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ABSTRACT
During the first part of life, the brain develops while it learns
through a process called synaptogenesis. The neurons, growing
and interacting with each other, create synapses. However, eventu-
ally the brain prunes those synapses. While previous work focused
on learning and pruning independently, in this work we propose
a biologically plausible model that, thanks to a combination of
Hebbian learning and pruning, aims to simulate the synaptogene-
sis process. In this way, while learning how to solve the task, the
agent translates its experience into a particular network structure.
Namely, the network structure builds itself during the execution of
the task. We call this approach Self-building Neural Network (SBNN).
We compare our proposed SBNN with traditional neural networks
(NNs) over three classical control tasks from OpenAI. The results
show that our model performs generally better than traditional NNs.
Moreover, we observe that the performance decay while increasing
the pruning rate is smaller in our model than with NNs. Finally,
we perform a validation test, testing the models over tasks unseen
during the learning phase. In this case, the results show that SBNNs
can adapt to new tasks better than the traditional NNs, especially
when over 80% of the weights are pruned.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Genetic al-
gorithms; Artificial life; • Theory of computation→Models of
learning.
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1 INTRODUCTION
The natural brain is one of the most complex systems we know of.
It can perform complex tasks and adapt to new situations with an
efficiency that is currently unreachable by any modern Artificial
Intelligence (AI) system. These performances derive from a long-
lasting evolutionary process that has harmonized a vast amount of
different elements that work at different scales. At the molecular
level, for example, some cells have to provide energy to other cells
by exchanging Adenosine triphosphate (ATP). Other molecules,
instead, are used to regulate inter-cellular communication. At the
cellular level, stem cells have to specialize into glial or neuron cells.
Eventually, these cells grow and create connections, composing our
brain. This process, called synaptogenesis [44], is then followed by
a second process that prunes the less relevant synapses [3, 41]. It is
believed that this pruning phase is one of the main reasons why
brains are such efficient systems [8, 26, 38].

In this work, we focus on this last aspect: the growth and organi-
zation of the neurons in the brain. Specifically, we are interested in

linking the growth and organization to the experience of the agent
during the task, as it happens in the natural brain. To simulate
this process, we combine two well-known mechanisms from the
literature.

Firstly, we consider a Neural Network (NN), on top of which we
apply a synaptic plasticity mechanism, which changes the synapses
of the NN based on the experience of the agent during the task. In
this case, we adopt Hebbian Learning [5], a task-agnostic plasticity
model that takes inspiration from the natural neurons.

Secondly, we include in our model a pruning mechanism based
on the global magnitude algorithm [2, 17]. However, we modify
this algorithm in such a way to decide not only how much (i.e., how
many synapses) to prune, but also when prune.

We call the resulting model Self-building Neural Network (SBNN),
due to its capability to compose its own structure based on the
experience perceived by the agent during its life.

We test our proposed SBNN in three classical control tasks from
OpenAI, to show the capability of this model in terms of perfor-
mance and how the structure of the networks can be different
depending on the task. In a separate set of experiments, we also
assess the generalization capabilities of the SBNN.

The rest of this paper is organized as follows. Section 2 summa-
rizes the related works. Section 3 describes the methods, and in
particular the proposed SBNN. Then, Section 4 shows the results,
followed by the conclusions in Section 5.

2 RELATEDWORK
As described in the previous section, our SBNN is based on two
mechanisms: plasticity and pruning.

Concerning the first, plasticity is a local learning mechanism that
regulates the growth of the neurons and their adaptation to stimuli,
and it is also responsible for the memory mechanism [36, 43].

A biologically plausible plasticity model is the Hebbian model [5,
20], which stems from the intuition that, if a synapse is often used, it
should be strengthened. In other words, if the pre-synaptic neuron
causes the activation of the post-synaptic one more frequently,
the connection will become more relevant [6]. Based on this idea,
different Hebbian models have been developed [9, 12, 40, 42]. Here,
we consider in particular the so-called ABCD model, that has been
proven effective in optimizing agents in several control tasks [10,
29, 34, 35, 39].

Pruning, on the other hand, is a higher level process that is
yet fundamental for cognitive development. For instance, it has
been estimated that during puberty humans loose around 40% of
synapses without degrading memory or cognitive abilities [3].

In the AI community, pruning has recently attracted a lot of
attention in the attempt to improve the performance and robustness,
especially in the context of deepNNs [7, 14–16, 22, 27, 31].Moreover,
some other works have collected evidence on the fact that plasticity
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can effectively be seen as a form of implicit pruning, especially in
cases where synaptic connections can saturate their values in such
a way to obtain a quasi-binary mask on the weights [10, 25, 32, 33].
However, in these works, no explicit pruning mechanism has been
employed.

3 METHODS
As introduced before, we aim to construct a network that can simu-
late the synaptogenesis process. In this section, we introduce the
structure of this network and its behavior. Then, we briefly de-
scribe the optimization process and the classical control tasks used
in our experimentation. We used these environments to measure
the performance of the proposed SBNNs and to prove how they can
change their structure during (and depending on) the task at hand.

3.1 Hebbian learning
Hebbian learning is a plasticity model that allows an NN to change
its weights during the execution of a task. Importantly, this change
is agnostic w.r.t. the reward for the task, because it is based only on
the local knowledge of each synapse, in particular the activation
of the pre-synaptic and post-synaptic neurons. The ABCD model
used in this work updates the weights after each forward pass of
the network using the following rule:

𝑤𝑖, 𝑗 = 𝑤𝑖, 𝑗 + 𝜂 (𝐴𝑎𝑖 + 𝐵𝑎 𝑗 +𝐶𝑎𝑖𝑎 𝑗 + 𝐷)

where 𝑎𝑖 is the pre-synaptic activation value, 𝑎 𝑗 is the post-synaptic
value, and 𝑤𝑖, 𝑗 is the weight on the connection between the two
neurons. The 𝐴, 𝐵, 𝐶 , and 𝐷 are parameters to optimize.

3.2 Pruning mechanism
The pruning mechanism aims to find a subset of an NN that per-
forms as well as (or better than) the original network. This process
is performed by removing connections based on a given strategy. In
this work, we use the global magnitude pruning algorithm [2, 17],
that simply consists in removing all the connections whose weights
are smaller, in absolute value, than a threshold that is defined as
the 𝑝𝑟 -th percentile, where 𝑝𝑟 is the desired pruning rate (i.e., the
percentage of connections to remove).

3.3 Self-building Neural Network
During synaptogenesis, neurons explore the extracellular space,
assembling as many connections as possible with other neurons [23,
24, 37]. Here, we aim to simulate this mechanism by allowing the
possibility that any two neurons could directly connect.

Our model works as follows. We start from an NN composed of
𝐼 inputs, 𝐻 hidden nodes, and 𝑂 outputs. At the first episode of the
task, the 𝐼 inputs are connected to all the 𝐻 hidden nodes and the
𝑂 outputs. In turn, the 𝐻 hidden nodes are fully connected with
each other (excluding self-loops), and with all the 𝑂 outputs. In
total, the number of connections 𝐶 , expressed as a function of 𝐻
(which is the only hyperparameter, as 𝐼 and𝑂 depend on the task), is
𝐶 (𝐻 ) = 𝐻2+𝐻 ×(𝐼 +𝑂) +𝐼 ×𝑂 . Overall, the internal structure of the
network resembles the one of the Boltzmannmachines [1, 11, 21, 30],
where the hidden nodes are fully connected. However, we also
directly connect the inputs to the outputs, as the computational
power of the hidden nodes in some cases may not be necessary.

We initialize the weights of all these connections to zero. In
this way, we intend to simulate the initial condition where no
connections between neurons exist. Then, within each episode, the
Hebbian procedure will update the weights based on the ABCD rule
described in Section 3.1. Note that, in our model, each connection
in the network has its own ABCD rule with its corresponding
parameters. In this way, the network can arrange itself based on the
experience that the agent accumulates during the task. We use a
Hebbian rule for each connection because, starting from a condition
where all the weights are 0, using a single Hebbian rule could lead
all the weights to change in the same direction, which in turn would
make learning ineffective.

The second step of synaptogenesis is the process that prunes
the synapses, as described in Section 3.2. As we will describe later,
differently from Hebbian learning, pruning occurs across episodes.
Note that, as soon as pruning starts, Hebbian learning is stopped.
Figure 2 summarizes the pruning procedure, showing the state of
the initial network and its development. Formally, we can analyze
the network before and after pruning. In particular, before pruning,
the hidden nodes are fully connected with each other and all the
inputs are connected with all the hidden nodes. For this reason, it is
not possible to define a fixed activation order. Hence, we maintain
the overall order of activation: firstly, the inputs, then the hidden
nodes, and then the outputs. However, for the hidden nodes, we
randomly select the activation order.

After pruning, the remaining connections define the network.
Differently from before, in this phase we can define an activation
order more easily because the pruning mechanism naturally re-
solves most cycles, especially if the ratio of connections removed
is high enough. Hence, to find the activation order, we can per-
form a topological sort of the underlined graph 𝐺 (𝑉 , 𝐸), where
𝑉 is the set of nodes (i.e., the neurons) and 𝐸 is the set of con-
nections. If, during the topological sort, we find a cycle, we apply
the following procedure. Indicating with 𝑁𝑐 the subset of 𝑉 that
contains all the nodes in the cycle, first we remove all the nodes
in 𝑁𝑐 from 𝑉 and replace them with a fake node, 𝑓 . Then, indi-
cating with 𝐸 (𝑁𝑐 )𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 = {(𝑣, 𝑛) ∀𝑣 ∈ 𝑉 \ 𝑁𝑐 ∧ ∀𝑛 ∈ 𝑁𝑐 }
the subset of 𝐸 composed of the connections that terminate in 𝑁𝑐

and that do not start from 𝑁𝑐 , we add to 𝐸 the set of connections
{(𝑣, 𝑓 ) ∀(𝑣, 𝑣 ′) ∈ 𝐸 (𝑁𝑐 )𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ∧ 𝑣 ′ ∈ 𝑁𝑐 }. We perform the same
operation for the connections outgoing from 𝑁𝑐 . This procedure,
that we apply iteratively and independently for every cycle found
in the graph, results in a new graph 𝐺 ′ where the cycle 𝑁𝑐 is re-
placed by the fake node 𝑓 . All the nodes connected to 𝑁𝑐 are now
connected to 𝑓 , and 𝑓 is connected to all the nodes reached from 𝑁𝑐 .
We store the information that the node 𝑓 replaces the 𝑁𝑐 nodes in
the 𝑐𝑦𝑐𝑙𝑒𝑠_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 variable and then retry find a topological order.
We repeat this procedure until all the cycles have been replaced,
and a topological order can be defined. Algorithm 1 illustrates this
simplification procedure. Note that the nodes in 𝑁𝑐 can also be fake
nodes from a previous iteration of the procedure, as illustrated in
Figure 1.

After calculating the topological order of the network, we can
follow that for the activation of the hidden nodes. If we find a fake
node during the activation, we retrieve from 𝑐𝑦𝑐𝑙𝑒𝑠_ℎ𝑖𝑠𝑡𝑜𝑟𝑦 the set
of 𝑁𝑐 nodes that compose the cycle, and proceed with a random
activation order. If a node in 𝑁𝑐 is a fake node 𝑓 ′ covering the 𝑁𝑐′
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1 function removeCycle(𝐺):
2 𝑁𝑐 ← findCycle(𝐺)
3 𝑖 ← 0
4 𝑐𝑦𝑐𝑙𝑒𝐻𝑖𝑠𝑡𝑜𝑟𝑦 ←𝑚𝑎𝑝 () while 𝑁𝑐 is not empty do
5 𝐸𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 ← 𝐺.incomingEdges(𝑁𝑐 )
6 𝐸𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 ← 𝐺.outgoingEdges(𝑁𝑐 )
7 𝐺.removeNodes(𝑁𝑐 )
8 𝐺.addNode(𝑓 𝑎𝑘𝑒𝑁𝑜𝑑𝑒𝑖 )
9 𝑐𝑦𝑐𝑙𝑒𝐻𝑖𝑠𝑡𝑜𝑟𝑦.addKeyValue(𝑓 𝑎𝑘𝑒𝑁𝑜𝑑𝑒𝑖 , 𝑁𝑐 )

10 foreach (𝑣, 𝑣 ′) ∈ 𝐸𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 do
11 𝐺.removeEdge((𝑣, 𝑣 ′))
12 𝐺.addEdge((𝑣, 𝑓 ))
13 end
14 foreach (𝑣, 𝑣 ′) ∈ 𝐸𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 do
15 𝐺.removeEdge((𝑣, 𝑣 ′))
16 𝐺.addEdge((𝑓 , 𝑣 ′))
17 end
18 𝑖 ← 𝑖 + 1
19 end
20 return 𝐺

21 end
Algorithm 1: Pseudo code of the cycle removal procedure. The
procedure replaces cycles with fake nodes while maintaining a
history of the nodes that have been replaced.

cycle, we repeat the procedure solving the inner cycle 𝑁𝑐′ , before
continuing with the nodes in 𝑁𝑐 .
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Figure 1: A minimal example of the simplification proce-
dure described in Algorithm 1. The base graph has two cy-
cles: one composed of nodes 𝐴 and 𝐵, and one composed
of nodes 𝐵 and 𝐶. The procedure identifies first the cycle
𝐵,𝐶, circled in red, and replaces it with the red fake node
𝐹1, which has incoming connections from 𝐴 and 𝐼 and out-
going connections to 𝐴 and 𝑂 . Then, it finds the cycle 𝐹1, 𝐴,
circled in blue, and replaces it with the blue fake node 𝐹2.
Eventually, a directed acyclic graph is obtained, with a sin-
gle fake hidden node 𝐹2, which hides the cycle 𝐴, 𝐹1, where
𝐹1 is another fake node hiding the nodes 𝐵 and 𝐶.

Thanks to this process, the network after pruning can have a
different structure. We identify three base structures, which can be
described as follows. In the first case, the inputs are connected to
all the hidden nodes that in turn are connected to the outputs. This
creates an NNwith a single hidden layer, see Figure 4a. In the second
case, the pruning process cuts all the connections between the input
and hidden nodes. Hence, the inputs are directly connected to the
output nodes, creating a zero-layer NN, see Figure 4b. In the third
case, the pruning process removes all the connections between

the inputs and a subset of the hidden nodes, but the hidden nodes
remain connected, creating an NN with more than one layer. For
example, given the hidden nodes 𝐴, 𝐵, and 𝐶 , if the inputs are
connected only with𝐴 and 𝐵, but not with𝐶 , which in turn remains
connected with 𝐴 and 𝐵, the resulting NN will have two hidden
layers: the first one, composed of neurons 𝐴 and 𝐵; the second one,
composed only of neuron 𝐶 , see Figure 4c.

It is worth noticing that, starting from these three base structures,
we can derive more complex structures. For example, each node in
the third case can be a fake node, hence “hiding” a set of nodes.

While in principle promising, this model is not free from weak
points. First of all, the number of weights in the SBNN increases
quadratically with the number of hidden nodes, as each hidden node
is fully connected with all the other hidden nodes. Moreover, each
connection is associated with an ABCD rule with its corresponding
4 parameters. Therefore, the total number of parameters to optimize
is orders of magnitude greater with respect to a Feed Forward
Neural Network (FFNN) with the same number of hidden nodes.
Figure 3 shows a comparison in terms of number of parameters to
optimize between the proposed SBNN, and two other NN-based
models, namely an FFNN with and without Hebbian learning.

Secondly, before pruning the hidden nodes compose a single,
fully connected subnetwork on which the activation order can
influence the network’s output. For example, if we consider a fixed
activation order, the first hidden node will receive as inputs the
values of the inputs at the current timestep, while, for the other
hidden nodes, the values received as inputs will be the ones from
the previous activation. On the other hand, as discussed above,
after pruning we can find the topological order for network by
visiting the underlying graph. Still, in the presence of a subset
of hidden nodes that are linked together, we cannot determine a
unique activation order.

3.4 OpenAI tasks
To measure the performance of the proposed SBNN, we use three
classical control tasks from OpenAI [4], namely Cart Pole,Mountain
Car, and Lunar Lander.

In Cart Pole, the agent has to move a cart to maintain a pole
in equilibrium. The agent can push the cart in both directions
(move left/right), and it receives a positive reward for each timestep
in which the pole is in equilibrium. The episode ends after 500
timesteps, or if the angle of the pole is outside the range ±12°.

In Mountain Car, the agent has to drive a car from a valley to the
top of a mountain. The agent has to build momentum to increase
its velocity, thanks to another hill positioned before it. The agent
can perform three actions (accelerate left, accelerate right, or do
not accelerate), and receives a negative reward at each timestep
until it reaches the top of the mountain. The episode ends if the car
reaches the top of the hill, or after 200 timesteps.

Finally, in Lunar Lander, the agent has to land a spaceship. The
agent has to reduce the terminal velocity of the spaceship while
compensating for the lateral wind. Hence, the agent can perform
four actions: two to control the lateral (left/right) engines, one to
activate the main engine, and one that does not perform any action.
The agent increases the received reward if it lands in the designated
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area at a lower speed and does not tilt. The episode ends if the
spaceship lands, or if its 𝑥 position is greater than 1.

The three tasks above are solved if the average reward over 100
episodes is greater than a predefined threshold, which is 475 for
Cart Pole, −110 for Mountain Car, and 200 for Lunar Lander.

Episodes

I

A

B

C

O I

A

B

C

O I

A

B

C

O

Figure 2: Scheme of the SBNN over the episodes. Initially, we
set all the connections to 0 (red); then during the task Heb-
bian plasticity changes the weights, leading to the second
NN, where different thickness indicates different weights.
At a certain time, the pruning mechanism cuts the weakest
connections, resulting in the final structure of the NN.
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FFNN Hebbian FFNN SBNN

Figure 3: Number of parameters to optimize with respect to
the number of hidden nodes. For the (Hebbian) FFNN, we
consider an NN with two hidden layers with the same num-
ber of neurons indicated on the x-axis. In all cases, a sin-
gle input and a single output are considered. The FFNNwith
Hebbian learning uses a different ABCD rule for each con-
nection.

4 RESULTS
In this section, we will analyze the performance and behavior of
the SBNN in comparison with a FFNN for which we apply the
same pruning mechanism used in the SBNN, but before the fitness
evaluation. Note that, in our implementation, we use as activation
function the 𝑡𝑎𝑛ℎ function, both on the hidden nodes and on the
input/output nodes, for both the SBNN and the FFNN. Concerning
the fitness evaluation, we measure the performance of the agent as
the average reward over 100 episodes seen during training. For the
FFNN, as the pruning process happens before the first episode, in
this case the fitness by construction is measured after pruning. On
the contrary, as for the SBNN the pruning process happens during
the life of the agent (i.e., across episodes), in this case the fitness

I
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O

(a) Pruning removes
inner connections
between hidden
nodes.

I
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C

O

(b) Pruning removes
all connections
from and to hidden
nodes.

I

A

B

C

O

(c) Pruning removes
the connection be-
tween 𝐼 and𝐶 , creat-
ing two hidden lay-
ers.

Figure 4: Pruning can create different structures in the
SBNN. In Figure 4a, an NN with one layer is created. In Fig-
ure 4b, pruning cuts all the connections to the inner nodes,
reducing the NN only to the input-output connections. Fi-
nally, in Figure 4c, pruning results in the creation of two
hidden layers.

contains two components, one before and one after pruning (which
are then averaged). We divide our experiments into three parts, to
answer three different research questions:
RQ1 What is the performance of the SBNN? What are the main

hyperparameters of this model that affect the performance?
RQ2 Is there any structural difference between the networks pro-

duced by the SBNN and an FFNN?
RQ3 Are SBNNs able to generalize over the different tasks?

To answer these questions, we perform a campaign of simula-
tions varying the three main hyperparameters of the SBNN: the
number of hidden nodes ℎ𝑛, the pruning rate 𝑝𝑟 , and the pruning
time 𝑝𝑡 , the latter indicating when pruning is applied. To calculate
the pruning time, we consider the number of episodes in the task,
i.e., a pruning time of 10 means that pruning happens after the
agent completes the 10-th episode.

For each combination of these parameters, we perform 30 in-
dependent evolutionary processes. To optimize the parameters of
the network (i.e., the weights for the FFNN, or the parameters of
the ABCD rules for the SBNN), we use the well-known Covariance
Matrix Adaptation Evolution Strategies (CMA-ES) [13, 18, 19, 28].
We stop the evolution after the generation of a fixed number of 2000
individuals for Lunar Lander and Cart Pole, and 4000 for Mountain
Car. In all cases, we set 𝜆 = 4+⌊3∗𝑙𝑛( |p|)⌋ and 𝜇 = 𝜆

2 , where p is the
vector of parameters to optimize. Table 1 summarizes the configura-
tions tested. Note that we omit the results obtained on the Cart Pole
task as there were no significant differences between the FFNN and
the SBNN: in fact, all the individuals using both models solved the
task, that is comparatively simpler than the other two. We make
our code publicly available at https://github.com/ndr09/SBM.

4.1 RQ1: Performance
Concerning the performance of the SBNN, we aim to evaluate
how it compares with that of an FFNN. Since the SBNN has more
connections than the FFNN given the same number of hidden nodes,
we make two comparisons: one comparing the results of the two

https://github.com/ndr09/SBM
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Parameter Cart Pole Mountain Car Lunar Lander
Fitness evaluation 2000 4000 2000
Hidden nodes 3, 4 3, 4 5, 6, 7, 8, 9
Pruning time 5, 10 1, 5, 10 1, 5, 10, 15, 20
Pruning rate 40, 60 40, 60 20, 40, 60, 80

Table 1: Parameter configuration used for each task consid-
ered in the RQ1 experiments. For RQ2 and RQ3, we use a
representative subset of these configurations.

models given the same number of hidden nodes, and one given the
same total number of connections after pruning. In the following,
we start with the Mountain Car task and then move to describe the
results for the Lunar Lander one.

Figure 5 shows the results for the Mountain Car environment.
The upper and lower row relate, respectively, to an FFNN with one
layer with 3 or 4 hidden nodes. The left and right column present,
respectively, the results with a pruning rate of 40% and 60%. In each
subfigure, we plot the average results of the best individual over
30 independent runs. The first three boxplots indicate the results
of the SBNN with different pruning times, namely 10, 5, and 1,
respectively from left to right. The last boxplot shows the baseline
results of the FFNN. In Mountain Car, the results indicate that the
SBNN reaches similar or better performance with respect to an
FFNN with the same pruning rate.

Interestingly, we observe a clear trend on the pruning time, i.e.,
the performance increases when decreasing the value of 𝑝𝑡 , regard-
less of the pruning rate and the number of hidden nodes. Hence,
we can conclude that, after the first episode, the agent has already
received enough experience (information) to build the network.

To understand the effect of pruning on the performance, we
make an additional analysis, by comparing the average reward
before and after pruning. For instance, considering 𝑝𝑡 = 10, we
measure separately the average reward until the 10-th episode, i.e.,
before pruning, and the average reward after the 10-th episode, i.e.,
the post-pruning one. Based on this procedure, we observe that,
thanks to pruning, the performance receives a 7− 13% boost on the
Mountain Car task.

Figure 6 presents the results for the Lunar Lander environment.
For this environment, we consider hidden nodes ranging from 5 to
9, because of the greater complexity of the task. Here, the results are
shown differently from Figure 5: in particular, we plot the median
rewards for the best individuals of each evolutionary run, varying
the pruning rate while keeping the pruning time and the number
of hidden nodes fixed. In this way, we highlight two points. The
first one is that the performances of the SBNNs are in most cases
equal to or better than the ones obtained by the FFNN for the same
pruning rate. The second point is that, while increasing the pruning
rate, the drop in performance for the SBNN is lower than what
observed with the FFNN baseline. We can also observe that this
trend is maintained when comparing solutions with a comparable
number of connections. For example, the SBNN with 5 hidden
nodes and the FFNN with 9 hidden nodes have a similar number
of connections (respectively, 117 and 108). Moreover, we can see
the same trend observed in Mountain Car, i.e., that the best results
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Figure 5: Results on the Mountain Car environment. The
y-axis shows the average reward obtained during training
from the best agent found in each of 30 runs. The dashed
line indicates the solving threshold for the environment. For
the SBNN, the results indicate a clear trendwhere the perfor-
mance increases while 𝑝𝑡 decreases.

are achieved with 𝑝𝑡 = 1. Hence, also in this task it appears that
a single episode contains enough information to learn about the
prunable connections. These observations suggest that, at least
in the tested tasks, the SBNN is effectively capable to exploit the
network structure (and the information therein) better than the
FFNN.

Also in this case, we perform the same analysis of before, dividing
the results before and after pruning and observing the average
results. As for the case of Mountain Car, also for Lunar Lander
we can see an increase in performance after pruning, in this case
between 6% and 100%. This improvement indicates, once again, the
importance of pruning and its complementary effect with respect
to Hebbian learning.

Finally, we compare the results of the networks based on total
number of connections after pruning. In Figure 7, we compare the
FFNN with 𝑝𝑟 = 20% with the SBNN with 𝑝𝑟 = 60% (with these
values, in fact, the FFNN and the SBNN have a similar number of
connections after pruning). We can observe that the SBNN reaches
almost always a comparable or slightly better performance with
respect to the FFNN. However, in the case where the FFNN performs
better than the SBNN (i.e., with 9 nodes), the difference is not
statistically significant (Wilcoxon rank-sum test, 𝛼 = 0.01).

4.2 RQ2: Difference between SBNN and FFNN
In this section, we want to analyze the structural difference between
the network found with the SBNN and the FFNN. For this reason,
we characterize the networks based on the number of working
connections, i.e., the connections that link inputs to outputs after
pruning. To calculate these connections, we remove the synapses
that lead to sink or come from source nodes. While a sink is a node
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Figure 6: Median reward on the Lunar Lander task for differ-
ent numbers of hidden nodes. The x-axis indicates the prun-
ing rate, while the different lines refer to different values
of pruning time. The red dashed line indicates the solving
threshold. The results show that while increasing the prun-
ing rate, the performance drop for the SBNN is lower than
for the FFNN.

with only incoming connections that is not an output node, a source
is a node with only outgoing connections that is not an input node.

Figure 8 and Figure 9 show the distribution of working connec-
tions for a representative subset of the configurations presented in
the previous section, considering the best solution (one per each
evolutionary run) obtained for each considered configuration. On
the x-axis, we indicate the percentage of remaining working connec-
tions (after pruning) with respect to the total number of synapses,
grouped every 10%, while on the y-axis we indicate how many
networks (out of 30, one per run) have that number of connections.
For example, if we consider a point at 𝑥 = 40%, 𝑦 = 0.5, we mean
that in 50% of runs (i.e., 15 out of 30) networks after pruning have
a number of working connections in the range (30%, 40%].

In both figures, we can observe a quite clear pattern: all the FFNN
configurations use the majority of the connections available. On the
other hand, the distributions of working connections for the SBNN
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Figure 7: Average reward on the Lunar Lander task for a
SBNN with a pruning rate of 60% and an FFNN with a prun-
ing rate of 20%. The x-axis indicates the number of hidden
nodes (note that in this setting the twomodels have a similar
number of total connections after the pruning process). The
results show that the SBNN reaches similar or slightly better
performances with respect to the FFNN. For 9 hidden nodes,
the FFNN seems to perform slightly better, but the differ-
ence is not statistically significant (Wilcoxon rank-sum test,
𝛼 = 0.01).

have two peaks: the first one occurs between 10% and 20% for the
Mountain Car task and between 20% and 40% for the Lunar Lander
one; the second peak is in common between the two tasks at around
90%. We visually analyzed all the networks and discovered that the
SBNNs that compose the first peak have a structure like the one
shown in Figure 4b, where all the hidden nodes are disconnected.
Interestingly, the percentage of this kind of structures increases
when 𝑝𝑡 increases, as the first peak is higher for higher values of
𝑝𝑡 . This suggests that the later pruning occurs, the more probable
it is that connections to the hidden nodes are pruned, thus leaving
only input-output connections. Our intuition is that this form of
simplification somehow correlates with the complexity needed to
solve the task.

Concerning the total number of connections, we observe that in
the Lunar Lander environment SBNNs maintain between 10 and
30 working connections for pruning rates higher than 20%. This
range appears independent on the pruning time and the number of
hidden nodes available. On the contrary, FFNNs use the majority
of the connections available, as for Mountain Car. Hence, in this
case the number of working connections is strongly dependent
on the number of hidden nodes and the pruning rate, resulting in
a total number of working connections between 10 and 64. The
fact that the number of working connections varies is especially
relevant when comparing the SBNN and the FFNN: for example,
on the Lunar Lander task, the FFNN with 9 hidden nodes and a 40%
pruning rate uses all the 64 connections available, while the SBNN
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Figure 8: Distribution of the number of connections after
pruning the network on the Mountain Car task. On the x-
axis, we show the percentage ofworking connections, which
are connections that do not lead to a sink node or are outgo-
ing from a source node, grouped every 10%. On the y-axis, we
show how many networks (out of 30, one per run) have that
percentage of working connections. The results show that,
for a pruning rate higher than 20%, FFNN tends to use all
the available connections, while SBNN has two peaks: one
around 10 − 20%, and one at 80 − 90%.

solves the task and obtains better performance using on average
only 20 connections, see Figure 6.

In Figure 10, we show two SBNNs (after pruning) trained on the
Mountain Car task. These networks are of two different kinds: one
where all the hidden nodes have been removed, and that uses only
two actions (accelerates left and accelerate right); and one that uses
uses 2 out of 4 hidden nodes available, and all the three available
actions.

4.3 RQ3: Generalization
In this section, we evaluate the generalization capabilities of the
SBNN by testing the best agent (found after an evolution process
on a given task) on another, unseen task.

In particular, we test the agents trained on Lunar Lander on the
Cart Pole and Mountain Car tasks. We restrict the validation to this
case, as the Lunar Lander environment is the only one with enough
input and output nodes to perform the other two tasks. In fact, the
different tasks have different input and action spaces.

To perform this analysis, we remap inputs and outputs from the
validation task to the relative inputs in the Lunar Lander environ-
ment. For example, if in the Lunar Lander environment the first
input is the x-position, we map the observation of the position from
the validation task (i.e., the x-position of the cart or the car, respec-
tively for Cart Pole and Mountain Car), to the first input. We set all
the unused inputs to 0. Regarding the output, we consider only the
outputs present in the validation task. For example, considering the
validation task as Cart Pole, the only actions available are move left
and move right. Hence, we consider only the outputs that control
the left and right engines in Lunar Lander.
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Figure 9: Distribution of the number of connections after
pruning the network on the Lunar Lander task. On the x-
axis, we show the percentage ofworking connections, which
are connections that do not lead to a sink node or are outgo-
ing from a source node, grouped every 10%. On the y-axis, we
show how many networks (out of 30, one per run) have that
percentage of working connections. The results show that,
for a pruning rate higher than 20%, FFNN tends to use all
the available connections, while SBNN has two peaks: one
around 20 − 40%, and one at 80 − 90%.
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Figure 10: Structure of two selected SBNNs obtained on the
Mountain Car task. On the left, an SBNN that uses 2 out of 4
hidden nodes and a 2-layer structure. On the right, an SBNN
that uses only two connections.

Figure 12 shows the performances in the validation tasks for a
subset of the configurations (statistical significance assessed with
Wilcoxon rank-sum test, 𝛼 = 0.05). On the Cart Pole task, the results
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of the SBNN are similar to or better than the ones of the FFNN.
In the Mountain Car environment, the SBNN performs slightly
worse than the FFNN for 𝑝𝑟 = 20%, although the differences are
not always statistically significant; for 𝑝𝑟 = 80%, the SBNN shows
better performances, with higher performance in the first quartile
(indicating, once again, that the SBNN models effectively learns to
use the network structure).

Finally, with these validation experiments, we can observe how
the task affects the network structure. Figure 11 shows the network
structure of the same agent, which can solve both the Lunar Lander
and the Cart Pole task after the pruning process. We can observe
that the networks differ in the number of connections used and in
the neurons that those synapses connect.
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Figure 11: Structure of the same SBNN in the Lunar Lander
(left) and Cart Pole (right) environments. We can observe
how the network structure changes based on the task.

5 CONCLUSIONS
In this work, we took inspiration from the synaptogenesis pro-
cess occurring in natural brains to propose a new learning model
that combines both plasticity and pruning. At the beginning of the
first episode of the task, all the neurons are connected with each
other and initialized to 0 (i.e., the connections exist, but they are
initially deactivated). Then, within each episode, a plasticity model
based on Hebbian learning grows those synapses, activating the
corresponding connections. Eventually, during the life of the agent
(i.e. at a predetermined episode), those connections are pruned
through a global magnitude pruning algorithm and Hebbian learn-
ing is stopped. We called this model Self-building Neural Network
(SBNN), as it changes its structure based on the experience of the
agent during the episodes of the task.

We tested our model on three classical control tasks from the
OpenAI, namely Cart Pole, Mountain Car, and Lunar Lander. In our
experiments, we varied the three main parameters of the model,
affecting respectively when to prune, how much to prune, and the
number of hidden nodes. We showed that, in general, the SBNN
reaches better performance than the FFNN, and that it can adapt
better to unseen tasks. Furthermore, we assessed the importance
of the model’s parameters, in particular regarding when and how
much to prune. Finally, we highlighted how the same agent reorga-
nizes its brain differently, based on the task, and how it can remove
unnecessary complexity from the brain, given enough time.

In the future, we plan to develop a system for automatically
deciding how much and when to prune based on the information
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Figure 12: Comparison between the SBNN with 𝑝𝑡 = 1 and
the FFNN trained on the Lunar Lander task. The y-axis rep-
resents the average reward in the two validation tasks: Cart
Pole (left) and Mountain Car (right). The dashed red line
indicates the solving threshold for the two tasks. The re-
sults show that SBNN trained on the Lunar Lander task
tends to achieve better or equal performance with respect
to the FFNN. For each pairwise comparison, we indicate the
p-value of the Wilcoxon rank-sum test.

flow in the network. In addition, we aim to tackle more complex
tasks, such as the control of soft robots, where we can test the
proposed SBNN on larger input and action spaces. We also plan to
address the two limitations indicated in Section 3. For the number
of parameters to optimize, we will test the use of a Hebbian rule for
each neuron, rather than one for each connection, also modifying
the update rule to avoid that each connection receives the same
update. For the activation order, we plan to use a distance-based
approach to solve the cycle, using as the distance the weights.
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