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Abstract

In some machine learning applications the availability of labeled instances for
supervised classification is limited while unlabeled instances are abundant. Semi-
supervised learning algorithms deal with these scenarios and attempt to exploit
the information contained in the unlabeled examples. In this paper, we address
the question of how to evolve neural networks for semi-supervised problems. We
introduce neuroevolutionary approaches that exploit unlabeled instances by using
neuron coverage metrics computed on the neural network architecture encoded by
each candidate solution. Neuron coverage metrics resemble code coverage metrics
used to test software, but are oriented to quantify how the different neural network
components are covered by test instances. In our neuroevolutionary approach, we
define fitness functions that combine classification accuracy computed on labeled
examples and neuron coverage metrics evaluated using unlabeled examples. We
assess the impact of these functions on semi-supervised problems with a varying
amount of labeled instances. Our results show that the use of neuron coverage
metrics helps neuroevolution to become less sensitive to the scarcity of labeled
data, and can lead in some cases to a more robust generalization of the learned
classifiers.
keywords: neuroevolution, neuron coverage, semi-supervised learning, neural
networks, deep learning, NAS

1 Introduction

Neuroevolutionary approaches [1, 2] are extensively used to optimize the neural network architecture
in supervised machine learning tasks. Usually, a training dataset is used to guide the search for the
optimal model. However, in some domains, the availability of labeled examples is limited due
to the cost of human labeling or the scarcity of data. In these scenarios, unlabeled data become
more precious. Semi-supervised machine learning algorithms have been proposed to take advantage
of the unlabeled examples during the learning stage of the model. Among the semi-supervised
machine learning approaches, we can find disagreement-based methods such as co-training [3],
graph-based methods like those based on min-cuts [4], and low-density separation methods such as
semi-supervised support vector machines [5].

Evolutionary algorithms have been also applied to semi-supervised problems. In [6], the applica-
tion of grammatical evolution (GE) for semi-supervised classification is proposed. The quality of
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the model is evaluated by combining the accuracy on the labeled data with one measure of clus-
ter quality on the unlabeled examples. Kamalov et al. [7] apply a GP algorithm combined with
a self-labeling algorithm to classify time-series. They show that the combination of both types of
algorithms improves state-of-the-art semi-supervised methods for the addressed classification prob-
lems. Silva et al. [8] propose a way to use unlabeled data as part of GP learning to increase the
accuracy of GP classifiers for problems with noisy labels.

In this paper, we focus on neuroevolutionary approaches to semi-supervised learning. More specifi-
cally, we investigate the behavior of evolutionary approaches that evolve neural networks for semi-
supervised classification. There are some works in the field of neural architecture search (NAS) that
consider semi-supervised tasks [9, 10]. The approach in these papers consists of the identification of
an unsupervised pretext task from which a neural architecture is learned that is then transferred to the
target supervised task for which labeled data is available. For example, for an image segmentation
task, an input image is first rotated in four preset directions and then a neural network architecture
is searched for the pretext task of predicting the rotation. Subsequently, the selected architecture is
retrained to solve the original image segmentation task. In this paper, we follow a completely dif-
ferent approach, in which unlabeled data is used to evaluate different metrics describing the neuron
coverage of the neural network architecture encoded by the candidate solution.

Neuron coverage metrics [11, 12, 13] are inspired by code coverage metrics which serve the func-
tional and structural testing of code systems. Usually, a software coverage metric serves to quan-
tify to what extent different components of a code (e.g., lines, program branches, modules, etc.)
are “covered” by a set of test examples. For neural networks, the components whose coverage is
targeted by the corresponding metrics are the neurons, layers, or even more fine-grain functional
characterization of the network, such as the range of possible values for the activation functions of
the neurons. Neuron coverage metrics have mainly been applied as a way to verify neural networks
and detect possible errors [14, 15]. The rationale behind their application is that a test set that covers
all possible components of a neural network serves as a detailed characterization of the network
behavior.

In this paper, we propose to use neuron coverage metrics as a supervisory signal to discriminate
among evolved architectures. The assumption is that these metrics, when computed using unlabeled
data, can serve to predict whether the neural network architecture is likely to, at least, “evaluate
properly” similar data. Therefore, neuroevolution will be driven by the performance of the evolved
network architectures on labeled data and their potential to be covered by unlabeled data.

The paper is organized as follows:

In the next section, we present the necessary background on semi-supervised classification and neu-
ron coverage metrics. Related work is analyzed in Section 3. Section 4 introduces the neuroevo-
lutionary approach, explaining the evolutionary operators and the characteristics of the tensorflow-
based implementation. The characteristics of the training process and the fitness function specifi-
cally conceived for the semi-supervised scenario are discussed in Section 5. Section 6 explains the
experimental framework and discusses the results of the experiments. Finally, Section 7 concludes
the paper and discusses future work.

2 Semi-supervised classification and neuron coverage metrics

2.1 Semi-supervised classification

We address the semi-supervised classification task of learning a function f : X 7→ Y from a training
data set Dtrain = {(x1, y1), . . . , (xi, yi), . . . , (xl, yl), xl+1, . . . , xm}, where X is the feature space,
Y ∈ {0, 1}, l is the number of labeled training examples, and u = m− l is the number of unlabeled
instances. This type of problem can be considered as an example of incomplete supervision since
only a subset of training data is given with labels [16].

2.2 Neuron coverage metrics

In the literature, there are slightly different definitions of the neuron coverage metrics. We have
mainly adopted the conventions used in [11, 13] with some few changes.
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Let c represent a neuron of a multi-layer perceptron (MLP) of A layers. M1,M2, . . . ,MA represent

the number of neurons in each layer and N =
∑A

j=1
Mj is the total number of neurons in the

network.

We use φ(xi, c) to denote the function that returns the output of neuron c given xi as input. For
a given neuron c, it is said to be activated for a given input xi if φ(xi, c) > t, where t is a given
threshold. Lc and Hc will respectively represent the lower and upper bounds of function φ(xi, c)
for xi ∈ D. These values are determined by analyzing the values of φ(xi, c) for the training dataset
D. Usually, the set D corresponds to a set of instances in the training dataset, i.e., D = Dtrain.

2.2.1 Neuron coverage

Given a set of instances D and a given threshold t, the neural network coverage [12] measures the
proportion of neurons in MLP that have been activated by at least one instance in D:

NC =

∣

∣{c| ∃xi ∈ D : φ(xi, c) > t}
∣

∣

N
(1)

2.2.2 Top-K neuron coverage

For a given test input xi and neurons c and c′ in the same layer, c is more active than c′ if φ(xi, c) >

φ(xi, c′). For the j-th layer, top
j
K(xi) on layer j denotes the set of neurons that have the largest K

outputs on that layer given xi.

The top-K neuron coverage (TKNC) measures how many neurons have once been among the most
active K neurons on each layer.

TKNC(Dtest,K) =
|
⋃

xi∈Dtest
(
⋃

1≤j≤A top
j
K(xi)))|

N
(2)

2.2.3 k-multi-section neuron coverage

Given a neuron c, the multi-section neuron coverage measures how thoroughly the given set of test
instances covers the range [Lc, Hc]. The range is divided into k > 0 equal sections, called multi-
sections. A multi-section Ss

c , s ∈ {1, . . . , k} is said to be covered if φ(xi, c) ∈ Ss
c for xi ∈ Dtest.

The k-multi-section neuron coverage for neuron c is defined [11] as the ratio between the number of
sections covered by Dtest and k,

KMN(c) =

∣

∣{Ss
c | ∃x

i ∈ Dtest : φ(x
i, c) ∈ Ss

c}
∣

∣

k
(3)

The k-multi-section neuron coverage of an MLP [11] is defined as:

KMN(Dtest, k) =

∑

cKMN(c)

k ·N
(4)

2.2.4 Neuron boundary coverage and strong neuron activation coverage

A test input xi ∈ Dtest is said to be located in the corner-case region of an MLP if thre is a neuron
c such that φ(xi, c) is lower than Lc or higher than Hc.

To cover corner-case regions of MLPs, the sets of covered corner-case regions are defined as:

LCN = {c| ∃xi ∈ Dtest : φ(x
i, c) ∈ (−∞, Lc)} (5)

UCN = {c| ∃xi ∈ Dtest : φ(x
i, c) ∈ (Hc,+∞)} (6)
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The neuron boundary coverage (NBC) measures how many corner-case regions have been covered
by the given test input set Dtest.

NBC(Dtest) =
|LCN |+ |UCN |

2 ·N
(7)

The strong neuron activation coverage (SNAC) measures how many corner cases, with respect to
the upper boundary value, have been covered by the given test inputs Dtest.

SNAC(Dtest) =
|UCN |

N
(8)

3 Related work

3.1 Neural network verification

In the literature, the use of neuron coverage metrics is mainly associated with the evaluation and
creation of test instances for verification of neural networks [11, 12, 17]. Test prioritization consists
of ranking the raw inputs to a model according to their potential to improve it. A typical form
to improve the model is by uncovering unexpected behavior from the model that could lead to its
enhancement. Usually, the neuron metric of choice is evaluated for each of the test examples that
are then sorted in descending order of coverage amount. The top ranking test instances are given
higher priority.

Pei et al. [12] introduced the concept of neuron coverage and used it for white-box testing of deep
learning systems. They reported that neuron coverage is a better metric than code coverage for
measuring the comprehensiveness of the DNN test inputs, and that inputs from different classes of a
classification problem usually activate more unique neurons than inputs that belong to the same class.
Ma et al. [11] extended the set of neuron and layer coverage metrics, and used them combined with
the creation of adversarial examples, to quantify the defect detection ability of test data on DNNs.
In [15], neuron importance analysis was introduced as a way to identify neurons that play a more
important role for decision-making within the neural network. The authors show that the introduced
metric can detect those neurons of convolutional networks that are more sensitive to changes in
relevant pixels of a given input.

Lee et al. [14] proposed the application of neuron coverage metrics for a problem that is not di-
rectly related to test selection. They applied these metrics as the basis for neuron selection for
gradient-based white-box testing of neural networks. These white-box testing methods require the
computation of the gradient of neurons to quantify their behavior. Since such a computation can be
expensive, some authors propose strategies for selecting or prioritizing neurons. Examples of such
strategies include the random selection of un-activated neurons [12], or the identification of neurons
near the activation threshold [18]. The use of neuron coverage metrics for neuron prioritization adds
to the repertoire of existing methods and indicates that neuron coverage metrics can also be used for
distinguishing or categorizing different behaviors or roles of the neural network components.

The effectiveness of coverage-based methods for test prioritization has also been questioned in a
number of works where other statistical-based methods for evaluating neural networks were pro-
posed [19, 20]. Other authors report [13] that coverage-driven methods are less effective than
gradient-based methods for uncovering defects and improving neural network robustness.

A number of works have recently investigated the suitability of neuron coverage metrics to evaluate
other machine learning paradigms. For instance, Trujillo et al. [21] present a preliminary study on
the use of these metrics for testing deep reinforcement learning (DeepRL) systems. They compute
the correlation between coverage evolutionary patterns of the RL process and the rewards. They
conclude that neuron coverage is not sufficient to reach substantial conclusions about the design or
structure of DeepRL networks.

None of this previous research has employed the neuron-coverage metric as a way to search in the
space of neural architectures or to find the solution of semi-supervised problems.
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3.2 Neuroevolution for semi-supervised problems

There are several papers that address semi-supervised learning using evolutionary optimization tech-
niques (e.g., see [8] for a discussion of some of these approaches). We briefly cover only some of
the papers that describe research in this area, with a focus on methods that share some commonality
with our contribution.

In [6], Fitzgerald et al. addressed semi-supervised problems using grammatical evolution (GE). They
employ a grammar codifying if-then rules and evolve programs able to assign instances to different
clusters based on their features. Unlabeled instances are used to measure the clustering performance
by means of the silhouette co-efficient or silhouette score (SC) [22], and the labeled data is used to
measure the performance of the model in terms of classification accuracy. The fitness function is
computed as the sum of the aforementioned two scores. While, in this paper, we also propose the
fitness evaluation of each evolved model as a combination of different scores respectively computed
using labeled and unlabeled data, the neuron coverage metrics are fundamentally different from SC
and other clustering scores. They are not associated to computing the performance on any auxiliary
or target task. Furthermore, the evolutionary algorithm that we use to evolve neural networks is a
genetic algorithm (GA) working on a list-based representation of neural network architectures.

Another approach to semi-supervised classification problems is self-labelling, or retraining, in which
the modeled trained on labeled instances is then used to make predictions on unlabeled instances.
These predictions are used as pseudo-labels of the unlabeled examples and used for retraining the
classifier. A similar approach was presented in [7] where the authors combined the PageRank and
PCA algorithms with a variant of genetic programming (GP) specifically tailored for non-linear
symbolic regression. The algorithm was tested on three time series datasets and it was reported that
the performance of the hybrid-algorithm overcomes the two algorithms individually. There are other
papers that propose the application of GP to semisupervised problems, they mainly use a tree-based
program representation [8] and also apply variants of self-labeling strategies [23].

There is an increasing number of works [24, 25] that propose semi-supervised learning methods
for fixed neural networks, i.e., the architecture of the network is not changed as part of the semi-
supervised approach. For example, the consistency regularization method introduced in [24] evalu-
ates each data point with and without added artificial noise, and then computes the consistency cost
between the two predictions. Only recently, the question of semi-supervised classification in NAS
has been addressed. In [10], two semi-supervised approaches are applied to semantic segmentation.
The algorithm jointly optimizes an architecture of a neural network and its parameters. This ap-
proach works minimizing the weighted sum of a supervised loss, and two unsupervised losses. As
in previous examples discussed in this section, this approach requires the definition of an auxiliary
task (e.g., clustering) and the model is evaluated according to its performance on all the tasks.

4 Neuroevolutionary approach

The neuroevolutionary approach we use is based on the application of a GA with genetic operators
designed to work on a list representation of tensorflow programs. In this section, we explain the
main components of the algorithm, and in the next section we focus on the main contributions of
this paper which are related to the way in which the fitness functions are implemented to deal with
the semi-supervised learning scenario.

4.1 Neural network representation

In this work, the evolved DNNs are standard, feed-forward, sequential MLPs that are characterized
by the following aspects:

• Number of hidden layers: Since we consider standard feed-forward sequential architec-
tures, a single integer is enough to encode this aspect.

• Initialization functions: The weights in any given layer can be initialized in a different
manner and this can condition the local optimum the network reaches. It consists of a list
of indices of initialization functions.
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• Activation functions: Similarly, the activation functions applied in each layer is not fixed.
Similarly to the initialization functions, it consists of a list of indices.

• Dropout: Also a per-layer characteristic, this is implemented by means of a list of Boolean
elements determining whether the application of dropout after the activation functions
should be applied.

• Batch normalization: Similarly to the previous aspect, this consists of a list of Boolean ele-
ments indicating whether each layer implements batch normalization before the activation
functions.

The evolvable components have a number of options for variation:

• The DNN weights can be initialized by drawing values from a normal or uniform
distribution, or by applying the xavier [26] variation of the normal initialization.

• The following activation functions can be applied to the layers of the DNN: Identity,
ReLU, eLU, Softplus, Softsign, Sigmoid, Hyperbolic Tangent.

4.2 A GA with list-based encoding

Because the DNN’s parameters are encoded using lists, we define a list-based DNN descriptor which
specifies the network architecture as well as other parameters, such as the loss function, weight ini-
tialization functions, etc. This can be considered a declarative representation, as it exclusively con-
tains the specification of the network, the weights being left outside of the evolutionary procedure.
Algorithm 1 shows the pseudocode of the GA.

Algorithm 1: GA for evolving DNN.

1 Set t ⇐ 0. Create a population D0 by generating N random DNN descriptions;
2 while halting condition is not met do
3 Evaluate Dt using the fitness function;

4 From Dt, select a population DS
t of Q ≤ N solutions according to a selection method;

5 Apply mutation with probability pm = 1− px to DS
t and create the offspring set Ot.

Choice of the mutation operator is made uniformly at random;
6 Create Dt+1 by using the selection method over {Dt, Ot};
7 t ⇐ t+ 1;

8 end

4.3 Genetic operators

The operators used to mutate individuals are the following:

• The layer change operator randomly reinitializes the description of a layer chosen at ran-
dom, e.g., its weight initialization and activation functions; and the number of neurons.

• The add layer operator introduces a new (randomly initialized) layer in a random position
of the DNN.

• The del layer operator deletes a randomly chosen layer in the DNN.

• The activ change operator changes the activation function of a random layer to another
function, chosen at random.

• The weight change operator, similarly to activ change, changes the function used to ob-
tain the initial weights of the DNN layer.

4.4 Implementation

We have used the implementation of the neuron coverage metrics1 developed as part of the work
presented in [15]. To implement the neuron coverage based neuroevolutionary approach, we used

1Available from https://github.com/DeepImportance/deepimportance_code_release
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the deatf library 2 which is an extension to Tensorflow2 of the Evoflow library 3 [27], originally
conceived to evolve neural networks implemented in tensorflow[28].

In these libraries, the representation of the DNN is split into two types of classes: The representation
of the DNN architectures is contained in NetworkDescriptor, which encompasses all the lists
mentioned in Section 4.1. The architecture is implemented in a tensorflow DNN, which is contained
in the Network class. We use the MLPDescriptor and MLP classes conceived to deal with
multi-layer perceptrons.

Different selection operators are available in EvoFlow through the DEAP library [29]. We use the
truncation selection strategy.

5 Network training and fitness evaluation

In the application of neuroevolutionary approaches to supervised classification problems, the origi-
nal dataset D is usually split into three parts D = Dtrain ∪Dval ∪Dtest. Dtrain is used to train the
network, Dval is used to estimate the performance of the trained network by computing the fitness
function, and Dtest is only used at the end of the evolution to assess the quality of the best networks
found by the algorithm. We consider neuroevolutionary scenarios that use this partition of the data.
Notice that another validation set could be used for early stopping of the neural network training
process. However, we do not consider this type of early stopping strategy.

In our approach to semi-supervised problems, we assume that the Dval and Dtest sets will keep
all the labels. They will respectively be employed in the usual way to evaluate the accuracy of the
model during the evolution, and at the end of the evolution. Dtrain will have a q ∈ [0, 1) proportion
of unlabeled instances and a 1− q proportion of labeled instances. The two sets will be respectively
named as Dl

train and Du
train.

5.1 Fitness evaluation for the fully-supervised case

For the evaluation process, one or more metrics (e.g., accuracy, learning time, etc.) describing the
DNN performance could be computed. For the binary problems addressed in this paper, we use the
balanced accuracy metric [30] that is appropriate to deal with unbalanced classification problems.

b acc(z,Dval) =
1

2
(
TP

P
+

TN

N
) (9)

where z is the neural network being evaluated, P and N are respectively the number of positive
and negative instances in Dval, and TP and TN are respectively the number of correct positive and
negative predictions made by the model on instances in Dval.

When q = 0, we have the fully-supervised case in which all the training data are labeled. In this
case, for a candidate neural network z, the fitness function f(z) is simply the balanced accuracy
b acc(z,Dval).

5.2 Fitness evaluation for the semi-supervised case

When q ∈ (0, 1) andDu
train 6= ∅, the fitness evaluation will also take into account the neural network

coverage computed using the unlabeled cases NNCov(z,Du
train), where NNCov can be one of

the following neuron coverage metrics introduced in Section 2.2: NC, TKNC, KMN , NBC,
and SNAC.

Finally, the fitness function for the semi-supervised case is defined as:

f(z) = q ·NNCov(z,Du
train) + (1− q) · b acc(z,Dval) (10)

2Available from https://github.com/IvanHCenalmor/deatf
3Available from https://github.com/unaigarciarena/EvoFlow
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5.3 Baselines for semi-supervised classification with neuroevolutionary approaches

In order to assess the performance of the introduced algorithms, we implemented two methods
inspired by semi-supervised approaches used in the field.

The first baseline is based on the use of uncertainty quantifiers [20] which are intended to measure
the uncertainty of the model at the time of predicting the class of a given instance. For instance prior-
itization, examples that are classified by the model with low confidence (i.e., for binary classification
problems, prediction probability close to 0.5) are of particular interest since they can represent prob-
lematic cases. In [20], it is argued that simple metrics can be more effective than neuron coverage
metrics for test instance prioritization. Therefore, it is a relevant question to determine how these
metrics perform in the context of neuroevolutionary optimization.

For evaluating network architectures, we assume that a neural network is more promising when it
predicts, with high certainty, the class of the unlabeled instances. We define the CERT metric as:

CERT (z,Dtest) =

∑

xi ∈ Dtestmax(p(xi), 1− p(xi))

|Dtest|
(11)

where p(xi) is the probability of xi belonging to class 1 as assigned by the neural network z.

This metric is not expensive to compute since it only requires calculating the predictions of the
model for all instances in Du

train.

The second baseline uses retraining, an approach frequently described in the literature for semi-
supervised learning [23, 7]. Retraining consists of using the model learned on labeled instances to
make predictions on the unlabeled instances. The pseudo-labels predicted by the model are then
used to retrain it. In some cases, a confidence value is required in order to consider a pseudo-label
to be valid for retraining.

In our baseline, we set a threshold of p(xi) ≤ 0.4 in order to consider a class-0 pseudo-label to be
correct. Similarly, we set p(xi) ≥ 0.6 in order to consider a class-1 pseudo-label to be correct. The
algorithm initially learns the model using Dl

train, then it makes predictions for instances in Du
train.

Subsequently, the unlabeled instances for which prediction thresholds are satisfied are selected and
combined with instances in Dl

train to retrain the model. Finally, the fitness function is the balanced
accuracy of the retrained model as computed on Dval. If none of the unlabeled instances satisfy
the constraints on the predicted probabilities to be selected, then no retraining is carried out and the
fitness value corresponding to the network architecture is the balanced accuracy for Dval produced
by the network trained on Dl

train.

The retraining approach which we denote as RET can be computationally costly because it requires
conducting the learning process twice.

6 Experiments

The general aim of the experiments is to determine whether, and to what extent, the use of neu-
ron coverage metrics influences the evolutionary search of neural network architectures for semi-
supervised classification problems. In particular, we address the following questions:

• How the quality of the evolved classifiers degrade with respect to the amount of unlabeled
instances?

• Which of the investigated coverage metrics produces a more beneficial effect in the perfor-
mance of the evolved architectures?

• How do the neuroevolutionary approaches based on neuron coverage compare to ap-
proaches based on uncertainty quantification and retraining?

We first present the experimental design, including the characteristics of the benchmark. Subse-
quently, we address the aforementioned questions, presenting the numerical results of the experi-
ments.
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Dataset n observations n features Imbalance

agaricus lepiota 8145 22 0.00
analcatdata lawsuit 264 4 0.73
australian 690 14 0.01
backache 180 32 0.52
biomed 209 8 0.08
breast 699 10 0.10
breast cancer 286 9 0.16
breast cancer W 569 30 0.06
breast w 699 9 0.10
buggyCrx 690 15 0.01
bupa 345 5 0.00
chess 3196 36 0.00
churn 5000 20 0.51
cleve 303 13 0.01
coil2000 9822 85 0.78
colic 368 22 0.07
credit a 690 15 0.01
credit g 1000 20 0.16
crx 690 15 0.01
diabetes 768 8 0.09

Table 1: Datasets for the binary classification problems.

6.1 Experimental design

To create the classification problem benchmark, we follow the approach described in [6], in which
fully labeled datasets are used and partial labeling is simulated by only considering a random subset
of training data to be labeled; the rest of the data set is treated as unlabeled. Starting from a binary
classification problem for which all labels are known, we will simulate the semi-supervised scenario
by removing the labels for a proportion q of the instances in the dataset. We will use different values
of q to investigate the influence of the amount of missing labels.

We have selected 20 binary classification problems included as part of the PMLB library [31, 32].
Each problem has an associated dataset whose characteristics are described in Table 1. In the table,
Imbalance refers to the amount of imbalance in the number of observations corresponding to the two
classes. It is calculated by measuring the squared distance of the incidence proportion of each class
from perfect balance in the dataset [31].

Each experiment consists of running a neuroevolutionary algorithm for solving a particular binary
classification problem. We use a population size of 20 individuals and 30 generations. The neural
network architectures are constrained to have a maximum depth of 8, and the maximum number of
neurons in each layer was also set to 8. The batch-size and the number of epochs were respectively
set to 10 and 50.

Each possible application of the neuroevolutionary algorithm is parameterized by the following
parameters:

1. Classification problem addressed.

2. Proportion of unlabeled data in Dtrain, q ∈ {0, 0.2, 0.4, 0.6, 0.8}.

3. Type of neuron coverage metric used (only when q > 0), i.e., NC, TKNC, KMN ,
NBC, and SNAC.

For each possible configuration, we have executed 10 repetitions of the neuroevolutionary search for
a total of 20 × 10 × (4 × 5 + 1) = 4200 experiments. Notice that, when q = 0, none of the five
coverage metrics is used.
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For each algorithm, and once the evolution has finished, we retrain the architectures encoded by all
individuals in the last generation using the dataset Dtrain ∪Dval. We then make the predictions for
Dtest, and compute the balanced accuracy using these predictions.

6.2 Numerical results

6.2.1 Initial experiments

For an initial assessment of the influence of q in the performance of the different algorithms, we
present in Figure 1 and Figure 2 the distribution of the balanced accuracy for two classification
problems (analcatdata, and breast cancer).

The distribution is computed using the 20 architectures in the last generation for all the 10 runs. In
the figures, and to ease the comparison between the algorithms, the results for the fully-supervised
problem (q = 0) are displayed five times, once for each of the neuron coverage metrics.

The two problems illustrate a different scenario of the performance of the evolved classifiers. The
analcatdata problem is easy to solve and, for most of the configurations, the accuracy results are
high. This is also an example where the performance of the classifiers does not suffer much when the
proportion of unlabeled data is increased. For this problem, among the neuron coverage metrics, NC
shows a more stable behavior when q varies. This example shows that, at least for some problems,
using the coverage metrics together with a significant amount of unlabeled data can contribute to
obtain a high-performing classifier.

NC TKNC KMN NBC SNAC

NC_metric

0.2

0.4

0.6

0.8

1.0

ac
c_
te
st

analcatdata_l

q
0.0
0.2
0.4
0.6
0.8

Figure 1: Results for the analcatdata problem.

Figure 2 shows a problem for which the quality of the evolved classifiers is rather poor and all
accuracy values are below 0.7. It is noticeable that, in this problem, the results of the architectures
evolved using the KMN , NBC, and SNAC coverage metrics significantly deteriorate when the
amount of unlabeled data is increased. This is a common trend for other problems as will be shown
in the following experiments.

It is also worth noting that in some cases, such as multiple instances related to the analcatdata
database, and instances with q = 20 and q = 40 for the breast-cancer problem, the balanced accu-
racy achieved by the models evolved using neuron-coverage metrics was higher than that obtained
using the whole labeling of the database.
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Figure 2: Results for the breast-cancer problem.

6.2.2 Evaluation of the algorithms on all datasets

Figure 3 shows the accuracy of the best classifier, in terms of balanced accuracy on the test set,
found for each dataset and configuration. The analysis of the figure reveals that, in terms of the best
solution found, the amount of unlabeled data does not seem to have a critical impact in terms of
the accuracy of the best classifier. However, differences are difficult to spot due to the variability
of the problem difficulty among the datasets. Therefore, we summarize the information contained
in Figure 3 by computing the average of the balanced accuracy considering the 20 problems. This
information is shown in Figure 4.

As can be seen in Figure 4, for three of the metrics, there is a noticeable impact in the accuracy
when less labeled data is used for training the network. For metrics KMN , NBC, and SNAC, as
q increases, the mean accuracy decreases. Neuron coverage metrics NC and TKNC confirm to be
more stable and show their capacity to guide the search towards classifiers that are at least as good
as those learned using the full set of labeled data.

6.3 Comparison with the baseline algorithms

In this section, we compare the performance of the introduced algorithms with two methods that
were introduced in Section 5.3. We focus our comparison on the algorithms that use NC and
TKNC, since they produced the best results in the previous experiments. In the comparison, all the
neural network and evolutionary algorithm settings are the same as in previous experiments. The
only difference among the algorithms is the way in which the fitness function is computed.

Table 2 summarizes the results of the comparison among the algorithms for 10 of the 20 prob-
lems (due to page limit constraints). For datasets agaricus lepiota and coil2000 the retraining vari-
ant had not finished after 15 hours of computation. On the other hand, datasets analcatdat l and
breast cancer wand were not included in the analysis since, for all configurations and runs, classi-
fiers with perfect accuracy on the test data were found.

For each data set, algorithm, and proportion of unlabeled data, we compute the average accuracy of
the best solution in the last population for the 10 experiments. In Table 2, the algorithm that produces
the best result for each dataset and q is underlined. In can be clearly seen that the best results are
achieved by using the NC and TKNC neuron coverage metrics. Uncertainty quantification proves to
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NC TKNC CERT RET

Ind. DB / q 0 0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 0.20 0.40 0.60 0.80 0.20 0.41 0.60 0.80

australian 0.56 0.54 0.56 0.58 0.56 0.63 0.72 0.57 0.65 0.57 0.62 0.54 0.54 0.57 0.57 0.73 0.57

backache 0.70 0.64 0.65 0.71 0.70 0.70 0.70 0.67 0.60 0.59 0.66 0.60 0.65 0.67 0.59 0.58 0.67

biomed 0.88 0.82 0.90 0.88 0.91 0.84 0.89 0.75 0.86 0.80 0.70 0.75 0.75 0.85 0.88 0.80 0.86

breast 0.53 0.54 0.51 0.56 0.56 0.53 0.50 0.55 0.50 0.51 0.50 0.50 0.51 0.51 0.51 0.51 0.52

breast cancer 0.64 0.69 0.69 0.65 0.70 0.65 0.60 0.59 0.58 0.67 0.63 0.60 0.55 0.69 0.60 0.68 0.68

breast w 0.81 0.87 0.89 0.84 0.84 0.96 0.86 0.89 0.82 0.85 0.78 0.78 0.70 0.81 0.87 0.86 0.90

buggyCrx 0.54 0.58 0.54 0.55 0.54 0.55 0.56 0.64 0.55 0.55 0.52 0.52 0.52 0.54 0.55 0.54 0.56

bupa 0.56 0.60 0.64 0.65 0.62 0.58 0.59 0.62 0.57 0.59 0.57 0.56 0.57 0.61 0.61 0.59 0.60

chess 0.72 0.77 0.69 0.73 0.67 0.72 0.73 0.75 0.71 0.70 0.70 0.64 0.66 0.74 0.70 0.71 0.71

churn 0.60 0.56 0.56 0.63 0.58 0.59 0.60 0.60 0.61 0.56 0.59 0.58 0.59 0.54 0.59 0.54 0.56

Table 2: Comparison of the neuroevolutionary variants based on neuron coverage metrics with the
baselines that use the CERT metric and retraining (RET).

not be a competitive approach for guiding neuroevolution. Retraining can achieve better results than
CERT, but at a higher computational cost.

We also investigated the dynamics of the neuroevolutionary algorithms during the evolution. Fig-
ure 5 shows an example of the evolution of the accuracy of the best solution (computed on validation
data Dval) as the number of evaluations increase from evaluation 1 to evaluation 620. The illustra-
tive example shown in Figure 5 corresponds to the chess problem and when q = 0.8. The balanced
accuracy values have been computed as the average of the 10 runs.
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Figure 5: Evolution of the accuracy on the validation data for the chess dataset and q = 0.8.

The curves in Figure 5 show that all the fitness functions are able to guide the search to areas with
better performing neural architectures. The difference in the dynamics is given by the quality of the
solutions that are found and the speed of convergence. For the chess problem the neuroevolutionary
algorithms using NC and TKNC converge faster to architectures of better accuracy. Notice that
maximizing the accuracy of the model forDval is not a guarantee of architectures that will generalize
to other data (e.g.,Dtest) but the example illustrates that, in addition to producing better architectures
as shown in Table 2, convergence can be faster.

7 Conclusions

Semi-supervised problems for which labeled instances are difficult or costly to obtain are common in
many fields. When neuroevolutionary approaches are applied to these problems the question of how
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to use the unlabeled data to improve the search for classifiers arises. In this paper, we have proposed
the use of neuron coverage metrics as a way to asses how promising each candidate architecture is.
The implicit assumption is that architectures that are better covered by the unlabeled examples are
more promising. We have evaluated five different neuron coverage metrics and identified the NC
and TKNC metrics as the more stable in terms of the degradation of the results when the number
of labeled instances is diminished. Our results also show that for some problems the use of these
metrics can even improve the performance of neuroevolutionary search.

7.1 Future work

There are a number of ways in which the work presented in this paper could be extended to deal with
other classes of semi-supervised problems. One needed step is to go beyond binary-classification
problems to address multi-class problems. The fitness functions proposed in this paper could also
be used for the multi-class problems. Another research direction is defining strategies to deal with
multi-label problems learning with incomplete class assignments [33]. While the computation of the
coverage metrics do not change for these problems, the fitness functions should be modified to ac-
count for the existence of multiple classification problems. An analysis of the evolved architectures
should also be conducted to determine whether the use of the neuron coverage metrics introduces
any bias in the type of neural network components (e.g., the type of activation functions) that are
included in the best solutions.

While we have focused on semi-supervised problems, neuron coverage metrics could be used in
other scenarios where neuroevolution is applied. They could be applied as an additional regular-
ization mechanism that prioritizes architectures that are fully covered by the inputs of the problem.
They could be employed, in single or multi-objective scenarios, as a diversification mechanism for
problems where a large number of candidate neural architectures have the same value of the ob-
jective function being optimized. Finally, neuroevolution based on neuron coverage metrics could
be used combined with adaptive instance selection for early verification (and correction) of neural
networks to be deployed in machine learning systems.
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