Table 1: P - values of Wilcoxon paired test for multiple comparisons with Bonferroni correction for Test error with RMSE and with Complexity Metrics on Boston dataset.

	RMSE	ϕC	d	θ	nao	naoc	no	ϕ	S	$S\theta$
ϕC	1.0000									
d	0.0264	1.0000								
θ	0.2258	1.0000	1.0000							
nao	1.0000	1.0000	1.0000	1.0000						
naoc	1.0000	0.3056	0.0207	0.1506	1.0000					
no	0.2258	1.0000	1.0000	1.0000	1.0000	0.0478				
ϕ	1.0000	1.0000	1.0000	1.0000	1.0000	0.3328	1.0000			
S	0.0672	1.0000	1.0000	1.0000	1.0000	0.0161	1.0000	1.0000		
$S\theta$	0.1669	1.0000	1.0000	1.0000	1.0000	0.0402	1.0000	1.0000	1.0000	
λ	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9221	1.0000	0.0777	0.3363

Table 2: P - values of Wilcoxon paired test for multiple comparisons with Bonferroni correction for Test error with RMSE and with Complexity Metrics on ENB Cooling dataset.

	RMSE	ϕC	d	heta	nao	naoc	no	ϕ	S	S heta
ϕC	0.0000									
d	0.0000	1.0000								
θ	0.0000	1.0000	1.0000							
nao	1.0000	0.0000	0.0000	0.0000						
naoc	1.0000	0.0000	0.0000	0.0000	0.7256					
no	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000				
ϕ	0.0000	0.0398	0.0336	0.0009	0.0000	0.0000	0.0142			
S	0.0000	1.0000	1.0000	0.7507	0.0000	0.0000	1.0000	1.0000		
$S\theta$	0.0000	1.0000	1.0000	0.0839	0.0000	0.0000	0.4826	1.0000	1.0000	
λ	0.0000	1.0000	1.0000	0.1748	0.0000	0.0000	0.6160	1.0000	1.0000	1.0000

Table 3: P - values of Wilcoxon paired test for multiple comparisons with Bonferroni correction for Test error with RMSE and with Complexity Metrics on ENB Heating dataset.

	RMSE	ϕC	d	θ	nao	naoc	no	ϕ	S	S heta
ϕC	0.0000									
d	0.0000	1.0000								
θ	0.0000	1.0000	1.0000							
nao	1.0000	0.0000	0.0000	0.0000						
naoc	1.0000	0.0000	0.0000	0.0000	0.8898					
no	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000				
ϕ	0.0000	0.0079	0.0046	0.0003	0.0000	0.0000	0.0079			
S	0.0000	1.0000	1.0000	0.3667	0.0000	0.0000	1.0000	1.0000		
$S\theta$	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000	1.0000	0.3833	1.0000	
λ	0.0000	1.0000	1.0000	1.0000	0.0000	0.0000	1.0000	1.0000	1.0000	1.0000

Table 4: P - values of Wilcoxon paired test for multiple comparisons with Bonferroni correction for Test error with RMSE and with Complexity Metrics on Airfoil dataset.

	RMSE	ϕC	d	θ	nao	naoc	no	ϕ	S	$S\theta$
ϕC	1.0000									
d	1.0000	1.0000								
θ	1.0000	1.0000	1.0000							
nao	1.0000	1.0000	1.0000	1.0000						
naoc	1.0000	1.0000	1.0000	1.0000	1.0000					
no	0.0001	0.0019	0.0005	0.0000	0.0003	0.0001				
ϕ	0.1042	1.0000	1.0000	0.0987	0.1357	0.0317	1.0000			
S	0.0103	0.0492	0.0987	0.0125	0.0478	0.0125	1.0000	1.0000		
$S\theta$	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.0001	1.0000	0.0103	
λ	0.0006	0.0492	0.0103	0.0022	0.0004	0.0002	1.0000	1.0000	1.0000	0.0069

Table 5: P - values of Wilcoxon paired test for multiple comparisons with Bonferroni correction for Test error with RMSE and with Complexity Metrics on RB Cost dataset.

	RMSE	ϕC	d	θ	nao	naoc	no	ϕ	S	$S\theta$
ϕC	0.0635									
d	1.0000	0.0353								
θ	1.0000	1.0000	1.0000							
nao	1.0000	0.0006	1.0000	0.0549						
naoc	1.0000	0.1848	1.0000	1.0000	1.0000					
no	1.0000	0.1074	1.0000	1.0000	1.0000	1.0000				
ϕ	1.0000	0.0878	1.0000	1.0000	1.0000	1.0000	1.0000			
S	1.0000	0.0753	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000		
$S\theta$	1.0000	1.0000	0.3432	1.0000	0.0196	1.0000	1.0000	1.0000	0.6563	
λ	1.0000	1.0000	1.0000	1.0000	0.0927	1.0000	1.0000	1.0000	1.0000	1.0000

Table 6: P - values of Wilcoxon paired test for multiple comparisons with Bonferroni correction for Test error with RMSE and with Complexity Metrics on RB Sales dataset.

	RMSE	ϕC	d	θ	nao	naoc	no	ϕ	S	S heta
ϕC	0.6886									
d	1.0000	0.0057								
θ	1.0000	1.0000	0.0110							
nao	0.8177	0.0001	1.0000	0.0002						
naoc	1.0000	0.0021	1.0000	0.0133	1.0000					
no	1.0000	0.0123	1.0000	0.0547	1.0000	1.0000				
ϕ	1.0000	1.0000	1.0000	1.0000	0.2549	1.0000	1.0000			
S	1.0000	0.0472	1.0000	0.0976	1.0000	1.0000	1.0000	1.0000		
$S\theta$	1.0000	0.7002	0.0769	1.0000	0.0207	0.4377	1.0000	1.0000	1.0000	
λ	1.0000	0.0057	1.0000	0.0184	1.0000	1.0000	1.0000	1.0000	1.0000	0.5077

Table 7: P - values of Wilcoxon test for the differences between Test and Train RMSE for each dataset. Bonferroni corrected p - value = 0.00076.

	Boston	ENB Cooling	ENB Heating	Airfoil	RB Cost	RB Sales
RMSE	0.000000	0.004530	0.000426	0.000000	0.000000	0.000002
ϕC	0.000000	0.000000	0.000000	0.001677	0.000000	0.000007
d	0.000000	0.000000	0.000006	0.000083	0.000000	0.000000
θ	0.000000	0.000000	0.000000	0.042996	0.000000	0.000000
nao	0.000000	0.000247	0.000000	0.000820	0.000000	0.000000
naoc	0.000000	0.000576	0.000028	0.000001	0.000083	0.000001
no	0.000000	0.000143	0.000000	0.662726	0.000000	0.000000
ϕ	0.000000	0.044579	0.041460	0.138126	0.000000	0.000000
S	0.000000	0.000044	0.000125	0.150416	0.000000	0.000000
$S\theta$	0.000000	0.009181	0.005242	0.000000	0.000000	0.000000
λ	0.000000	0.026032	0.003360	0.522879	0.000000	0.000000

Table 8: Best train error solutions analysed with regard to the interpretability of the model. The s(n) gives the size of the solutions that were not analysed. The \emptyset indicate the solutions that did not contain any features, the \dagger indicates the solutions with the test error larger than the train error and the \star indicates the solutions that were considered the best for that dataset.

	Boston	e_{train}	e_{test}	ENB Cooling	e_{train}	e_{test}
RMSE	s(131)	2.91	8.99^{+}	s(68)	1.41	2.13^{+}
ϕC	s(44)	3.65	12.63^{\dagger}	$(f_4 + (-0.27))/0.23$	4.94	5.96^{+}
d	$(0.76 - (f_5 - cos(0.49 + 0.28)))^2$	3.65	$12.26\dagger$	$\left(\left((\sqrt{0.79})^2 \times \sqrt{f_1}\right) - (-0.83)\right) \times \left(\sin(f_4) + \sqrt{(-0.46) + (-0.26)}\right)$	4.10	5.87^{+}
θ	$[(0.94 + sin((0.75 + 0.69 - 0.86^2)^2)) - s(\sqrt{cos(-0.31)}) - (0.86 - f_5)]^2$	3.63	12.44^{+}	s(48)	4.32	6.00^{+}
nao	s(83)	2.79	$12.45\dagger$	s(105)	1.48	1.52^{+}
naoc	s(78)	2.77	$15.67\dagger$	s(99)	1.41	2.67^{+}
no	$\star \left((-0.76 - 0.44)^2 - f_5 \right)^2$	3.63	12.41^{+}	$\star \frac{f_4}{f_3} \times f_1$	4.43	5.00^{+}
ϕ	$\left(\sqrt{\left((\sin(0.94)\times\frac{f_5}{0.81}+\sin(\sin(-0.65)))-\sin(\cos(\sin(-0.37)))\right)^2}\right)$	3.69	12.76^{+}	s(51)	4.45	$6.08^{+}_{}$
S	$\left(\left(f_5 - \sqrt{cos((-0.67) - 0.07)} + .sin(-0.68)\right)^2\right)$	3.66	12.22^{+}	s(23)	4.60	6.12^{+}
$S\theta$	* $\left(\sqrt{0.23} - (f_5 + (-0.96))\right)^2$	3.63	12.46^{+}	$s(32), \emptyset$	4.66	5.66^{+}
λ	f_{10}	4.20	$12.73\dagger$	$f_4/0.25$	4.60	6.20^{+}
	ENB Heating			Airfoil		
RMSE	s(104)	1.35	1.56^{+}	s(124)	3.73	5.78^{+}
ϕC	* $\frac{f_1}{f_3} \times (f_4 - (-0.16))$	4.44	5.25^{+}	* $\left(\left(\frac{-0.83}{0.01} - \frac{-0.39}{(f_1 - (-0.28))}\right) - f_2\right) - f_2$	6.63	6.26
d	s(94)	4.30	6.51†	s(69)	6.33	6.06
θ	s(22)	4.20	5.64†	s(88)	6.01	6.16†
nao	s(89)	2.09	4.007	s(161)	4.01	7.40T
naoc	s(130)	1.40	1.04	$\left(\left(1, 1, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$	3.11	0.91
no	$(sin(f_4 imes (-0.86)))^2 imes f_1$	4.41	5.44^{+}	$\left(\left(sin(-0.58) - \left(0.42 - \frac{0.23}{(-0.08)} \right) \right) + (f_4 \times 0.42) \right)$	6.74	6.57
ϕ	$(s(6), \emptyset)$	4.59	5.06^{+}	s(27)	6.69	6.30
S	$\left(\frac{\sqrt{f_4-0.17}}{0.46}\right)$	4.46	6.07^{+}	$s(6), \emptyset$	6.75	6.39
$S\theta$	$s(15), \emptyset$	4.34	5.68^{+}	$s(13), \emptyset$	6.74	6.38
λ	\star (-0.63) + $\left(\frac{f_4}{0.24}\right)$	4.54	6.30^{+}	s(7), Ø	6.76	6.50
	RB Cost			RB Sales		
RMSE	s(58)	126.77	61.27	s(98)	155.27	180.06†
ϕC	$\star \frac{f_1/(\frac{2}{f_{103}})}{f_{91}} + f_{11}$	251.33	86.69	$\star f_{11} + \left(\left(\frac{f_{11}}{f_{91}} - \frac{f_{54}}{f_{12}} \right) + f_4 + f_4 + f_{91} + f_{91} + f_4 \right)$	243.44	136.28
d	$f_{11} + \sqrt{f_{11} \times f_{95}}$	334.99	182.08	$\sqrt{f_{11} \times \left(\sin(\frac{f_{73}}{f_{106}} - \sqrt{f_{61}}) \times f_{19}\right) + (f_{78} + f_{11})}$	292.57	115.00
θ	s(106)	258.85	142.97	s(34)	291.75	122.02
nao	s(119)	115.30	76.36	s(106)	119.75	95.03
naoc	s(92)	124.16	127.17†	s(80)	126.20	105.32
no	$\left(\frac{f_{11}}{f_{92}}\right) \times f_{16}$	257.69	62.33	$\star f_{11} / \left(\frac{J_{75}}{f_{13}} \right)$	258.69	103.93
ϕ	$\left(\left(\frac{\cos(f_{61})}{\sin(((f_{12}+f_{46})-f_{11})-f_{16})}\right)\times f_{11}\right)/f_{92}$	257.69	62.33	$\frac{J_{11}}{\sqrt{\cos(\cos(\sin(\cos(f_{62}/f_{36}))))}}$	266.14	82.09
S	$f_{11} + \left(\frac{f_{11}}{f_{72}}\right)$	281.01	88.14	f_{11}	279.44	106.09
$S\theta$	$\left(\sqrt{f_{11} + \left((0.97 + 0.97)^2 + (0.97 + 0.97)\right)}\right)^2$	297.51	135.34	s(31)	285.23	128.63
λ	$(f_{38} + f_{11}) + \sqrt{f_{11} + f_{53}}$	358.16	140.78	f_{11}	279.44	106.09