (𝐶); minimum weight/profit (min_w, min_p); max-
imum weight/profit (max_w, max_p); average item efficiency (also
known as correlation); mean distribution of values between profits
and weights (mean); standard deviation of values between profits and
weights (std). The 8D descriptor uses the 8 features just described.
For 6D and 4D descriptors, 𝑛 features are selected in each case
by ranking the original 8 features in terms of their correlation to
the target performance (𝑡𝑝) across the training set (see Table 1)
and choosing the 𝑛 most correlated in each case. Therefore, 6D de-
scriptors are constructed with 𝐶 , std, mean, min_p, max_w, min_w
features, while 4D descriptors consider 𝐶 , std, mean, min_p.

The target performance 𝑡𝑝 is calculated as the mean profit
achieved in 𝑅 repetitions by the target algorithm. As is usual in the

Table 2: Parameter settings for NS which evolves the diverse
population of instances.

Parameter Value

Knapsack items (𝑁) 50
Weight and profit upper bound 1000
Weight and profit lower bound 1
Population size 10
Crossover rate 0.8
Mutation rate 1 / (𝑁 × 2)
Generations 1000
Repetitions (𝑅) 1
Distance metric Euclidean Distance
Neighbourhood size (𝑘) 3
Threshold (𝑡𝑎) 3.0, 0.0001

KP domain, profit is defined as the sum of the profits of those items
included into the knapsack.

To obtain the low-dimension descriptors, we use PCA trained
on a large dataset. This dataset was obtained by running the 𝑁𝑆𝑓
algorithm from Marrero et al. [20] to generate instances that are
discriminatory w.r.t the four deterministic solvers described above
using a 8D feature vector. 600 instances were generated per solver
giving a training set of 2,400 instances each with an 8D feature-
vector associated. As PCA assumes that there is correlation among
features, Barlett’s Test of Sphericity was applied to the 2,400 in-
stance dataset to check this assumption holds. The p-value obtained
(𝑝 = 1.367𝑒 − 311) confirms that the assumption of correlation is
valid. All features were standardised by removing the mean and
scaling to unit variance. PCA was then applied to the scaled data to
obtain a 2D projection of an 𝑛-dimensional feature vector on a set
of training instances. We trained three models to project from {8D,
6D, 4D} feature-vectors to 2D. All models were trained using the
same data-set by considering the 𝑛 features selected as described
above. Each time a new instance is discovered by the search pro-
cess, its 𝑛 features are calculated and then these are projected to 2D
by the corresponding pre-trained model to calculate novelty (see
Algorithm 2, step 7). It is important to note that all PCA procedures
map the descriptors to a 2D space for two main reasons: for faster
calculations in 𝑁𝑆𝑃𝐶𝐴 , and to obtain clearer visualisations of the
instance distribution.

5 RESULTS

Each of the two NS algorithms (𝑁𝑆𝑓 for the high-dimensional
space and 𝑁𝑆𝑃𝐶𝐴 for the 2D projected space) was run for 1,000
generations and 10 times for each of the four target heuristics. The
instances for each run per target were combined. The parameter 𝜙
describing the performance/novelty balance was set to 0.85 in all
cases. Parameters for both approaches were taken directly from [20]
and are given in Table 2. The only exception arises regarding the
threshold values given in the last row of the said table. This pa-
rameter determines the minimum novelty score for new instances
to be inserted into the archive and to be included in the final so-
lution set. For high-dimensional spaces (such as 8D, 6D and 4D)
we followed the steps from Marrero et al. [20] and set 𝑡𝑎 = 3.0. In

Generating Diverse and Discriminatory Knapsack Instances by Searching for Novelty in Variable Dimensions of Feature-Space GECCO ’23, July 15–19, 2023, Lisbon, Portugal

contrast, considering 𝑁𝑆𝑃𝐶𝐴 , we set 𝑡𝑎 = 0.0001, as the range of
values for the novelty scores measured in the 2D space occur on a
smaller scale. The values shown were obtained from an extensive
parameter tuning evaluation by means of generating 10 evenly
spaced numbers in the range [0.0, 3.0] and evaluating the number
of instances generated and the space coverage (more details about
its calculation are given below). For a more in-depth analysis on
the impact of the parameters, please refer to [20]. Finally, we note
that all algorithms were written in C++.3

The experimental assessment was conducted to address two
main questions using data obtained from six different experiments:
three experiments using a high-dimensional feature vector (8D, 6D,
4D) to calculate novelty using𝑁𝑆𝑓 , and three experiments using the
2D projection obtained from the corresponding high-dimensional
model to calculate novelty using 𝑁𝑆𝑃𝐶𝐴 . Particularly, we address
the following research questions:

(1) To what extent does each of the six different methods locate
instances in different parts of the instance-space?

(2) To what extent is each of the six methods able to discover
instances that are discriminatory for each solver in the port-
folio?

By examining the results collectively, we then evaluate whether
an ensemble composed of a mixture of the above approaches out-
performs subsets of methods. In the following diagrams and tables,
we use the terms 𝑁𝑆𝑓 and 𝑁𝑆𝑃𝐶𝐴 for the high-dimensional and
reduced feature-space NS algorithms, respectively, and subscripts
{8D, 6D, 4D} to refer to each feature-space. Moreover, subscript 𝑐
refers to a combination of all runs for each method.

5.1 Coverage
We first provide a qualitative analysis of the results. Instances gen-
erated from all methods were combined into a single dataset: this
was used to obtain a PCA projection of the entire dataset for easy
visualisation. The said projection was created by calculating the
8D feature-vector of every instance (regardless of how it was gen-
erated), and using the 8D vector in combination with the instance
information as input to PCA. Again, the input was scaled before
applying the PCA.

Results are shown in Figure 2. The left-hand side shows the dis-
tribution of instances generated by each run of 𝑁𝑆𝑃𝐶𝐴 from using
the three different projection models (8D, 6D and 4D to 2D). As
expected, there is some overlap between some methods, particu-
larly in the centre of the space. However, we notice that 𝑁𝑆𝑃𝐶𝐴6𝐷
and 𝑁𝑆𝑃𝐶𝐴4𝐷 approaches were able to locate instances in different
regions of the space, and therefore complement 𝑁𝑆𝑃𝐶𝐴8𝐷 . Figure 2
(middle) shows the same information but for 𝑁𝑆𝑓 runs instead. In
contrast to the 𝑁𝑆𝑃𝐶𝐴 runs, the instances for 𝑁𝑆𝑓 are considerably
more clustered in the middle of the space. 𝑁𝑆𝑓4𝐷 however does
locate some instances in the bottom left corner of the space. Finally,
the right-hand side of Figure 2 shows the combination of the pre-
vious representations on one diagram. Notice that the instances
generated by 𝑁𝑆𝑃𝐶𝐴 not only are able to cover regions of the space
which 𝑁𝑆𝑓 cannot, but also some instances from 𝑁𝑆𝑃𝐶𝐴8𝐷 and

3The source code, instances generated and results obtained are available through a
GitHub repository: https://github.com/PAL-ULL/ns_pca_gecco23.

Table 3: Summary of the U metric values and number of
instances generated per each method. Contribution shows
the percentage of how much each method contributed to the
final set of instances.

Method U Inst. Generated Contribution

𝑁𝑆𝑃𝐶𝐴𝑐
0.5719 5320

𝑁𝑆𝑓𝑐 0.5348 4363
𝑁𝑆𝑓8𝐷 0.5133 1623 16.76
𝑁𝑆𝑃𝐶𝐴8𝐷 0.4701 1801 18.59
𝑁𝑆𝑃𝐶𝐴6𝐷 0.4629 1919 19.81
𝑁𝑆𝑓4𝐷 0.4313 1420 14.66
𝑁𝑆𝑓6𝐷 0.4305 1320 13.63
𝑁𝑆𝑃𝐶𝐴4𝐷 0.4193 1600 16.52

𝑁𝑆𝑃𝐶𝐴4𝐷 are filling the gaps between the small cluster of 𝑁𝑆𝑓4𝐷
on the bottom left and the centre of the space.

In order to quantitatively evaluate the extent to which the
evolved instances cover the instance space, we calculate the ex-
ploration uniformity (𝑈) metric, previously proposed in [16, 17].
This compares the distribution of solutions in the space with a hy-
pothetical Uniform Distribution (𝑈𝐷) and is calculated as follows.
First, the environment obtained from all the information available
is divided into a grid of 25 × 25 cells, after which the number of
solutions in each cell is counted. Next, the Jensen-Shannon di-
vergence (JSD) [12] is used to compare the distance between the
distribution of solutions and the ideal UD. The 𝑈 metric is then
calculated as

𝑈 (𝛿) = 1 − 𝐽𝑆𝐷 (𝑃𝛿 ,𝑈𝐷) . (1)

In Equation 1, 𝛿 denotes a descriptor associated with a solution.
Obtaining a score of 1 proves a perfect uniformly distributed set
of solutions. This descriptor is defined as the first two principal
components of each solution according to the PCA projection used
for visualisation described at the beginning of this section.

Table 3 summarises the number of instances generated and the
coverage metric𝑈 per each method. In addition, it shows the con-
tribution of each method as a percentage of all filled cells in the
25 × 25 grid. Figure 3 provides a graphical representation of the
distribution of cells covered by each method, following the same
layout as Figure 2. The purple colour on the left and middle plots of
Figure 3 represents cells of the space that are covered by more than
one approach. There are only 30 cells that are filled by at least two
of the 𝑁𝑆𝑃𝐶𝐴 runs, and it can be observed that 𝑁𝑆𝑃𝐶𝐴6𝐷 covers
the larger area in comparison to other approaches. However, for
the 𝑁𝑆𝑓 approaches, this number rises to 62, with 𝑁𝑆𝑓8𝐷 represent-
ing the approach which covers most space. This provides a clear
insight that the instances generated by the 𝑁𝑆𝑓 approaches suffer
from more overlap when compared to the instances generated by
𝑁𝑆𝑃𝐶𝐴 .

Table 4 shows the number of instances generated for each tar-
get solver in the portfolio by each method after 10 independent
runs. Although 𝑁𝑆𝑓 seems to generate more instances than 𝑁𝑆𝑃𝐶𝐴 ,
the total amount of instances generated by each approach is rel-
atively similar. In addition, Table 5 summarises the number of
unique instances encountered in the final combined set. We define
unique instances in terms of non-duplicated 8D feature-vectors of

https://github.com/PAL-ULL/ns_pca_gecco23

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Marrero and Segredo, et al.

Figure 2: Instances generated for different NS algorithms represented in the same space. Yellow crosses represent the instances
from 𝑁𝑆𝑃𝐶𝐴 projecting 8D to 2D; green squares for 𝑁𝑆𝑃𝐶𝐴 projecting 6D to 2D; blue circles for 𝑁𝑆𝑃𝐶𝐴 projecting 4D to 2D; red
pluses for 𝑁𝑆𝑓 searching on 8D feature space; light-blue triangles for 𝑁𝑆𝑓 searching on 6D; and dark-red diamonds for 𝑁𝑆𝑓
searching on 4D.

Figure 3: Cells filled by each method in the 25 × 25 grid obtained from all the information available.

instances. Results show that 31.67% of instances generated for Def
solver across all methods are unique (228 out of 720), 53.57% for
MPW, 33,84% for MaP and 32,61% for MiW. Results evidence that
the generation of discriminatory instances for MPW is considerably
difficult across all approaches, while some methods struggle to gen-
erate instances for Default solver as well; i.e 𝑁𝑆𝑓4𝐷 and 𝑁𝑆𝑃𝐶𝐴6𝐷
provide fewer than 100 instances for Default.

5.2 Instance Overlap
We now provide additional insight into the overlap of instances
generated by the different methods. We compare the instances
generated for every pair of methods based on their 8D feature
vectors regardless of the selected target solver. Results are given
in Table 6. Each cell shows the fraction of overlap (𝑜𝑝𝑖 𝑗) between
the set of instances generated by each pair (𝑖, 𝑗) of methods, and
therefore has a value between 0 and 1. For every (𝑖, 𝑗) method pair,
the overlap is calculated as 𝑜𝑝𝑖 𝑗 = (𝑡𝑜𝑡𝑎𝑙𝑖+𝑗 − 𝑢𝑛𝑖𝑞𝑢𝑒𝑖+𝑗)/𝑡𝑜𝑡𝑎𝑙𝑖+𝑗 .
Here 𝑡𝑜𝑡𝑎𝑙𝑖+𝑗 is the union of 8D feature vectors extracted from those

instances generated by methods 𝑖, 𝑗 , while 𝑢𝑛𝑖𝑞𝑢𝑒𝑖+𝑗 are the non-
duplicated 8D feature vectors from the previous union set. Notice
that although there is some overlap between all pairs, each method
is able to generate some instances that no other method produces.
There is high overlap between pairs of 𝑁𝑆𝑃𝐶𝐴 methods, while
interestingly, less overlap between pairs of 𝑁𝑆𝑓 methods. Now the
key takeaway from this table is that the ensemble is beneficial;
removal of any single method would reduce overall coverage.

5.3 Discriminatory Ability
Finally, we provide further insight into the performance diversity of
the evolved instances (see Figures 4 and 5). We follow the method
of Marrero et al. [20] to calculate the performance score 𝑝𝑠 of each
instance (see Equation 2). Thus, 𝑝𝑠 is defined by the difference be-
tween the mean target performance and the maximum of the mean
performance achieved in 𝑅 repetitions by the remaining approaches
of the portfolio defined as 𝑜𝑝 .

𝑝𝑠 = 𝑡𝑝 −max(𝑜𝑝) (2)

Generating Diverse and Discriminatory Knapsack Instances by Searching for Novelty in Variable Dimensions of Feature-Space GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 4: Summary of the number of instances generated for
each target after 10 repetitions of every NS method. The min-
imum, mean, standard deviation and maximum number of
instances generated by each method regardless of the solver
are also given.

Method Def MPW MaP MiW Min Mean Std Max

𝑁𝑆𝑓8𝐷 131 31 774 687 1 40.57 34.73 105
𝑁𝑆𝑓6𝐷 100 10 650 560 1 33.0 28 65
𝑁𝑆𝑓4𝐷 40 20 570 790 2 35.5 33.85 79

𝑁𝑆𝑓𝑐 271 61 1994 2037

𝑁𝑆𝑃𝐶𝐴8𝐷 140 21 900 740 1 45.02 38.12 90
𝑁𝑆𝑃𝐶𝐴6𝐷 39 20 960 900 2 62.67 43.70 96
𝑁𝑆𝑃𝐶𝐴4𝐷 270 10 640 680 1 40 27.96 68
𝑁𝑆𝑃𝐶𝐴𝑐

449 51 2500 2320

Table 5: Summary of unique instances generated for each
target in the portfolio across all methods. Unique instances
are calculated based on non-duplicated 8D feature vectors.

Target Unique Instances Generated

Def 228 720
MPW 60 112
MaP 1521 4494
MiW 1421 4357

Table 6: Summary of overlap in instances generated (regard-
less of the target solver) for every pair of methods. Instances
are compared based on their 8D feature vectors. Each cell
shows the fraction of overlapping instances.

𝑁𝑆𝑓8𝐷 𝑁𝑆𝑓6𝐷 𝑁𝑆𝑓4𝐷 𝑁𝑆𝑃𝐶𝐴8𝐷 𝑁𝑆𝑃𝐶𝐴6𝐷

𝑁𝑆𝑓6𝐷 0.35
𝑁𝑆𝑓4𝐷 0.23 0.63
𝑁𝑆𝑃𝐶𝐴8𝐷 0.47 0.84 0.72
𝑁𝑆𝑃𝐶𝐴6𝐷 0.48 0.84 0.72 0.89
𝑁𝑆𝑃𝐶𝐴4𝐷 0.45 0.84 0.70 0.90 0.89

Figures 4 and 5 show the spread in the magnitude of the perfor-
mance difference as detailed in Equation 2 for instances generated
for the MaP heuristic using 𝑁𝑆𝑓 and 𝑁𝑆𝑃𝐶𝐴 for 6D and 4D spaces,
respectively.4 We note that both approaches are able to generate
diverse instances in terms of this metric, while a minor number of
instances have a relatively small gap. Applying a Shapiro test to
check for normality shows that no significant departure from nor-
mality was found (𝑝 < 0.05) for each of the resulting distributions.

Hence, we demonstrate that instances exhibit not only diversity
in terms of space coverage but also performance diversity with
respect to the solvers.

4Plots for the remaining heuristics are available at the aforementioned GitHub
repository.

Figure 4: Distribution of performance gap between 𝑁𝑆𝑓6𝐷
(top) and 𝑁𝑆𝑃𝐶𝐴6𝐷 (bottom) approaches by considering the
instances generated for MaP solver.

6 DISCUSSION
In this article, we proposed a modification to an NS algorithm de-
signed to generate diverse instances with the goal of enhancing
its ability to find instances in regions not covered by the original
method. The proposed approach searches for novelty in a trans-
formed search-space, obtained by creating a 2D projection of the
novelty vector originally proposed in [20]. The results in the previ-
ous section clearly demonstrate that measuring novelty in different
spaces leads to the identification of instances in different regions
of the space. While there is obviously some overlap, the ensemble
of methods collectively leads to better coverage.

It is well known in the QD literature that identification of suit-
able descriptors to define the space in which diversity is measured
is crucial [7, 13], with the choice having a strong influence on the
results obtained. Furthermore, the QD literature also points to the
fact that if the space defined by the descriptors is high-dimensional,
then a suitable dimensionality reduction technique is required to
maintain a limited number of niches for the algorithm to search.
Although never specifically investigated in the context of instance-
generation, the generative design literature that often exploits QD
techniques has demonstrated that in fact searching for an appropri-
ate transformation of the space is beneficial in increasing diversity
of solutions found. For example, [13] use a data-driven approach
that uses an autoencoder [29] to periodically learn a mapping into

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Marrero and Segredo, et al.

Figure 5: Distribution of performance gap between 𝑁𝑆𝑓4𝐷
(top) and 𝑁𝑆𝑃𝐶𝐴4𝐷 (bottom) approaches by considering the
instances generated for MaP solver.

a new space from data points discovered during the search while
Bossens et al. [7] use a meta-QD approach that searches for new
transformations that then lead to better results if the QD algorithm
is applied in the suggested space. Although this is demonstrated to
be successful, it has the disadvantage of being extremely computa-
tionally expensive. The method we propose takes a more pragmatic
approach of directly specifying a set of transformations, evaluating
each individually and then combining the results as an ensemble.
However, there is considerable scope for investigating more com-
plex methods along the lines just discussed.

We focus on one specific category of transformation, i.e. trans-
forming a high-dimensional space to a lower one. The choice of
method used to create the transformation from is clearly impor-
tant. We elected to use PCA to obtain the 2D projections required,
which is a linear projectionmodel. However, considering alternative
dimensionality-reduction techniques is important to extend this
work. Several candidates exist: the main criteria is that any method
must learn a model that can be used to find a projection of unseen
instances due to the mechanics of the NS algorithm. This rules
out the popular visualisation technique 𝑡-SNE [31] for example.
Potential candidates include UMAP [21], a non-linear method that
has tunable parameters, as well as methods from machine-learning
such as auto-encoders, although the latter tend to require large
volumes of data and have long training times.

7 CONCLUSIONS
This paper proposed an ensemble approach to generating large sets
of instances that are diverse with respect to a feature-space and
discriminatory with respect to a portfolio of solvers. Our approach
builds on previous approaches that showed that QD methods, such
as MAP-Elites and NS, are useful in this respect. In contrast to previ-
ous work in which novelty was defined with respect to one descrip-
tor defining the space in which novelty is measured, our methods
consider a range of descriptors that facilitate search in different
spaces. Specifically, we propose the use of new descriptors that are
obtained by mapping from a high-dimensional feature-vector to
a lower one. This specific choice has multiple advantages. Firstly,
it is able to exploit existing dimensionality-reduction methods to
create new transformations of existing data. Secondly, it opens up
the possibility of applying the method to generating instances that
are described by a very large set of features. Current approaches
tend to simply select a small number of features (e.g. [5]) which
fails to capture the full description of an instance. Furthermore,
using a dimensionality-reduction technique to create the transform
addresses the potential issue concerning measuring distance in very
high-dimensional spaces (see Section 1). Finally, as noted by [7],
searching in a space with lower dimensionality reduces the number
of niches the algorithm needs to search.

The results clearly demonstrate that searching for novelty in six
different spaces (three defined by 𝑁𝑆𝑓 and three by 𝑁𝑆𝑃𝐶𝐴) covers
more of the space than any individual method, and that each of the
sixmethods contributes towards the final collection of instances (see
Table 3). Therefore, there is value in using an ensemble approach.
Furthermore, we also demonstrate that as well as being diverse, the
instances are also discriminatory (Table 4). Note that it is muchmore
difficult to generate discriminatory instances for the two heuristics
MPW and Def than MaP and MiW. It is not clear whether this is
due to the fact that these heuristics are intrinsically weak compared
to the other two and hence there are very few cases in which they
outperform the other methods, or whether the algorithm fails to
locate them. We leave this for further work.

Future work will be directed towards evaluating the method in
additional domains, for example in TSP, where there has already
been some interest in generating diverse instances [4, 5]; and in bin-
packing, where there has also been some preliminary work in trying
to produce diverse instances [3]. As noted in Section 6, an obvious
avenue for future investigation is also to consider different methods
of learning new descriptors. Finally, we intend to investigate how
the method scales to both very large feature-spaces and with the
size of the portfolio of solvers.

ACKNOWLEDGEMENTS
The work of Alejandro Marrero is funded by the Canary
Islands Government “Agencia Canaria de Investigación Inno-
vación y Sociedad de la Información - ACIISI” [contract number
TESIS2020010005]. Emma Hart is partially funded by EPSRC
EP/V026534/1
The authors would like to thank Coromoto León and Frank
Neumann for their advice.

Generating Diverse and Discriminatory Knapsack Instances by Searching for Novelty in Variable Dimensions of Feature-Space GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. 2001. On the

Surprising Behavior of Distance Metrics in High Dimensional Space. In Database
Theory — ICDT 2001, Jan den Bussche and Victor Vianu (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 420–434. https://doi.org/10.1007/3-540-44503-
X_27

[2] Mohamad Alissa, Kevin Sim, and Emma Hart. 2019. Algorithm Selection Using
Deep Learning without Feature Extraction. In Proceedings of the Genetic and
Evolutionary Computation Conference (Prague, Czech Republic) (GECCO ’19).
Association for Computing Machinery, New York, NY, USA, 198–206. https:
//doi.org/10.1145/3321707.3321845

[3] Mohamad Alissa, Kevin Sim, and Emma Hart. 2023. Automated Algorithm
Selection: from Feature-Based to Feature-Free Approaches. Journal of Heuristics
29, 1 (2023), 1–38. https://doi.org/10.1007/s10732-022-09505-4

[4] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neu-
mann, and Heike Trautmann. 2019. Evolving Diverse TSP Instances by Means of
Novel and Creative Mutation Operators. In Proceedings of the 15th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms (Potsdam, Germany) (FOGA
’19). Association for Computing Machinery, New York, NY, USA, 58–71. https:
//doi.org/10.1145/3299904.3340307

[5] Jakob Bossek and Frank Neumann. 2022. Exploring the Feature Space of TSP
Instances Using Quality Diversity. In Proceedings of the Genetic and Evolutionary
Computation Conference (Boston, Massachusetts) (GECCO ’22). Association for
Computing Machinery, New York, NY, USA, 186–194. https://doi.org/10.1145/
3512290.3528851

[6] Jakob Bossek and Heike Trautmann. 2016. Understanding Characteristics of
Evolved Instances for State-of-the-Art Inexact TSP Solvers with Maximum
Performance Difference. In Proceedings of the XV International Conference of
the Italian Association for Artificial Intelligence on Advances in Artificial Intel-
ligence - Volume 10037 (AI*IA 2016). Springer-Verlag, Berlin, Heidelberg, 3–12.
https://doi.org/10.1007/978-3-319-49130-1_1

[7] David M. Bossens and Danesh Tarapore. 2022. Quality-Diversity Meta-Evolution:
Customizing Behavior Spaces to a Meta-Objective. IEEE Transactions on Evolu-
tionary Computation 26, 5 (2022), 1171–1181. https://doi.org/10.1109/TEVC.2022.
3152384

[8] Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. 2022.
Knapsack Problems — An Overview of Recent Advances. Part I: Single Knapsack
Problems. Comput. Oper. Res. 143, C (jul 2022), 13 pages. https://doi.org/10.1016/
j.cor.2021.105692

[9] Konstantinos Chatzilygeroudis, Antoine Cully, Vassilis Vassiliades, and Jean-
Baptiste Mouret. 2021. Quality-Diversity Optimization: A Novel Branch of
Stochastic Optimization. In Black Box Optimization, Machine Learning, and
No-Free Lunch Theorems, Panos M Pardalos, Varvara Rasskazova, and Michael N
Vrahatis (Eds.). Springer International Publishing, Cham, 109–135. https:
//doi.org/10.1007/978-3-030-66515-9_4

[10] Antoine Cully. 2019. Autonomous Skill Discovery with Quality-Diversity and Un-
supervised Descriptors. In Proceedings of the Genetic and Evolutionary Computa-
tion Conference (Prague, Czech Republic) (GECCO ’19). Association for Computing
Machinery, New York, NY, USA, 81–89. https://doi.org/10.1145/3321707.3321804

[11] Antoine Cully and Jean-Baptiste Mouret. 2013. Behavioral Repertoire Learn-
ing in Robotics. In Proceedings of the 15th Annual Conference on Genetic and
Evolutionary Computation (Amsterdam, The Netherlands) (GECCO ’13). As-
sociation for Computing Machinery, New York, NY, USA, 175–182. https:
//doi.org/10.1145/2463372.2463399

[12] B. Fuglede and F. Topsoe. 2004. Jensen-Shannon divergence and Hilbert space
embedding. In International Symposium onInformation Theory, 2004. ISIT 2004.
Proceedings. 31–. https://doi.org/10.1109/ISIT.2004.1365067

[13] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. 2020. Discovering
Representations for Black-BoxOptimization. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (Cancún, Mexico) (GECCO ’20). Association
for Computing Machinery, New York, NY, USA, 103–111. https://doi.org/10.
1145/3377930.3390221

[14] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2016. Feature-Based
Diversity Optimization for Problem Instance Classification. In Parallel Problem
Solving from Nature – PPSN XIV, Julia Handl, Emma Hart, Peter R Lewis, Manuel
López-Ibáñez, Gabriela Ochoa, and Ben Paechter (Eds.). Springer International
Publishing, Cham, 869–879. https://doi.org/10.1007/978-3-319-45823-6_81

[15] Wanru Gao, Samadhi Nallaperuma, and Frank Neumann. 2021. Feature-based
diversity optimization for problem instance classification. Evolutionary Compu-
tation 29, 1 (2021), 107–128. https://doi.org/10.1162/evco_a_00274

[16] Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. 2015. Devising
Effective Novelty Search Algorithms: A Comprehensive Empirical Study. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
(Madrid, Spain) (GECCO ’15). Association for Computing Machinery, New York,
NY, USA, 943–950. https://doi.org/10.1145/2739480.2754736

[17] Léni K Le Goff, Emma Hart, Alexandre Coninx, and Stéphane Doncieux. 2020.
On Pros and Cons of Evolving Topologies with Novelty Search. , 423–431 pages.

https://doi.org/10.1162/isal_a_00291
[18] Joel Lehman and Kenneth O. Stanley. 2011. Abandoning objectives: Evolution

through the search for novelty alone. Evolutionary Computation 19, 2 (2011),
189–222. https://doi.org/10.1162/EVCO_a_00025

[19] Alejandro Marrero, Eduardo Segredo, and Coromoto Leon. 2021. A Parallel
Genetic Algorithm to Speed up the Resolution of the Algorithm Selection Problem.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Lille, France) (GECCO ’21). Association for Computing Machinery, New York,
NY, USA, 1978–1981. https://doi.org/10.1145/3449726.3463160

[20] Alejandro Marrero, Eduardo Segredo, Coromoto León, and Emma Hart. 2022. A
Novelty-Search Approach To Filling An Instance-Space With Diverse And Dis-
criminatory Instances For The Knapsack Problem. In Parallel Problem Solving from
Nature – PPSN XVII: 17th International Conference, PPSN 2022, Dortmund, Germany,
September 10–14, 2022, Proceedings, Part I (Dortmund, Germany). Springer-Verlag,
Berlin, Heidelberg, 223–236. https://doi.org/10.1007/978-3-031-14714-2_16

[21] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. 2018. UMAP:
UniformManifold Approximation and Projection. Journal of Open Source Software
3, 29 (2018), 861. https://doi.org/10.21105/joss.00861

[22] Jean-Baptiste Mouret and Jeff Clune. 2015. Illuminating search spaces by mapping
elites. arXiv preprint arXiv:1504.04909 abs/1504.04909 (2015). https://doi.org/10.
48550/arXiv.1504.04909

[23] David Pisinger. 2005. Where are the hard knapsack problems? Computers and
Operations Research 32, 9 (2005), 2271–2284. https://doi.org/10.1016/j.cor.2004.
03.002

[24] Luis Fernando Plata-González, Ivan Amaya, José Carlos Ortiz-Bayliss, Santi-
ago Enrique Conant-Pablos, Hugo Terashima-Marín, and Carlos A. Coello Coello.
2019. Evolutionary-based tailoring of synthetic instances for the Knapsack prob-
lem. Soft Computing 23, 23 (2019), 12711–12728. https://doi.org/10.1007/s00500-
019-03822-w

[25] Justin K. Pugh, L. B. Soros, Paul A. Szerlip, and Kenneth O. Stanley. 2015.
Confronting the Challenge of Quality Diversity. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation (Madrid, Spain)
(GECCO ’15). Association for ComputingMachinery, NewYork, NY, USA, 967–974.
https://doi.org/10.1145/2739480.2754664

[26] Kate Smith-Miles and Simon Bowly. 2015. Generating new test instances by
evolving in instance space. Computers and Operations Research 63 (2015), 102–113.
https://doi.org/10.1016/j.cor.2015.04.022

[27] Kate Smith-Miles, Jano van Hemert, and Xin Yu Lim. 2010. Understanding TSP
Difficulty by Learning from Evolved Instances. In Learning and Intelligent Opti-
mization, Christian Blum and Roberto Battiti (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 266–280. https://doi.org/10.1007/978-3-642-13800-3_29

[28] Paul A. Szerlip, Gregory Morse, Justin K. Pugh, and Kenneth O. Stanley. 2015.
Unsupervised Feature Learning through Divergent Discriminative Feature Ac-
cumulation. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI’15). AAAI Press, Austin, Texas, 2979–2985. https://doi.org/10.
1609/aaai.v29i1.9601

[29] Michael Tschannen, Olivier Bachem, and Mario Lucic. 2018. Recent advances in
autoencoder-based representation learning. In Third workshop on Bayesian Deep
Learning (NeurIPS 2018). arXiv. https://doi.org/10.48550/arXiv.1812.05069

[30] Neil Urquhart and Emma Hart. 2018. Optimisation and Illumination of a Real-
World Workforce Scheduling and Routing Application (WSRP) via Map-Elites. In
Parallel Problem Solving from Nature – PPSN XV, Anne Auger, Carlos M Fonseca,
Nuno Lourenço, Penousal Machado, Luís Paquete, and Darrell Whitley (Eds.).
Springer International Publishing, Cham, 488–499. https://doi.org/10.1007/978-
3-319-99253-2_39

[31] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605. http://www.
jmlr.org/papers/v9/vandermaaten08a.html

[32] Enrico Zardini, Davide Zappetti, Davide Zambrano, Giovanni Iacca, and Dario
Floreano. 2021. Seeking Quality Diversity in Evolutionary Co-Design of Mor-
phology and Control of Soft Tensegrity Modular Robots. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’21). Association for
Computing Machinery, New York, NY, USA, 189–197. https://doi.org/10.1145/
3449639.3459311

https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1007/3-540-44503-X_27
https://doi.org/10.1145/3321707.3321845
https://doi.org/10.1145/3321707.3321845
https://doi.org/10.1007/s10732-022-09505-4
https://doi.org/10.1145/3299904.3340307
https://doi.org/10.1145/3299904.3340307
https://doi.org/10.1145/3512290.3528851
https://doi.org/10.1145/3512290.3528851
https://doi.org/10.1007/978-3-319-49130-1_1
https://doi.org/10.1109/TEVC.2022.3152384
https://doi.org/10.1109/TEVC.2022.3152384
https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1016/j.cor.2021.105692
https://doi.org/10.1007/978-3-030-66515-9_4
https://doi.org/10.1007/978-3-030-66515-9_4
https://doi.org/10.1145/3321707.3321804
https://doi.org/10.1145/2463372.2463399
https://doi.org/10.1145/2463372.2463399
https://doi.org/10.1109/ISIT.2004.1365067
https://doi.org/10.1145/3377930.3390221
https://doi.org/10.1145/3377930.3390221
https://doi.org/10.1007/978-3-319-45823-6_81
https://doi.org/10.1162/evco_a_00274
https://doi.org/10.1145/2739480.2754736
https://doi.org/10.1162/isal_a_00291
https://doi.org/10.1162/EVCO_a_00025
https://doi.org/10.1145/3449726.3463160
https://doi.org/10.1007/978-3-031-14714-2_16
https://doi.org/10.21105/joss.00861
https://doi.org/10.48550/arXiv.1504.04909
https://doi.org/10.48550/arXiv.1504.04909
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1016/j.cor.2004.03.002
https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/10.1007/s00500-019-03822-w
https://doi.org/10.1145/2739480.2754664
https://doi.org/10.1016/j.cor.2015.04.022
https://doi.org/10.1007/978-3-642-13800-3_29
https://doi.org/10.1609/aaai.v29i1.9601
https://doi.org/10.1609/aaai.v29i1.9601
https://doi.org/10.48550/arXiv.1812.05069
https://doi.org/10.1007/978-3-319-99253-2_39
https://doi.org/10.1007/978-3-319-99253-2_39
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1145/3449639.3459311
https://doi.org/10.1145/3449639.3459311

	Abstract
	1 Introduction
	2 Related Work
	3 Novelty Search: Background
	4 Methods
	4.1 Instance Representation
	4.2 Algorithm Portfolio
	4.3 Novelty Descriptors

	5 Results
	5.1 Coverage
	5.2 Instance Overlap
	5.3 Discriminatory Ability

	6 Discussion
	7 Conclusions
	References

