
MPENAS: Multi-fidelity Predictor-guided Evolutionary Neural
Architecture Search with Zero-cost Proxies

Jinglue Xu
The University of Tokyo

Tokyo, Japan
jingluexu@gmail.com

Suryanarayanan NAV
The University of Tokyo

Tokyo, Japan
nav-surya@g.ecc.u-tokyo.ac.jp

Hitoshi Iba
The University of Tokyo

Tokyo, Japan
iba@iba.t.u-tokyo.ac.jp

ABSTRACT
Neural architecture search (NAS) aims to automatically design
suitable architectures of artificial neural networks (ANNs) under
various situations. Recently, NAS based on zero-cost proxies can
predict the performance of ANNs with the cost of a single for-
ward/backward propagation pass at most. While zero-cost proxies
can speed up NAS by orders of magnitude, the gap between the pre-
dicted and actual performance of ANNs prevents zero-cost proxies
from identifying ANNs with top performance.

One solution is to regard zero-cost proxies as a low-fidelity eval-
uation method and switch from zero-cost proxies to high-fidelity
evaluation methods when the zero-cost proxies struggle at select-
ing architectures. Based on this idea, we propose Multi-fidelity
Predictor-guided Evolutionary Neural Architecture Search (MPE-
NAS). MPENAS is based on a novel surrogate-assisted evolution-
ary computation framework. With a predictor, MPENAS combines
architecture encodings, zero-cost proxies, learning curve extrapo-
lations, and fully trained ANNs’ performance into one consistent
fitness across different fidelity.

To our knowledge, MPENAS is the first work that integrates zero-
cost proxies into a multi-fidelity optimization framework. MPENAS
outperforms ten other methods for the NAS-Bench-201 search space
in all cases. In addition, we demonstrate the generalizability of
MPENAS for the TransNAS-Bench-101 search space.

CCS CONCEPTS
•Computingmethodologies→Neural networks; Search with
partial observations.

KEYWORDS
Neural Architecture Search, Zero-cost Proxy, Multi-fidelity Opti-
mization, Surrogate-assisted Evolutionary Computation

ACM Reference Format:
Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba. 2023. MPENAS: Multi-
fidelity Predictor-guided Evolutionary Neural Architecture Search with
Zero-cost Proxies. In Genetic and Evolutionary Computation Conference
(GECCO ’23), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3583131.3590513

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590513

1 INTRODUCTION
Artificial neural networks (ANNs) attract significant attention in
recent years, with strong performance across multiple domains,
such as computer vision, natural language processing, and audio
signal processing. Neural architecture search (NAS) aims to auto-
mate the process of designing and/or training ANNs. NAS relies on
evaluations of a large number of ANNs to identify ANNs with high
performance.

Since the publication of NASWOT [37], multiple NAS methods
based on zero-cost (ZC) proxies have been proposed to analyze the
architectures and predict the performance of ANNs (nearly) without
training the ANNs. A ZC proxy is a calculation that estimates an
ANN’s actual performance. Typically, the cost of a ZC proxy is
no more than a single forward/backward propagation pass on a
minibatch of data, which is almost zero compared to conventional
NAS methods [50]. For example, the number of parameters in an
ANN can be a naive but effective ZC proxy [5, 38, 48]. In addition,
several ZC proxies, such as neural tangent kernel [20], can explain
the mechanisms behind the performance of ANNs, which can offer
insights into the traditional black box view of neural architectures
[7]. NAS based on ZC proxies significantly accelerates the search
process by orders of magnitude while outperforming state-of-the-
art methods like DARTS [34], ENAS [39], and GDAS [7, 9].

However, methods based on ZC proxies can be negatively af-
fected by the evaluation gap between the predicted and actual
performance of ANNs. Just like weight-sharing NAS methods, a
gap exists between the predicted (relative) performance and the
actual (relative) performance of the ANNs. While under most sit-
uations the correlation is positive, a survey across 13 ZC proxies
reveals that the Spearman rank correlation between the values from
ZC proxies and the validation accuracies rarely exceeds 0.8 [30].
The negative effect of this gap becomes obvious during the differen-
tiation among a small subset of ANNs with top performance, which
is typically critical during the later stages of the search process.

These issues contribute to a lack of ability to identify ANNs with
top performance, especially compared to traditional methods that
involve evaluations of fully trained ANNs, like REINFORCE [57]
and BOHB [10, 15, 47]. Not surprisingly, ZC proxies share simi-
lar pros and cons with weight-sharing methods: high speed with
compromised performance. Despite the weaknesses, ZC proxies
are a highly promising direction in NAS. Compared to weight-
sharing methods, ZC proxies are usually much faster. In terms of
the evaluation gap, the comparison is limited in the current litera-
ture, although one study suggests the gap in ZC proxies is similar
or smaller, compared to that of weight-sharing methods [1].

Is there a method to reach the high performance of traditional
NAS methods while leveraging the low cost of ZC proxies? One

https://orcid.org/0009-0003-1416-8613
https://orcid.org/0000-0002-6380-6234
https://orcid.org/0000-0003-1607-1690
https://doi.org/10.1145/3583131.3590513
https://doi.org/10.1145/3583131.3590513

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba

Figure 1: Multi-fidelity optimization. The black arrow repre-
sents the switch from one fidelity to another fidelity

solution is multi-fidelity optimization, as shown in Figure 1. Mutli-
fidelity optimization trades off between the cost (e.g., computational
time, memory consumption, or the number of data points) and
fidelity (e.g., the correlation between predicted and actual fitness) of
evaluationmethods to maximize optimization efficiency. During the
early stages of the search process, ZC proxies can be an extremely
efficient low-fidelity evaluation method in terms of identifying a
subset of ANNs with relatively high performance. Once the subset
is identified, the search algorithm switches to evaluation methods
with higher fidelity to accurately capture the small differences
among the performance of the ANNs.

In evolutionary computation (EC), expensive optimization prob-
lems (EOPs) refer to optimization problems that require compu-
tationally expensive simulation or calculation to evaluate candi-
date solutions [56]. For EOPs, one approach is multi-fidelity fitness
approximation. In this approach, the fitness evaluation process
is replaced by multiple evaluation methods with different costs
and fidelity [32]. Generally speaking, among the different evalu-
ation methods, the larger the cost of the method, the higher the
fidelity. The key to the approach is efficient approximations and
a suitable strategy that adjusts fidelity. In this paper, we present
Multi-fidelity Predictor-guided Evolutionary Neural Architecture
Search (MPENAS). MPENAS is based on a novel surrogate-assisted
EC framework.

The main contributions of this paper include:
• Integration of ZC proxies into multi-fidelity optimiza-
tion. To our knowledge, MPENAS is the first work that inte-
grates ZC proxies into a multi-fidelity optimization frame-
work.
• A novel multi-fidelity fitness approximation method
for EOPs. While we haven’t shown the effectiveness of the
method in a general case, the method suits the case of the
integration of ZC proxies intomulti-fidelity NAS.We provide
a theoretical rationale behind the design of the method. In
addition, we demonstrate the effectiveness of the method for
the case of MPENAS experimentally.

• High performance across various settings. For the NAS-
Bench-201 [10] search space,MPENAS outperforms ten other
popular NAS methods across 3 categories. MPENAS also
shows high generalizability in TransNAS-Bench-101 [12].

2 RELATEDWORK
2.1 NAS
The earliest NAS method dates back to the 1990s [28]. With the
recent popularity of deep neural networks and AutoML [29], NAS
became a hot topic in recent years. The novelty of MPENAS is
mainly about multi-fidelity optimization and ZC proxies.

Multi-fidelity optimization: Notable multi-fidelity optimiza-
tion methods for NAS include Successive Halving [21] and Hyper-
band [33]. Successive Halving first allocates a chosen amount of
resources for evaluating each individual in a chosen population. In
each successive iteration, the number of individuals decreases and
the resource for each individual increases, both in a predetermined
geometrical distribution. Hyperband combines multiple Successive
Halving processes with different initiations. Both methods do not
require the exact fidelity of each evaluation method and iterate over
all preset evaluation methods. This feature contributes to the wide
applicability of the two methods. However, if (estimates of) the
exact fidelity of each evaluation method are available, then a multi-
fidelity optimization can utilize such information to improve the
optimization efficiency. MPENAS adaptively controls the fidelity
based on available testing labels for the surrogates. Although multi-
fidelity optimizations can achieve benefits for NAS when simply
combined with random search, most NAS methods based on multi-
fidelity optimization integrate multi-fidelity optimization with a
general optimization framework. For example, BOHB combines
Hyperband with Bayesian optimization, and DEHB [2] combines
Hyperband with differential evolution [45]. The surrogate in DEHB
uses one type of information (performance of ANNs trained at
different epochs) to select individuals from one subpopulation to
another. By comparison, the surrogates in MPENAS approximate
fitness evaluation within a single population via multiple types of
information (architecture encodings, ZC proxies, learning curves
at different epochs, and performance of fully trained ANNs)

ZC proxies: ZC proxies are a relatively new approach in NAS.
Because of the low cost, ZC proxies are readily available in most
NAS situations and most NAS methods based on ZC proxies include
a combination between ZC proxies and other components. TENAS
[7] integrates zero-cost proxies (neural tangent kernel and the num-
ber of linear regions in the input space [53]) into weight-sharing
NAS methods. [1] directly predicts ANN performance using a ZC
proxy (synflow [1]). In addition, [1] also examines the combina-
tion between ZC proxies and other components such as general
optimization frameworks (aging evolution [52] and reinforcement
learning [57]) and a predictor (graph convolutional network [13]),
suggesting clear benefits in the combinations. [37] directly predicts
ANN performance based on a ZC proxy (naswot [37]) and also
shows benefits in the combination between the ZC proxy and a
general optimization framework (regularised evolutionary search
[39]). Recently, [30] explores adding information from ZC proxies
as input features of predictors (XGboost [6] and BANANAS [49]),
and [50] uses information from ZC proxies and learning curves

MPENAS: Multi-fidelity Predictor-guided Evolutionary Neural Architecture Search with Zero-cost Proxies GECCO ’23, July 15–19, 2023, Lisbon, Portugal

as additional features for predictors (NGboost [11] and SemiNAS
[36]). Both works suggest a strong benefit in the added features for
predictors. Based on multiple studies that suggest the benefit of
combining ZC proxies with additional components and the existing
issues in ZC proxies (as mentioned in Section 1), MPENAS is a step
forward that integrates ZC proxy in a multi-fidelity optimization
framework.

2.2 EC for EOPs
In EC, EOPs heavily overlap with surrogate-assisted optimization
problems [24], large-scale optimization problems [22], and data-
driven optimization problems [27]. NAS is usually an EOP as the
NAS process without speedup can take more than 3000 GPU days
[8]. There are several different approaches for solving EOPs in EC.
EC based on fitness approximation predicts the actual fitness of each
individual using cheaper substitutes. The first EC based on fitness
approximation dates back to the mid-1980s [17]. Surrogate-assisted
EC can be used for fitness approximation. In surrogate-assisted
EC, typically some cheap machine learning methods or simulations
are used as surrogates to replace the original fitness evaluation. In
MPENAS, the instances of a predictor (i.e., a supervised machine
learning method) are the surrogates.

In terms of the overall structure of the optimization, surrogates
for fitness evaluations can be individual-based, generation-based,
and population-based [23]. In individual-based methods, in each
generation, a subset of individuals is evaluated with the original
fitness evaluation method. MPENAS is an individual-based method.
Individual-based methods could be more suited than the other two
for implementations on a single machine or multiple machines with
identical specifications [24]. Examples of individual-based methods
include [25] and [26].

Some surrogate-assisted ECs rely on a single surrogate, and
some have multiple surrogates. [16] uses a single surrogate with
architecture encoding as input for NAS. For methods based on mul-
tiple surrogates, each surrogate can represent a single fidelity and
constitute a multi-fidelity optimization. Multiple studies suggest
the effectiveness of increasing the fidelity as the search process
proceeds in surrogate-assisted EC [14, 18], which suits the case of
solving the issue related to the evaluation gap of ZC proxies. In
terms of the relations among the multiple surrogates, some tech-
niques, such as [26], use an ensemble of similar surrogates. Other
techniques, such as [43], use a combination of different categories
of surrogates. MPENAS is based on multiple surrogates across dif-
ferent categories.

From the perspective of EC, a similar work to our method is SAFE
[51]. Both MPENAS and SAFE are based on the idea of adaptively
switching to higher fidelity in the later stages of the search process.
The key differences between MPENAS and SAFE are: (1) For SAFE
the switch criterion is based on the best individual that could be
found at a given fidelity and the alignment among different fidelity.
For MPENAS the criterion is based on an analysis of errors in fitness
approximation. (2) In SAFE, the individuals in each generation are
evaluated with a single adaptively chosen fidelity. While MPENAS
can include multiple adaptively chosen fidelity. (3) SAFE is tested
in the case of crowd shipping scheduling, while MPENAS is tested
in the case of NAS.

3 METHODS
As shown in Figure 2, roughly speaking, MPENAS contains (1) An
initialization phase that generates training data for the surrogates
and warmstarts the evolution process by pre-selection. (2) A multi-
fidelity optimization phase that approximates fitness evaluation
based on the surrogates. (3) An evolution phase that executes stan-
dard EC operations according to the approximated fitness. Phases
(2) and (3) are executed alternatively until termination. From a NAS
perspective, MPENAS contains multiple elements and each element
in MPENAS can be a standalone NAS method. The motivation
behind MPENAS is to solve the existing issues with ZC proxies
and improve NAS based on ZC proxies. We describe MPENAS by
explaining the benefits of adding one element at a time, starting
from ZC proxies.

3.1 Multi-fidelity from multiple surrogates
Because information from ZC proxies is obtained before finishing
the 1𝑠𝑡 epoch of the training, a natural idea of creating surrogates
with higher fidelity is to increase the number of epochs. Most exist-
ingmulti-fidelity NASmethods (without ZC proxies) also set fidelity
according to the number of epochs trained [2, 10]. By increasing the
number of epochs, a piece of readily available information is from
learning curve extrapolations. The learning curve of an ANN is the
change in the ANN’s performance in some aspects over time during
training or validation. Similar to ZC proxies, the learning curve
of partially trained ANNs correlates with the validation accuracy
of fully trained ANNs [3, 41]. Therefore, we add information from
learning curve extrapolations for surrogates with higher fidelity.

For higher fidelity, instead of using only learning curve extrapo-
lations, we combine learning curve extrapolations with ZC proxies,
because of the low cost of ZC proxies and the benefit of extra in-
formation. While a simple voting combination between ZC proxies
and learning curve extrapolations can be effective, predictors (i.e.,
supervised machine learning methods) are much more reliable in
terms of combining information from the two categories, as demon-
strated by [50] and [30]. In addition, predictors are also proved to
be effective in improving the accuracy of ZC proxies with only
ZC proxies as input features [30]. Therefore, we use predictors
as surrogates. For NAS methods based on predictors, architecture
encodings are often used as input features [35, 44]. Because archi-
tecture encodings are readily available, we also add architecture
encodings as input features.

In MPENAS, multiple instances of a predictor with different num-
bers of input features are trained from past evaluation results. For
all instances, the labels are the actual performance of fully trained
ANNs (the two dark green blocks and black dashed arrows in Fig-
ure 2). Each instance corresponds to a particular fidelity, and the
higher the fidelity, the higher the number of input features. We
combine architecture encodings and multiple ZC proxies as the
input of the predictor at the lowest fidelity. For fidelity between
the highest and lowest fidelity, we combine architecture encodings,
ZC proxies, and learning curve extrapolations at different training
epochs as the predictor input. We use the actual performance of
fully trained ANNs (without predictor) as the highest fidelity. The
multiple instances of the predictor connect the evaluation methods

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba

Figure 2: Overview of MPENAS. The thin black dashed lines represent equivalence in the number of individuals. The blue
dashed arrows represent selection as parents. The thicker the blue arrow is, the higher the probability of being selected

at different fidelity into a consistent multi-fidelity fitness approxi-
mation. Switching between surrogates is achieved by adjusting the
number of input features in the predictor.

3.2 Adaptive control of fidelity
With multiple fidelity, the next step is to design a suitable strategy
to adaptively switch fidelity. As surrogates, the supervised learning
methods themselves can be evaluated with testing labels available
during the search process. Therefore, a good adaptive strategy can
be based on the approximation error of the surrogates. A strict
analysis of the approximation error in surrogate-assisted EC is very
difficult if not impossible because the distribution of the errors is
usually neither Gaussian nor uniform [24]. However, we can still
analyze the errors to some extent based on simplifications.

The approximation error can be absolute or relative. For the
predictors, the absolute error is the error in the prediction of the
validation accuracy of each of the ANNs. We assume that the ab-
solute approximation error for an individual is independent of the
actual rank of the individual. Under this assumption, for different 𝑛,
the mean absolute error (MAE) of the prediction for the individual
with𝑛𝑡ℎ actual performance from a surrogate across a large number
of trials tends to be the same. In other words, for a surrogate, a
single value of MAE approximates the MAEs for individuals with
different actual ranks.

As shown in Figure 3, imaging a population of 10 individuals (the
dots) evaluated by two surrogates. The MAE of surrogate B is much

Figure 3: Analysis of the approximation error

smaller than the range between the fitness of the 8𝑡ℎ individual
and the 3𝑟𝑑 individual. For each of the top 3 individuals, especially
the top 1 individual, the likelihood of being evaluated by surrogate
B as not within the top 80 percent is bounded by a small value (see
Appendix A). Therefore, we can evaluate the entire population with
surrogate B first, then select the top 80 percent and evaluate the
80 percent with surrogate A. Then we select the top 50 percent
and evaluate the portion with a surrogate of higher fidelity. We
can repeat the process to narrow down the range. For a surrogate,
we define the minimum size of the top portion of the population
selected by the surrogate such that the portion likely includes the
actual top individuals as the effective fidelity range of the sur-
rogate. A formal calculation of the effective fidelity range from
MAE is given in Appendix A. Under an appropriately configured

MPENAS: Multi-fidelity Predictor-guided Evolutionary Neural Architecture Search with Zero-cost Proxies GECCO ’23, July 15–19, 2023, Lisbon, Portugal

mapping from MAE to effective fidelity range, most of the top indi-
viduals stay in the final range with a low total cost. The mapping is
independent of the specific distribution of the approximation error,
which increases the robustness of our method.

Based on the above rationale, we design an algorithm: Adaptive
Multi-fidelity Fitness Approximation (Algorithm 1). This algorithm
relies on a mapping from fidelity to effective fidelity range, which
can be calculated from the MAE corresponding to each fidelity.
Algorithm 1 requires a list of available top portions of the population
(𝐿𝑁) and fidelity (e.g., number of input features in the predictor)
((𝐿𝐹)) to simplify the process. In Algorithm 1, the size of the effective
fidelity range of the surrogate in one iteration (𝑁𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 in line 10,
the light green regions of the blocks in Figure 2) is equal to the size
of the portion in the next iteration (𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 in line 14, the two
green blocks on the right in Figure 2).

The design of Algorithm 1 also has a biological parallel. In na-
ture, an individual often needs to outperform other individuals in
multiple rounds of non-lethal selections in order to reproduce. For
example, for the population of monkeys in Jigokudani Yaen Koen,
Japan, a season with an unusual temperature can render some indi-
viduals unhealthy. Out of the healthy individuals, some individuals
are able to join a group. For the monkeys in groups, only some of
the monkeys can successfully mate. Each round of the selection
selects a portion of individuals for the next round (effective fidelity
range).

Algorithm 1: Adaptive Multi-fidelity Fitness Approxima-
tion
Input :A list of portions of the population 𝐿𝑁 , a list of

choices of fidelity 𝐿𝐹 , a population 𝑃 , a mapping
from fidelity to effective fidelity range 𝑅, a
mapping from fidelity to trained predictors 𝑆

1 𝑁𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 ←∞
2 𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 ← 𝑃

3 𝑓 ← 0
4 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← {}
5 while 𝑓 < 𝑚𝑎𝑥 (𝐿𝐹) do
6 if 𝑁𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 =𝑚𝑖𝑛(𝐿𝑁) then
7 𝑓 ←𝑚𝑎𝑥 (𝐿𝐹)
8 else
9 𝑓 ← Find the smallest 𝑓 in 𝐿𝐹 such that 𝑅 [𝑓] is

smaller than |𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 |
10 𝑁𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 ← 𝑅 [𝑓]
11 end if
12 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← Predict the performance of each

individual in 𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 using 𝑆 [𝑓] and increment
𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡𝑠

13 if |𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 | > 𝑚𝑖𝑛(𝐿𝑁) and 𝑓 < 𝑚𝑎𝑥 (𝐿𝐹) then
14 𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 ← Based on 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑠𝑢𝑙𝑡𝑠 , select the

top 𝑁𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 number of individuals in 𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 to
replace 𝑃𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦

15 end if
16 end while
17 return evaluation_results

3.3 Navigation and initiation
Although the cost of ZC proxies is low, searching through the
entire search space at once for the first iteration in Algorithm 1
(i.e., setting 𝑃 as the entire search space) is still inefficient or even
infeasible in many situations. For example, the DARTS search space
[34] contains more than 1018 possible ANNs. In MPENAS, we use
EC (the dashed block on the right in Figure 2) as a guide to sample
the search space.

Formally, we describe MPENAS in Algorithm 2. MPENAS warm-
starts the evolution with ZC proxies and evaluations at maximum
fidelity. At first, a large number of ANNs are randomly sampled
from the search space (the crimson block in Figure 2). Then each of
the ANNs is evaluated with ZC proxies to select 𝑁 number of the
best-performing ANNs (the leftmost dark green block in Figure 2).
𝑁 is equal to the size of the population involved in the evolution
processes in MPENAS. This 𝑁 number of ANNs is re-evaluated
with the original fitness function (i.e., validation accuracy of the
fully trained networks). Then the set of ANNs evolves into the next
generation, using the same evolution operators as used in later
iterations (the dashed block on the right in Figure 2).

In addition to warmstarting the evolution process, this process
is critical for initializing the predictors (line 6 in Algorithm 2). The
predictors and values of effective fidelity range are updated each
time new evaluation results are available (unless the evolution
should terminate) (line 10 to line 14 in Algorithm 2).

4 EXPERIMENTS
4.1 Search space and datasets
The search space of NAS refers to the possible ANNs (defined by
some basic building blocks) that could be searched by the NAS.
Popular traditional NAS search spaces include the NAS-RL search
space [19], the cell-based (NASNet) search space [58], the DARTS
search space, and the MobileNet (MNASNet) search space [46].
These traditional search spaces require training the ANNs during
the search process of NAS. The performance of a NAS method
tends to be heavily affected by the specific training procedures
of the ANNs and data processing, which leads to irreproducible
results and lack of fairness [10, 52, 55]. In addition, these traditional
tasks, especially when testing traditional NAS methods, tend to
require a large number of computational resources, leading to high
carbon emissions. To solve the two issues, novel databases that
include precomputed results (such as the validation accuracy) for
each possible ANN have been proposed. We test MPENAS using
the following two precomputed databases:

• NAS-Bench-201: With a cell-based search space, the fixed
macro skeleton resembles the DARTS search space. Each cell
allows 4 nodes, 6 edges, and 5 (edge-associated) operations,
totaling 6466 unique ANNs. It includes the training costs
as queryable information. It is based on the CIFAR-10 [31],
CIFAR-100 [31], and ImageNet-16-120 [42] datasets. And,
each ANN is evaluated as an average of up to 3 trials. [10]
• TransNAS-Bench-101: TransNAS-Bench-101 is designed to
test the generalizability and/or transferability of NAS meth-
ods. The database contains a diverse range of tasks including

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba

Algorithm 2: MPENAS
Input : Initial number of individuals to be evaluated with

ZC proxies 𝑁0, size of a population 𝑁 , a list of
portions of the population 𝐿𝑁 , a list of choices of
fidelity 𝐿𝐹

1 𝑃0 ← Randomly sample 𝑁0 number of individuals from the
search space to form a set of individuals

2 Evaluate each individual in 𝑃0 with ZC proxies evaluations
without any predictors

3 𝑃 ← Rank and select the best 𝑁 number of individuals in 𝑃0
to form a set of individuals

4 evaluation_results← Re-evaluate the individuals in 𝑃 with
maximum fidelity, starting from the individual with the
highest performance to the individual with the lowest
performance, and record the results

5 𝑅 ← Estimate the effective fidelity range of predictors for
each fidelity based on evaluation_results

6 𝑆 ← Train the predictors and save the trained predictors for
each fidelity in 𝐿𝐹 using the labels in 𝑃

7 𝑃 ← Apply evolution operators to 𝑃 and form a new
generation based on evaluation_results

8 while termination criteria is not reached do
9 evaluation_results← Increment evaluation_results with

Adaptive Multi-fidelity Fitness Approximation
(𝐿𝑁 , 𝐿𝐹 , 𝑃, 𝑅, 𝑆)

10 if termination criteria is not reached then
11 𝑆 ← Update S using the new labels in 𝑃

12 𝑅 ← Update R using evaluation_results
13 𝑃 ← Apply evolution operators to 𝑃 and form a new

generation based on evaluation_results
14 end if
15 end while
16 𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ← Based on evaluation_results, rank all

individuals that are evaluated with maximum fidelity and
select the best individual

17 return 𝑏𝑒𝑠𝑡_𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

object classification, scene classification, semantic segmenta-
tion, autoencoding, room layout, surface normal, and jigsaw.
The search space considers both the macro skeleton and
cell-level configurations. [12]

Although the cost of ZC proxies is low, a single NAS trial based
on ZC proxies can still take more than 1 GPU hour [7]. NAS-Bench-
Suite-Zero [30] includes the precomputed results of 13 ZC proxies
into NAS-Bench-201 and 12 ZC proxies into Trans-NAS-Bench. We
use the precomputed results from NAS-Bench-Suite-Zero.

4.2 Implemenation details
For all experiments, we use the following evolution operators from
genetic algorithms (1) Exponential rank selection as parent selec-
tion with a base probability of 0.9 (2) Uniform crossover with a
probability of 0.9 (3) Swap mutation and random resetting mutation
of a random number of genes, each with a probability of 0.2. For
the predictor, we use NGboost [11], which is suggested by [50] as

an excellent predictor for ZC proxies and learning curve extrap-
olations. For the ZC proxies, we use the 13 ZC proxies [30] for
NAS-Bench-201 and 12 proxies for Trans-NAS-Bench implemented
in NAS-Bench-Suite-Zero. We refer to [30] for the details regarding
each proxy. For ZC proxies evaluations without predictors (line 2
of Algorithm 2), we use the voting strategy as described in [30].
For learning curve extrapolations, we use the SoTL method [41] as
suggested by [50] as well as the validation loss, training accuracy,
and validation accuracy over each epoch trained so far.

For experiments in Section 4.4, Section 4.5, and Section 4.6, for
each surrogate, we map the effective fidelity range from the esti-
mated MAE as described in Section 4.3 using the method described
in Appendix A with an _𝑚𝑎𝑥 of 0.2 and an objective to preserve the
top 1 individual.

For NAS-Bench-201, we set 𝐿𝐹 as a geometrically distributed
list: [0, 4, 8, 16, 32, 64, 128, 200]. In the list, 0 represents the surrogate
with only ZC proxies and architecture encodings as input features
(corresponding to "the 0𝑡ℎ epoch"), 200 represents the evaluation
of fully trained ANN (each ANN in NAS-Bench-201 is trained with
200 epochs), and each integer 𝑓 between 0 and 200 in 𝐿𝐹 represents
the surrogate with features available at the 𝑓𝑡ℎ epoch. We set 𝑁0,
𝑁 and 𝐿𝑁 as 3000, 100 and [5, 12, 25, 50, 100].

4.3 Homogeneity of appproximation errors
First, we examine the assumption we made in Section 3.2: the ab-
solute approximation error of an individual is independent of the
actual rank of the individual. If this assumption holds, then for a
generation, the MAE across the individuals with ranks in different
intervals should be similar.

With a randomly sampled 𝑃 in line 3 of Algorithm 2, we divide
the population into 10 bins. Each bin represents an interval of the
ranks. For each bin, we train 7 surrogates over the fidelity in 𝐿𝐹
using 100 training datapoints from another randomly sampled 𝑃

in line 3 of Algorithm 2. We repeat the experiment 10 times to
calculate the MAE across the 10 individuals in each bin for each
fidelity across 3 datasets. The results are shown in Table 2, Table 3,
and Table 4 in Appendix B.

From the results, we can safely assume the homogeneity of the
absolute error in fitness approximation over the ranks of individu-
als. Moreover, for any 𝑛, we can estimate the MAE of the 𝑛𝑡ℎ ranked
individual in the population in one generation over multiple trials
with the MAE of a number of top individuals in the recent gener-
ations in one trial. Because the quality of the surrogates in close
generations is similar and both the 𝑛𝑡ℎ ranked individual in a trial
and an individual with top performance are equal to a randomly
sampled individual in terms of approximation error.

Therefore, for experiments in Section 4.4, Section 4.5, and Section
4.6, for each fidelity, we estimate the single corresponding MAE
by analyzing the results of 50 individuals recently evaluated at
maximum fidelity (If an individual is evaluated at maximum fidelity,
then all surrogates can make predictions for the individual because
the input features are available).

MPENAS: Multi-fidelity Predictor-guided Evolutionary Neural Architecture Search with Zero-cost Proxies GECCO ’23, July 15–19, 2023, Lisbon, Portugal

4.4 Performance of ZC proxies
Next, we test the performance of ZC proxies without any other
elements in MPENAS. For each dataset in NAS-Bench-201, we ran-
domly sample a number of individuals in the search space and select
the individual with the highest predicted performance based on ZC
proxies. Then we test the actual performance of the individual.

In Figure 4, Figure 5, and Figure 6, the error bands represent
the 95 percent confident interval, and the iterations represent the
number of individuals sampled. As shown in the figures, ZC proxies
are capable of rapidly identifying an individual with relatively high
performance. But after about 102 iterations, the efficiency drastically
decreases. After about 103 iterations, the actual performance of
the identified individual starts to decrease, which suggests the
discrepancy between the actual top individuals and predicted top
individuals from ZC proxies.

Figure 4: ZC proxies - CIFAR-10 Figure 5: ZC proxies - CIFAR-100

Figure 6: ZC proxies - ImageNet

4.5 Performance of MPENAS
MPENAS is designed to solve the inability of ZC proxies to identify
the individuals with top performance in the later stages of NAS.
We tested MPENAS with the settings in Section 4.2 on 3 datasets in
NAS-Bench-201. The results are shown in Figure 7, Figure 8, and
Figure 9. In the three figures, the cost is calculated as the multiple
of the average cost of evaluating an individual at maximum fidelity.
For example, the cost of an evaluation based on ANNs trained at
64𝑡ℎ epoch is roughly 0.32. The accuracy in the figures represents
the actual performance of the best ANN identified so far with the
cost.

To examine the effectiveness of Algorithm 1, with the same
settings and cost, we also tested a version of MPENAS by setting
Hyperband as the multi-fidelity optimization method in line 9 of
Algorithm 2: MPENAS-HB. In the Hyperband of MPENAS-HB, we
set the maximum resource as the average cost of a full evaluation
and use the same settings as described in [15].

From the results, we observe that the search process of MPENAS
can be roughly divided into three stages. In the first stage (between 0
and 25 cost), the accuracy rapidly increases due to the effectiveness
of ZC proxies in the early stages as demonstrated in section 4.4
(line 1 to line 4 in Algorithm 2). In the second stage (between 25
and 100 costs), the gain of accuracy over cost stagnates because
of the limitations of individuals identified by ZC proxies (line 2 in
Algorithm 2). However, this stage is preparing for the next stage as
the quality of the surrogates increases over the increase of available
training data. In the third stage (between 100 and 200 cost), the
increase of accuracy becomes higher from the surrogate-assisted
EC process (line 8 to line 15 in Algorithm 2).

Figure 7: MPENAS - CIFAR-10 Figure 8: MPENAS - CIFAR-100

Figure 9: MPENAS - ImageNet

We also compare our method with some state-of-the-art methods
using the NAS-Bench-201 search space. The results are based on
10 trials, and we report the mean and standard deviation of the
validation accuracy based on the settings described in Section 4.2
with a cost equivalent to 200 full evaluations, as shown in Table 1.
The numbers in the brackets represent standard deviation. The
entries in the table are categorized into three blocks. The first block
includes weight-sharing methods, in which a method finishes in 2
to 10 GPU hours. The second block includes two popular methods
based on ZC proxies. NASWOT finishes in seconds and TENAS
takes about 0.5 GPU hours. The 3rd block contains two traditional
NAS methods which are tested with the same cost as MPENAS.
While methods (purely) based on ZC proxies and weight-sharing
can find ANNs with good performance with little cost, they are
generally unable to identify ANNs with very high performance.

In addition, to test the generalizability of our method, we also
compare MPENAS with BOHB and REA on TransNAS-Bench-101
using the settings described in Section 4.2. In the experiments, we
use the default settings for BOHB and REA as described in [15]
and [40]. For each of the three methods, we use a cost equivalent
to 200 full evaluations. We repeat each combination 10 times and

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba

Table 1: Results on NAS-Bench-201

CIFAR-10 CIFAR-100 ImageNet-16-120

RSPS [4] 84.16(1.69) 45.78(6.33) 31.09(5.65)
DARTS-V1 [34] 39.77(0.00) 38.57(0.00) 18.87(0.00)
DARTS-V2 [34] 39.77(0.00) 38.57(0.00) 18.87(0.00)

GDAS 90.01(0.46) 24.05(8.12) 40.66(0.00)
ENAS [39] 39.77(0.00) 10.23(0.12) 16.43(0.00)

PC-DARTS [54] 89.96(0.15) 67.12(0.39) 40.83(0.08)

TENAS 90.96(0.43) 71.27(0.52) 41.95(0.48)
NASWOT [37] 89.12(1.77) 67.01(3.34) 36.74(5.76)

BOHB 90.91(0.47) 71.03(1.42) 44.65(1.34)
REA [40] 91.20(0.22) 71.93(1.07) 45.13(0.67)

MPENAS-HB 91.02(0.31) 71.86 (0.74) 45.52(0.49)
MPENAS 91.23(0.27) 72.61(0.42) 46.44(0.14)

Optimal 91.61 73.49 46.77

report the mean and standard deviation in Table 5 and Table 6 in
Appendix C. The results show that MPENAS outperforms REA and
BOHB in most situations.

4.6 Quality of each surrogate
We also examined the change of MAE (as estimated using the
method described in Section 4.3) and Kendall Tau’s correlation
over different fidelity during the search process at the end of the
second stage of the search process as described in Section 4.5. In Fig-
ure 10 and Figure 11, fidelity represents the surrogate corresponds
to an 𝑓 in 𝐿𝑓 as described in Section 4.2. The Kendall Tau’s correla-
tion is lower than some studies reported [30, 50]. The reason is that
the metrics are evaluated with individuals of high performance (the
top 100 out of 3000 individuals as predicted by ZC proxies), and
these individuals tend to have very close actual performance, which
significantly increases the difficulty. Similar to [30], we also find
the benefits of architecture encodings in the surrogates are limited,
as removing the encodings decreases Kendall Tau’s correlation by
only 3.4 ± 0.4% in the worst case.

Interestingly, adding just a small amount of information from
learning curve extrapolations can be very effective, particularly
for ImageNet-16-120, as the sharp changes between the MAE and
Kendal Tau’s correlation at 0 and 4 fidelity show. This result sug-
gests benefits from the intermediate fidelity in multi-fidelity opti-
mization, compared to a simple combination between evaluation
methods of the highest cost (e.g., fully trained ANNs) and the lowest
cost (e.g., ZC proxies and architecture encodings).

5 DISCUSSION
We demonstrate that MPENAS is an effective integration of ZC
proxies into multi-fidelity optimization. However, there are still
limitations toMPENAS. Although the estimation of effective fidelity
range based on the worst case of the distribution of approximation
error can be applicable for a wide range of situations, this type of
estimation can reduce the efficiency of the optimization when the
distribution is far from the worst case. For a specific task, if the

Figure 10: Quality by MAE Figure 11: Quality by Kendall Tau

specific distribution of the errors is available, then the optimization
process can be accelerated. For the case of MPENAS, we assume
the distribution is unavailable, which is true in most situations of
NAS. Additionally, in some situations, the absolute error of fitness
approximation can be highly dependent on the ranks of the individ-
uals, which makes MPENAS unsuitable. Devising methods without
this limitation can be a challenging but interesting future direction.

In MPENAS, we combine five common elements for NAS: a
general optimization framework (EC), multi-fidelity optimization,
predictor, ZC proxies, and learning curve extrapolations. Each one
of the elements is capable of performing NAS alone, although most
NAS methods involve a combination of multiple elements. Similar
to [1, 30, 37, 50], MPENAS suggests that combining ZC proxies with
other elements is beneficial. An interesting future direction could
be integrating weight-sharing methods into MPENAS. However,
such a combination might be difficult, as many existing ZC proxies’
performance degrades over training [38, 48].

In theory, Algorithm 1 works for problems beyond MPENAS,
as long as the absolute approximation error is independent of the
ranks of the individuals. However, testing the general applicability
of Algorithm 1 is beyond the scope of this study.

6 CONCLUSION
In this paper, MPENAS integrates ZC proxies into a multi-fidelity
optimization framework. To our knowledge, MPENAS is the first
work that integrates ZC proxies into multi-fidelity optimization. In
the experiments, MPENAS outperforms multiple state-of-the-art
NAS methods for the NAS-Bench-201 search space. In addition, We
show the high generalizability of MPENAS using the TransNAS-
Bench-101 database.

For the integration, we design a novel method for surrogate-
assisted EC. In the case of MPENAS, we demonstrate the effective-
ness of the method by comparing the method with Hyperband.

For the multi-fidelity optimization, we regard predictions based
on architecture encodings and ZC proxies as the lowest fidelity.
We add information from learning curve extrapolations for higher
fidelity. We show that the effectiveness of architecture encodings in
this combination is limited, but the inclusion of a small amount of in-
formation from learning curve extrapolations tends to significantly
increase the quality of the surrogates.

ACKNOWLEDGMENTS
We thank João Batista for sharing his knowledge about genetic
algorithms.

MPENAS: Multi-fidelity Predictor-guided Evolutionary Neural Architecture Search with Zero-cost Proxies GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D

Lane. 2021. Zero-cost proxies for lightweight nas. arXiv preprint arXiv:2101.08134
(2021).

[2] Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2021. Dehb: Evolutionary
hyperband for scalable, robust and efficient hyperparameter optimization. arXiv
preprint arXiv:2105.09821 (2021).

[3] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. 2017. Acceler-
ating neural architecture search using performance prediction. arXiv preprint
arXiv:1705.10823 (2017).

[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[5] Hanlin Chen, Ming Lin, Xiuyu Sun, and Hao Li. 2021. Nas-bench-zero: A large
scale dataset for understanding zero-shot neural architecture search. (2021).

[6] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[7] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. 2021. Neural architecture
search on imagenet in four gpu hours: A theoretically inspired perspective. arXiv
preprint arXiv:2102.11535 (2021).

[8] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-
Jui Hsieh. 2020. Drnas: Dirichlet neural architecture search. arXiv preprint
arXiv:2006.10355 (2020).

[9] Xuanyi Dong and Yi Yang. 2019. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1761–1770.

[10] Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326 (2020).

[11] Tony Duan, Avati Anand, Daisy Yi Ding, Khanh K Thai, Sanjay Basu, Andrew Ng,
and Alejandro Schuler. 2020. Ngboost: Natural gradient boosting for probabilistic
prediction. In International Conference on Machine Learning. PMLR, 2690–2700.

[12] Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and
Zhenguo Li. 2021. Transnas-bench-101: Improving transferability and generaliz-
ability of cross-task neural architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5251–5260.

[13] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim,
and Nicholas Lane. 2020. Brp-nas: Prediction-based nas using gcns. Advances in
Neural Information Processing Systems 33 (2020), 10480–10490.

[14] Michael TM Emmerich, Kyriakos C Giannakoglou, and Boris Naujoks. 2006.
Single-andmultiobjective evolutionary optimization assisted byGaussian random
field metamodels. IEEE Transactions on Evolutionary Computation 10, 4 (2006),
421–439.

[15] Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. In International Conference on Machine
Learning. PMLR, 1437–1446.

[16] Bryson Greenwood and Tyler McDonnell. 2022. Surrogate-assisted neuroevo-
lution. In Proceedings of the Genetic and Evolutionary Computation Conference.
1048–1056.

[17] John J Grefenstette and J Michael Fitzpatrick. 2014. Genetic search with approxi-
mate function evaluations. In Proceedings of the First International Conference on
Genetic Algorithms and Their Applications. Psychology Press, 112–120.

[18] MHüscken, Y Jin, and B Sendhoff. 2005. Structure optimization of neural networks
for aerodynamic optimization. Soft Computing Journal 9, 1 (2005), 21–28.

[19] Yesmina Jaafra, Jean Luc Laurent, Aline Deruyver, and Mohamed Saber Naceur.
2019. Reinforcement learning for neural architecture search: A review. Image
and Vision Computing 89 (2019), 57–66.

[20] Arthur Jacot, Franck Gabriel, and Clément Hongler. 2018. Neural tangent ker-
nel: Convergence and generalization in neural networks. Advances in neural
information processing systems 31 (2018).

[21] Kevin Jamieson and Ameet Talwalkar. 2016. Non-stochastic best arm identifi-
cation and hyperparameter optimization. In Artificial intelligence and statistics.
PMLR, 240–248.

[22] Jun-Rong Jian, Zhi-Hui Zhan, and Jun Zhang. 2020. Large-scale evolutionary
optimization: a survey and experimental comparative study. International Journal
of Machine Learning and Cybernetics 11, 3 (2020), 729–745.

[23] Yaochu Jin. 2005. A comprehensive survey of fitness approximation in evolution-
ary computation. Soft computing 9, 1 (2005), 3–12.

[24] Yaochu Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[25] Yaochu Jin, Markus Olhofer, Bernhard Sendhoff, et al. 2000. On Evolutionary
Optimization with Approximate Fitness Functions.. In Gecco. 786–793.

[26] Yaochu Jin and Bernhard Sendhoff. 2004. Reducing fitness evaluations using
clustering techniques and neural network ensembles. In Genetic and Evolutionary
Computation–GECCO 2004: Genetic and Evolutionary Computation Conference,
Seattle, WA, USA, June 26-30, 2004. Proceedings, Part I. Springer, 688–699.

[27] Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo, and Kaisa Miettinen. 2018.
Data-driven evolutionary optimization: An overview and case studies. IEEE

Transactions on Evolutionary Computation 23, 3 (2018), 442–458.
[28] Hiroaki Kitano. 1990. Designing neural networks using genetic algorithms with

graph generation system. Complex systems 4 (1990), 461–476.
[29] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin Leyton-

Brown. 2019. Auto-WEKA: Automatic model selection and hyperparameter
optimization inWEKA. Automated machine learning: methods, systems, challenges
(2019), 81–95.

[30] Arjun Krishnakumar, Colin White, Arber Zela, Renbo Tu, Mahmoud Safari, and
Frank Hutter. 2022. NAS-Bench-Suite-Zero: Accelerating Research on Zero Cost
Proxies. arXiv preprint arXiv:2210.03230 (2022).

[31] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[32] Jian-Yu Li, Zhi-Hui Zhan, and Jun Zhang. 2022. Evolutionary computation for
expensive optimization: A survey. Machine Intelligence Research 19, 1 (2022),
3–23.

[33] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: A novel bandit-based approach to hyperparameter
optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[34] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[35] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2020.
Accuracy prediction with non-neural model for neural architecture search. arXiv
preprint arXiv:2007.04785 (2020).

[36] Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2020.
Semi-supervised neural architecture search. Advances in Neural Information
Processing Systems 33 (2020), 10547–10557.

[37] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. 2021. Neural archi-
tecture search without training. In International Conference on Machine Learning.
PMLR, 7588–7598.

[38] Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang,
Huazhong Yang, and YuWang. 2021. Evaluating efficient performance estimators
of neural architectures. Advances in Neural Information Processing Systems 34
(2021), 12265–12277.

[39] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In International conference on
machine learning. PMLR, 4095–4104.

[40] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[41] Binxin Ru, Clare Lyle, Lisa Schut, Mark van der Wilk, and Yarin Gal. 2020. Revis-
iting the train loss: an efficient performance estimator for neural architecture
search. stat 1050 (2020), 8.

[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115 (2015), 211–252.

[43] Mourad Sefrioui and Jacques Périaux. 2000. A hierarchical genetic algorithm using
multiple models for optimization. In Parallel Problem Solving from Nature PPSN
VI: 6th International Conference Paris, France, September 18–20, 2000 Proceedings 6.
Springer, 879–888.

[44] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. Nas-bench-301 and the case for surrogate benchmarks for
neural architecture search. arXiv preprint arXiv:2008.09777 (2020).

[45] Rainer Storn and Kenneth Price. 1997. Differential evolution-a simple and effi-
cient heuristic for global optimization over continuous spaces. Journal of global
optimization 11, 4 (1997), 341.

[46] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2820–2828.

[47] Renbo Tu, Mikhail Khodak, Nicholas Carl Roberts, and Ameet Talwalkar. 2021.
Nas-bench-360: Benchmarking diverse tasks for neural architecture search.
(2021).

[48] Colin White. 2022. A Deeper Look at Zero-Cost Proxies for Lightweight NAS.
Retrieved January 15, 2022 from https://iclr-blog-track.github.io/2022/03/25/zero-
cost-proxies/

[49] Colin White, Willie Neiswanger, and Yash Savani. 2021. Bananas: Bayesian opti-
mization with neural architectures for neural architecture search. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 10293–10301.

[50] Colin White, Arber Zela, Robin Ru, Yang Liu, and Frank Hutter. 2021. How
powerful are performance predictors in neural architecture search? Advances in
Neural Information Processing Systems 34 (2021), 28454–28469.

[51] Sheng-HaoWu, Zhi-Hui Zhan, and Jun Zhang. 2021. SAFE: Scale-adaptive fitness
evaluation method for expensive optimization problems. IEEE Transactions on
Evolutionary Computation 25, 3 (2021), 478–491.

[52] Lingxi Xie, Xin Chen, Kaifeng Bi, Longhui Wei, Yuhui Xu, Lanfei Wang, Zhengsu
Chen, An Xiao, Jianlong Chang, Xiaopeng Zhang, et al. 2021. Weight-sharing neu-
ral architecture search: A battle to shrink the optimization gap. ACM Computing

https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/
https://iclr-blog-track.github.io/2022/03/25/zero-cost-proxies/

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba

Surveys (CSUR) 54, 9 (2021), 1–37.
[53] Huan Xiong, Lei Huang, Mengyang Yu, Li Liu, Fan Zhu, and Ling Shao. 2020. On

the number of linear regions of convolutional neural networks. In International
Conference on Machine Learning. PMLR, 10514–10523.

[54] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and
Hongkai Xiong. 2019. Pc-darts: Partial channel connections for memory-efficient
architecture search. arXiv preprint arXiv:1907.05737 (2019).

[55] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. 2019. NAS evaluation
is frustratingly hard. arXiv preprint arXiv:1912.12522 (2019).

[56] Zhi-Hui Zhan, Lin Shi, Kay Chen Tan, and Jun Zhang. 2022. A survey on evolu-
tionary computation for complex continuous optimization. Artificial Intelligence
Review (2022), 1–52.

[57] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

[58] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 8697–8710.

A FORMAL CALCULATION OF EFFECTIVE
FIDELITY RANGE

In Algorithm 1, in any generation, the effective fidelity range of a
surrogate needs to be given before employing the surrogate. There-
fore, we estimate the relative effective ranges based on results from
the previous generation. Given a sorted (from the highest to the
lowest) list of the predicted performance of the 𝑃 individuals in the
previous generation:

{𝑦𝑛}, 𝑛 = 1, 2, 3, . . . , 𝑃 (1)
For each 𝑦𝑛 :

𝑦𝑛 + 𝜖𝑛 = 𝑦𝑛 (2)
In Equation (2), 𝜖𝑛 is the error from the fitness approximation.

And 𝑦𝑛 is the actual performance. Similarly, let the current genera-
tion be a sorted list:

{𝑦
′
𝑛}, 𝑛 = 1, 2, 3, . . . , 𝑃 (3)

For each 𝑦
′
𝑛 :

𝑦
′
𝑛 + 𝜖

′
𝑛 = 𝑦

′
𝑛 (4)

Let𝑇 be the number of trials. Based on the assumption in section
3.2., for any 𝑛:

lim
𝑇→∞

∑𝑇
𝑡=1 |𝜖

′𝑡
𝑛 |

𝑇
≈ lim

𝑇→∞

∑𝑇
𝑡=1 |𝜖𝑡𝑛 |
𝑇

≈ 𝑀𝐴𝐸 (5)

, where𝑀𝐴𝐸 can be the measured MAE of any 𝜖𝑛 across multiple
(but limited) trials.

If the individual with an actual performance of 𝑦
′
𝐴
is predicted

to have a performance less than or equal to 𝑦
′
𝐵
(𝑦′

𝐵
< 𝑦

′
𝐴
), then:

𝜖
′
𝐴 ≥ 𝑦

′
𝐴 − 𝑦

′
𝐵 (6)

Let
𝛿 = 𝑦𝐴 − 𝑦𝐵 − 𝑦

′
𝐴 − 𝑦

′
𝐵 (7)

Then:

𝜖
′𝑡
𝐴 ≥ 𝑦𝐴 − 𝑦𝐵 − 𝛿 (8)

Suppose among the trials, in a portion (_) of the trials, Equation
(8) holds:

lim
𝑇→∞

∑_𝑇
𝑡=1 (|𝜖

′𝑡
𝐴
|) +∑𝑇

𝑡=_𝑇
(|𝜖 ′𝑡

𝐴
|)

𝑇
= 𝑀𝐴𝐸 (9)

,where 𝜖
′𝑡
𝐴
≥ 𝑦𝐴 − 𝑦𝐵 − 𝛿, 𝑡 = 1, 2, 3, . . . , _.

When {
𝜖
′𝑡
𝐴

= 𝑦𝐴 − 𝑦𝐵 − 𝛿, 𝑡 = 1, 2, 3, . . . , _𝑇
𝜖
′𝑡
𝐴

= 0, 𝑡 = _𝑇 + 1, _𝑇 + 2, _𝑇 + 3, . . . ,𝑇
(10)

, the distribution of the error is in the worst case, _ is maximized,
and Equation (9) becomes:

lim
𝑇→∞

∑_𝑚𝑎𝑥𝑇
𝑡=1 (|𝑦𝐴 − 𝑦𝐵 − 𝛿𝑡 |)

𝑇
= 𝑀𝐴𝐸 (11)

In most situations:

𝛿𝑡 ≪ 𝑦𝐴 − 𝑦𝐵 (12)

Therefore:

lim
𝑇→∞

∑_𝑚𝑎𝑥𝑇
𝑡=1 (|𝑦𝐴 − 𝑦𝐵 − 𝛿𝑡 |)

𝑇
≈ lim

𝑇→∞

∑_𝑚𝑎𝑥𝑇
𝑡=1 (|𝑦𝐴 − 𝑦𝐵 |)

𝑇
(13)

lim
𝑇→∞

_𝑚𝑎𝑥𝑇 (|𝑦𝐴 − 𝑦𝐵 |)
𝑇

= 𝑀𝐴𝐸 (14)

_𝑚𝑎𝑥 =
𝑀𝐴𝐸

𝑦𝐴 − 𝑦𝐵
(15)

From the above calculation, the probability that the individual
with an actual performance of𝑦

′
𝐴
is predicted to have a performance

less than or equal to 𝑦
′
𝐵
is estimated to be bounded by 𝑀𝐴𝐸

�̂�𝐴−�̂�𝐵 .
Let’s assume that the actual performance of the 𝑛𝑡ℎ (in terms

of actual performance) individual in the current generation ≈ 𝑦′𝑛 .
Then, to preserve the 𝑛𝑡ℎ (in terms of actual performance) indi-
vidual, given the upper bound of the probability (of losing the
individual) _𝑚𝑎𝑥 and 𝑀𝐴𝐸, the effective fidelity range can be es-
timated as the number of individuals with predicted performance
between 𝑦𝑛 and 𝑦𝑛 − 𝑀𝐴𝐸

_𝑚𝑎𝑥
in the previous generation. The esti-

mation avoids underestimation of the effective fidelity range for
individuals with high actual performance, even if the assumption
fails. If the actual performance is higher than 𝑦

′
𝑛 , then the upper

bound of the likelihood of losing the individual is actually lower
than _𝑚𝑎𝑥 .

B MAE DISTRIBUTION OVER THE RANKS
For all tables in this section, the numbers in the brackets represent
standard deviation.

MPENAS: Multi-fidelity Predictor-guided Evolutionary Neural Architecture Search with Zero-cost Proxies GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Table 2: MAE for Cifar10

0 4 8 16 32 64 128

1𝑠𝑡 to 10𝑡ℎ 0.32(0.02) 0.30(0.04) 0.28(0.02) 0.25(0.03) 0.20(0.03) 0.20(0.03) 0.17 (0.02)
11𝑡ℎ to 20𝑡ℎ 0.34(0.03) 0.31(0.03) 0.29(0.03) 0.26(0.02) 0.22(0.03) 0.21 (0.01) 0.17 (0.02)
21𝑡ℎ to 30𝑡ℎ 0.34(0.04) 0.29(0.02) 0.29(0.02) 0.24(0.02) 0.22(0.02) 0.21(0.02) 0.19 (0.03)
31𝑡ℎ to 40𝑡ℎ 0.33(0.02) 0.29(0.03) 0.27(0.02) 0.24(0.03) 0.21(0.04) 0.18 (0.03) 0.17 (0.01)
41𝑡ℎ to 50𝑡ℎ 0.35(0.04) 0.28(0.02) 0.29(0.03) 0.26(0.02) 0.23(0.04) 0.20(0.03) 0.15 (0.03)
51𝑡ℎ to 60𝑡ℎ 0.34(0.03) 0.29(0.03) 0.28(0.04) 0.24(0.04) 0.21(0.03) 0.19(0.02) 0.19 (0.02)
61𝑡ℎ to 70𝑡ℎ 0.36(0.03) 0.28(0.02) 0.28(0.03) 0.25(0.03) 0.20(0.02) 0.19(0.03) 0.16 (0.02)
71𝑡ℎ to 80𝑡ℎ 0.34(0.02) 0.27(0.03) 0.29(0.03) 0.23(0.03) 0.21(0.03) 0.20(0.02) 0.18 (0.03)
81𝑡ℎ to 90𝑡ℎ 0.34(0.03) 0.30(0.02) 0.30(0.03) 0.26(0.02) 0.22(0.02) 0.21(0.03) 0.17 (0.02)
91𝑡ℎ to 100𝑡ℎ 0.35(0.02) 0.29(0.03) 0.28(0.02) 0.24(0.02) 0.21(0.03) 0.20 (0.03) 0.18 (0.02)

Table 3: MAE for Cifar100

0 4 8 16 32 64 128

1𝑠𝑡 to 10𝑡ℎ 0.41(0.04) 0.32(0.02) 0.31(0.03) 0.29(0.03) 0.25(0.04) 0.24(0.02) 0.20 (0.03)
11𝑡ℎ to 20𝑡ℎ 0.37(0.02) 0.33(0.02) 0.31(0.04) 0.27(0.02) 0.24(0.02) 0.23 (0.04) 0.18 (0.04)
21𝑡ℎ to 30𝑡ℎ 0.36(0.02) 0.33(0.03) 0.29(0.03) 0.27(0.03) 0.25(0.04) 0.24(0.03) 0.19 (0.01)
31𝑡ℎ to 40𝑡ℎ 0.40(0.03) 0.31(0.02) 0.30(0.02) 0.25(0.04) 0.24(0.02) 0.22 (0.03) 0.20 (0.02)
41𝑡ℎ to 50𝑡ℎ 0.39(0.04) 0.29(0.02) 0.29(0.02) 0.27(0.02) 0.26(0.04) 0.23(0.04) 0.19 (0.02)
51𝑡ℎ to 60𝑡ℎ 0.38(0.03) 0.31(0.02) 0.31(0.03) 0.28(0.04) 0.26(0.03) 0.21(0.02) 0.19 (0.03)
61𝑡ℎ to 70𝑡ℎ 0.38(0.02) 0.31(0.03) 0.33(0.04) 0.27(0.02) 0.23(0.03) 0.25(0.02) 0.18 (0.02)
71𝑡ℎ to 80𝑡ℎ 0.37(0.04) 0.30(0.04) 0.30(0.02) 0.26(0.03) 0.25(0.03) 0.23(0.04) 0.20 (0.03)
81𝑡ℎ to 90𝑡ℎ 0.36(0.03) 0.34(0.02) 0.28(0.02) 0.27(0.02) 0.26(0.04) 0.24 (0.03) 0.19 (0.03)
91𝑡ℎ to 100𝑡ℎ 0.41(0.03) 0.31(0.02) 0.31(0.03) 0.25(0.03) 0.24(0.03) 0.22 (0.04) 0.18 (0.02)

Table 4: MAE for ImageNet

0 4 8 16 32 64 128

1𝑠𝑡 to 10𝑡ℎ 1.59(0.11) 1.11(0.08) 1.07(0.08) 0.91(0.13) 0.94(0.10) 0.89(0.07) 0.81 (0.10)
11𝑡ℎ to 20𝑡ℎ 1.51(0.09) 1.05(0.07) 1.03(0.09) 0.97(0.10) 0.89(0.09) 0.94 (0.09) 0.88 (0.10)
21𝑡ℎ to 30𝑡ℎ 1.54(0.06) 1.08(0.13) 0.98(0.13) 0.98(0.07) 0.90(0.12) 0.90(0.06) 0.76 (0.09)
31𝑡ℎ to 40𝑡ℎ 1.54(0.07) 1.07(0.10) 1.00(0.07) 0.98(0.09) 0.93(0.07) 0.91 (0.10) 0.79 (0.06)
41𝑡ℎ to 50𝑡ℎ 1.49(0.10) 1.09(0.09) 1.04(0.06) 0.97(0.08) 0.99(0.06) 0.92(0.09) 0.80 (0.08)
51𝑡ℎ to 60𝑡ℎ 1.50(0.07) 1.15(0.08) 1.03(0.09) 1.00(0.11) 0.97(0.08) 0.93(0.10) 0.81 (0.11)
61𝑡ℎ to 70𝑡ℎ 1.54(0.06) 1.13(0.11) 1.09(0.08) 1.01(0.09) 0.96(0.09) 0.92(0.07) 0.84 (0.09)
71𝑡ℎ to 80𝑡ℎ 1.55(0.12) 1.02(0.12) 1.07(0.08) 0.97(0.08) 0.94(0.08) 0.94(0.08) 0.82 (0.07)
81𝑡ℎ to 90𝑡ℎ 1.57(0.08) 1.07(0.11) 1.10(0.10) 0.98(0.10) 0.94(0.09) 0.89 (0.08) 0.83 (0.08)
91𝑡ℎ to 100𝑡ℎ 1.59(0.10) 1.09(0.09) 1.05(0.11) 0.99(0.09) 0.95(0.07) 0.90 (0.07) 0.80 (0.09)

C RESULTS ON TRANSNAS-BENCH-101
For all tables in this section, the numbers in the brackets represent
standard deviation.

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Jinglue Xu, Suryanarayanan NAV, and Hitoshi Iba

Table 5: Results on TransNAS-Bench-101-Micro

Cls. Object Cls. Scene Autoencoding Surf Normal Sem. Segment Room Layout Jigsaw

Metric Acc. Acc. SSIM SSIM mloU L2 loss Acc.

BOHB 44.06(0.34) 54.64(0.15) 56.14(0.65) 57.96(0.54) 24.93(0.39) 60.92(0.74) 94.37(0.42)
REA 44.97(0.66) 54.87(0.03) 56.02(0.70) 58.03(0.75) 24.75(0.42) 61.09(0.63) 94.75(0.25)

MPENAS (ours) 45.24(0.53) 54.77(0.09) 56.82(0.42) 58.14(0.68) 25.38(0.37) 60.69(0.98) 94.93(0.20)

Optimal 46.32 54.94 57.72 59.62 26.27 59.38 95.37

Table 6: Results on TransNAS-Bench-101-Macro

Cls. Object Cls. Scene Autoencoding Surf Normal Sem. Segment Room Layout Jigsaw

Metric Acc. Acc. SSIM SSIM mloU L2 loss Acc.

BOHB 45.60(0.41) 56.28(0.51) 72.86(3.49) 60.93(0.95) 27.48(0.63) 59.75(0.92) 96.49(0.27)
REA 46.95(0.34) 56.21(0.35) 72.14(3.07) 61.07(1.09) 28.18(0.48) 60.57(1.10) 96.80(0.19)

MPENAS (ours) 47.23(0.29) 56.49(0.60) 73.26(2.37) 61.54(1.10) 28.70(0.33) 58.74(1.07) 96.67(0.19)

Optimal 47.96 57.48 76.88 64.35 29.66 56.28 97.02

	Abstract
	1 Introduction
	2 Related work
	2.1 NAS
	2.2 EC for EOPs

	3 Methods
	3.1 Multi-fidelity from multiple surrogates
	3.2 Adaptive control of fidelity
	3.3 Navigation and initiation

	4 Experiments
	4.1 Search space and datasets
	4.2 Implemenation details
	4.3 Homogeneity of appproximation errors
	4.4 Performance of ZC proxies
	4.5 Performance of MPENAS
	4.6 Quality of each surrogate

	5 Discussion
	6 Conclusion
	Acknowledgments
	References
	A Formal calculation of effective fidelity range
	B MAE distribution over the ranks
	C Results on TransNAS-Bench-101

