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Abstract—Neuroevolution is a promising area of research
that combines evolutionary algorithms with neural networks. A
popular subclass of neuroevolutionary methods, called evolution
strategies, relies on dense noise perturbations to mutate networks,
which can be sample inefficient and challenging for large models
with millions of parameters. We introduce an approach to
alleviating this problem by decomposing dense mutations into
low-dimensional subspaces. Restricting mutations in this way can
significantly reduce variance as networks can handle stronger
perturbations while maintaining performance, which enables
a more controlled and targeted evolution of deep networks.
This approach is uniquely effective for the task of fine tuning
pre-trained models, which is an increasingly valuable area of
research as networks continue to scale in size and open source
models become more widely available. Furthermore, we show
how this work naturally connects to ensemble learning where
sparse mutations encourage diversity among children such that
their combined predictions can reliably improve performance.
We conduct the first large scale exploration of neuroevolutionary
fine tuning and ensembling on the notoriously difficult ImageNet
dataset, where we see small generalization improvements with
only a single evolutionary generation using nearly a dozen
different deep neural network architectures.

I. INTRODUCTION

Neuroevolutionary methods evolve populations of models
using biologically inspired concepts like natural selection
and mutation. A core component of many of these methods
is the generation of new networks through random noise
perturbations. However, as neural networks continue to grow
in size, the effect of noise perturbations on network behavior
becomes increasingly pronounced. There is often a critical re-
gion of mutation where too little of a change does not provide
any meaningful exploration, and too significant of a change
leads to complete performance collapse. The optimal mutation
window can be vanishingly small with modern deep neural
networks that contain millions or billions of parameters and
different network architectures, layer configurations, and train-
ing optimizers can lead to significant differences in parameter
sensitivity. Investigating techniques to make mutations more
effective and tractable for deep neural networks is important
for opening new avenues of neuroevolutionary research.

Due to the difficulty in mutating these large models, neu-
roevolutionary methods have primarily seen success with tasks
that can be solved by relatively small networks [13]. This
is compounded by the fact that these methods tend to be
sample inefficient on supervised learning problems with well

defined gradients. Hybrid gradient/evolutionary methods have
thus grown in popularity as gradient optimization can be
used to rapidly train the model while evolutionary processes
can be implemented to aid in exploration and fine grained
convergence [8]. This idea naturally extends to the task of
fine tuning and optimizing large models that have been pre-
trained with gradient descent. This is especially important as
networks and labeled datasets continue to scale in size which
can make training from scratch prohibitively expensive. Pre-
trained and open source models are becoming more widely
available, which makes methods for improving them increas-
ingly valuable.

In order to alleviate the challenges of mutating deep net-
works, we introduce Sparse Mutation Decompositions as a
method for breaking up dense mutations into low-dimensional
subspaces. While sparse mutations have long been used in
other areas of evolutionary and genetic programming, they
have rarely been explored with the popular evolution strategy
based approaches [1], [14], [16], [31]. This is likely due to the
perceived sample inefficiency associated with only updating
small numbers of parameters at a time, however we find that
this can actually be desirable for the task of mutating pre-
trained models. Reducing the dimensionality of noise perturba-
tions widens the critical mutation window, which significantly
reduces variance as networks can handle stronger perturbations
before performance collapse. We also explore the notion of
static and dynamic subspace evolution in which mutations are
restricted to the same or different subspaces for each child.
Our work naturally connects to ensemble learning where we
explore how stronger but more sparse mutations can encourage
diversity among children such that the combined predictions
of a mutated population can reliably improve generalization
performance.

Along with several ablation studies and visualizations de-
signed to gain insight into the interplay between mutation
strength and sparsity, we introduce the first large scale explo-
ration of neuroevolutionary fine tuning with sparse mutations
on the notoriously difficult ImageNet dataset with nearly a
dozen deep convolutional network architectures. Using en-
sembles of mutated populations results in monotonic gener-
alization improvements of up to 0.5% using only a single
evolutionary generation and with no additional training.

ar
X

iv
:2

30
2.

05
83

2v
1 

 [
cs

.N
E

] 
 1

2 
Fe

b 
20

23



−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

Training Loss

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

Training Loss

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
−8

−6

−4

−2

0

2

4

6

8

Test Loss

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 1: Neuroevolution excels at fine tuning fully-trained networks that get stuck in flat loss basins. The left graph displays a typical SGD
training trajectory where models tend to converge to the edges of flat optima [15]. The middle graph displays white dots as child networks
that are generated from sparse mutations. The right graph shows the final ensemble consisting of top candidates selected from evaluation on
a separate validation set. A key insight to the success of gradient-free methods for fine tuning is that the loss landscapes of test distributions
rarely match the training distribution exactly. Ensembling over wide areas of good validation performance is key to improving generalization.

II. BACKGROUND

A. Neuroevolution
Neuroevolution has long been a promising area of research

in the machine learning community as evolutionary algorithms
offer an elegant approach to optimizing neural networks by
utilizing natural and biological metaphors like natural selec-
tion, mutation, genetics and reproduction [33]. These methods
typically employ generational loops where populations of
members are spawned from some parent(s) using evolutionary
operators and evaluated for their fitness on a validation set.
The best models are then selected and used as parents for the
next generation.

Evolution Strategies (ES) are the most popular subclass of
neuroevolutionary methods that use only selection and noise
mutations to optimize weights [31]. These methods track the
mean and standard deviation of parameters modeled by a
Gaussian distribution and offspring are generated by sampling
from this distribution. The subset with the highest fitness
scores are selected and the distribution’s mean and standard
deviation are updated according to the parameters of the
elite subset. Recent work from Open AI has shown that a
wide scaling of simple evolution strategies can be incredibly
powerful on difficult reinforcement learning tasks [28].

Covariance Matrix Adaptation Evolution Strategies (CMA-
ES) improves on ES by tracking dependencies between mem-
ber parameters in a population with a pairwise covariance
matrix. The standard deviation can then control for the overall
scale of the distribution, greatly improving exploration [14].
However, despite the exploratory power of this approach,
constructing the pairwise covariance matrix is computationally
expensive and impractical for large networks.

These approaches to optimization have several advantages
over gradient based methods that are typically used in deep
learning. They are inherently scalable as population members
can be evaluated independently and they excel at explor-
ing landscapes where gradient information is noisy, flat, or
unavailable [28]. This is common in reinforcement learning

environments where reward information can be sparse or
dynamic. Unfortunately, evolutionary methods tend to be very
sample inefficient on supervised learning problems.

Hybrid gradient/evolutionary methods are able to take ad-
vantage of the efficiency of gradient methods with the ex-
ploratory power of evolutionary methods [7], [16]. Sparse Evo-
lutionary Training is one related approach that uses alternating
phases where evolutionary algorithms are used to determine
which subnetwork to train during a given phase with gradient
descent [26].

Neuroevolutionary methods are also known for exploring
the topological space of networks [29]. In these methods,
the network architecture itself is evolved as well as the
weights. This can be an effective way to encourage diversity
among population members as different network structures
force unique representations through their structure. Sparse
mutations hold an interesting connection to this line of work
as there is growing interest into the nature of subnetwork
behavior in trained models [?], [12].

Several researcher have noted the natural connection be-
tween evolutionary populations and ensemble learning [?],
[24], [37]. Ensembles of diverse and accurate models con-
sistently improve upon generalization performance as using
multiple predictions can help to reduce the bias or variance
associated with making predictions using a single model [6],
[9].

B. Model Tuning

Much of deep learning optimization research is focused on
methods for training neural networks well from scratch. How-
ever, as neural networks continue to scale in size, the cost for
training these large networks from scratch becomes expensive.
As open source and pre-trained models are becoming more
widely available, investigating how we can take trained models
and improve them further becomes a valuable area of research.

Transfer learning is one line of work that has popularized
the importance of utilizing pre-trained model. This generalized



the notion of using a network trained on one task or dataset
(usually a much larger and general set like ImageNet) and
then tuning it on another [4], [32]. Since the original model
is fully trained, the model tends to converge much quicker on
the new task than it would have taken if trained from scratch.
Several researchers have also explored freezing early weights
in the network during the tuning phase, as early layers in
deep networks tend to learn general patterns and features that
don’t necessarily need to be retrained [39]. This is naturally
connected to our approach where large numbers of parameters
are kept frozen in order to maintain behavior while sparse
subnetworks are mutated.

We generalize the term fine tuning to refer to the continued
training of any optimized model. It is most popularly con-
nected to network pruning literature that refers to the final
process of training a sparse network after parameters are
removed from a dense network. Pruning and fine tuning is
a well known technique for compressing model sizes where
networks can be made significantly smaller with little to no
loss in generalization performance [2], [21], [23]. These small
subnetworks hold a signficant amount of classification power
which suggest that limiting mutations to sparse subnetworks
can have a meaningful impact on network behavior.

Recent optimization research has investigated the conver-
gence behavior of deep networks in the final epochs of
optimization. It is thought that neural networks that converge
to wide and flat optima in the optimization landscape tend
to generalize better than minima that are sharp [36]. With
gradient descent, deep networks generally converge to the
edges of these wide and flat optima. However, the edges of
these minima rarely correspond to the minima of the test
distribution which is more likely to exist somewhere in the
middle of these optima. Since these optima are wide and flat,
there is little gradient information that can be used to nudge
the model towards those locations.

Stochastic Weight Averaging (SWA) is a method that lever-
ages this insight to fine tune models in the final epochs of
training [15]. By using a repeating cyclic schedule, large
learning rates are used to jump the model to new locations
around the minima before converging with small learning
rates. This is repeated several times where the weights of the
model at each convergence location are saved and eventually
averaged together.

Model Soups operate by using a very similar principle to
Stochastic Weight Averaging [34]. Instead of using a single
model and a repeating cyclic learning rate schedule, Model
Soups instead train a pseudo-ensemble where they fine-tune
several clones of a trained model, each with a unique set of
hyperparameters. The fine-tuned models tend to converge to
the same loss basin but in unique locations, and the weights of
each model are then averaged together as in Stochastic Weight
Averaging.

Both Stochastic Weight Averaging and Models Soups pro-
vide empirical evidence for the theoretical ideas behind our ap-
proach with neuroevolutionary tuning. Figure 1 illustrates this
with an example about how evolution can be used effectively

in situations where models trained with gradient descent get
stuck in some flat minima. The generation of child networks
using sparse mutations provides enough diversity to explore
the local landscape where ensembling over these wide areas of
good validation performance is effective for reliably increasing
generalization.

III. SPARSE MUTATION DECOMPOSITIONS

Neuroevolutionary methods typically generate child net-
works by applying dense noise perturbations to all the weights
of a given parent network. Some methods have suggested
rescaling mutations according to weight magnitudes or out-
put gradients [22]. Sparse Mutation Decompositions instead
restrict mutations to a small subset of parameters, which can
allow for a more targeted and controlled evolution of deep
neural networks. This can greatly widen the critical mutation
range, in that we can apply stronger mutations to achieve more
meaningful diversity before experiencing performance collapse
that dense mutations would cause. The methods introduced
here are general and applicable to a wide variety of network
architectures and optimization algorithms.

A. Noise Perturbations

Mutations are usually implemented by perturbing the
weights of a parent model θ ∈ Rw, where w is the number
of weights, with a random noise vector N ∈ Rw, sampled
from a Gaussian distribution N (σ, µ). The sparse mutation γ
is implemented by taking the Hadamard product ◦ of a binary
bitmask M ∈ Bw with the sampled noise vector N .

M = {1, 0}w

N ∼ Nw(µ, σ
2)

γ = N ◦M

When generating a population of children, there is a dis-
tinction to be made between whether mutations are restricted
to the same subspace for each child or mutations are applied
to random subspaces for each child. We call these two ap-
proaches Static and Dynamic Subspace evolution. Restricting
all children to a single subspace may be more efficient for
converging to an optima, while having each child mutate a
unique subspace may lead to better diversity and exploration.
We explore the differences between these two methods in our
mutation ablation experiments in section IV. In the context
of fine tuning pre-trained models, there is little difference
between static and dynamic subspaces. More research could
investigate the efficacy of these two approaches with models
that are trained from scratch.

B. Hyperparameter Search

A significant challenge in these approaches is to determine
the appropriate values for both the noise distribution as well
as the amount of sparsity in the bitmask. Unfortunately, this
is challenging to determine before hand due to significant
differences between the size and complexity of datasets, model
architectures, optimization hyperparameters, etc.



One approach is to measure the differences between the
outputs of a network before and after mutations are applied.
For example, given a network F that is parameterized by θ
with O outputs and a network that is perturbed with a noise
mutation γ, the mean squared difference over a set of N total
input samples X can be described as:

MSE =
1

N

N∑
n=1

O∑
o=1

(F (Xn; θ)o − F (Xn; θ + γ)o)
2

However, since classification networks are often trained
with cross entropy loss where the outputs are treated as a
probability distribution, mean squared error may not be the
best fit for approximating the effect that perturbation might
have due to potential variance. In this case, we suggest that
Kullback-Leibler Divergence, or relative entropy, is a better
fit for approximately measuring how different the two output
distributions are.

KL =
1

N

N∑
n=1

F (Xn; θ) log

(
F (Xn; θ)

F (Xn; θ + γ)

)
This approach then allows for a general measure of com-

parison that works regardless of network architecture or noise
distribution. A simple search algorithm can then try out several
values for both mutation strength and sparsity in order to
target a divergence score that prioritizes either exploration or
accuracy. One nice property revealed in our experiments is that
there is a roughly linear relationship between KL divergence
and accuracy degradation in trained models. This insight can
be used to tweak mutation parameters according to problem
complexity, population size, or parameter sensitivity where a
larger KL target can allow for stronger mutations and better
exploration at the cost of potentially less accurate candidate
models.

C. Anti-Random and Mirrored Noise

Neuroevolutionary methods typically use large populations
of small networks that can be evaluated very quickly. Deep
neural networks can be very costly in both runtime and mem-
ory requirements, which invariably means that our populations
will be much smaller. For this reason, the random perturbations
can be a large source of variance since we have a much
smaller pool of candidates to choose from. Anti-random and
mirrored noise can be effective tools for reducing this variance
by automatically generating sets of opposed child networks.

In the case of dynamic subspace evolution, anti-random
sampling can be used to maximize subspace distance between
population members. For a given network with w weights and
a random bit mask M = {0, 1}w, the most distant vector
is one in which the polarity of all of the bits are flipped,
M ′ = 1−M [25], [35]. The two masks can then be applied
to two different networks, resulting in an even exploration
over all the parameters of the network. This can be extended
to multiple members in a population by instead partitioning
the parameter space, where a group of N bitmasks are created
such that the children form a disjoint union over all parameters

of the parent network. Each child then mutates a unique set
of parameters that are not shared by other networks.

Mirrored sampling is another effective technique for reduc-
ing variance that is common in evolutionary literature [5], [28].
In this case, the magnitude of the noise vectors are flipped,
such that for a given mutation vector γ, the mirrored noise
would then be −γ.

For example, assume that a bit mask M is randomly
generated for a network containing w weights by sampling
a binary distribution with some probability ρ that a parameter
will be masked, and a noise vector N is randomly generated
by sampling from a Gaussian distribution. The four resulting
child networks C, parameterized by θ, can then be described:

M ∼ Bernoulliw(ρ)

N ∼ Nw(µ, σ
2)

C1 = θ + (N ◦M)

C2 = θ + (N ◦ (1−M))

C3 = θ − (N ◦M)

C4 = θ − (N ◦ (1−M))

With these two techniques, a set of child networks can be
automatically generated for every noise perturbation, resulting
in a population that is more evenly distributed in space.

D. Predictions

Once we have a collection of mutated child networks, we
evaluate each child on a validation set where the accuracy
is recorded as a measure of its fitness. Any model selection
is done on this validation set, which is separate than the
holdout test set we evaluate our final system on. We then select
child networks with the best fitness to be used for making
predictions.

With a population of top candidates selected, we then need
to combine them in order to make our final predictions. The
traditional evolutionary approach is to average the weights
of the top candidates together into a single model. There
is also a natural connection to ensemble learning where the
population can be evaluated independently and the predictions
of each model can be combined. We explore both approaches
in our ablation experiment in section IV, where we find
that averaged models maintain their performance for much
stronger levels of mutation, while the generalization accuracy
of ensembles tend to outperform averaged models for tuned
mutation hyperparameters.

There are a lot of approaches for combining models predic-
tions in ensembles, including majority vote, weighted model
averaging, and bucket-of-models selection [10], [11], [20].
For the purpose of this work, we use simple non-weighted
prediction averaging which is standard practice for modern
ensemble methods.

Mutations can affect the magnitude of raw outputs, so in
order to achieve better normalization, we average the softmax
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Fig. 2: The images above detail decision boundaries for a trained three layer multilayer perceptron after being perturbed with various mutations.
With dense perturbations, there is a comparatively small window between a functional decision boundary and complete performance collapse.
As mutations become more sparse, the model is better able to retain its behavior while the strength of parameter mutation increases.

of each ensemble member’s outputs to ensure that all ensemble
members produce outputs of the same scale.

ye = argmax(
1

S

S∑
i=1

σ(fi(x)))

where ye is the ensemble prediction, S is the number of
members in the ensemble (the ensemble size), σ is the softmax
function and fi(x) is the output of the individual ensemble
member i.

IV. EXPERIMENTS

We first attempt to gain insight into how mutations influence
network predictions by visualizing the decision boundaries of a
trained network before and after mutating it. We then conduct
a larger scale ablation experiment with a wide residual network
where we generate populations of mutated networks with
varying levels of mutation strengths and sparsities. We explore
the differences between static and dynamic subspace evolution
as well as differences between treating the top candidates in a
population as an ensemble or averaging their weights together
into one model. We end with a large scale experiment on
the difficult ImageNet dataset with a dozen different model
architectures.

A. Decision Boundaries

We begin by exploring the interplay between mutation
sparsity and mutation strength by visualizing how changing
these values affects network predictions. We use a simple

three layer fully connected multilayer perceptron that contains
64 neurons in each layer. We train this model on a binary
interleaved spiral dataset that contains 2500 sample (x, y)
points. We train for 10 epochs using the Adam optimizer [17]
with a learning rate 0.001 and use this trained model as the
starting point for all mutations.

We then perturb the model with mutations sampled from
a Gaussian Distribution N ∼ N (0, σ2) where σ corresponds
to the mutation strength and with a mask sampled from a
Bernoulli distribution M ∼ Bernoulli(ρ) where ρ governs the
probability of mutation sparsity. We ablate these hyperparam-
eters from mutation strengths of σ ∈ [0.05, 0.25] and mutation
sparsities of ρ ∈ [0.0, 0.9].

Using the perturbed models, we make predictions on a
holdout test set containing 250 samples. In figure 2, we display
a grid of the decision boundaries of these perturbed models
on the test set as we ablate between mutation strength and
sparsity. When mutations are dense, we see a very quick col-
lapse of performance for small perturbations. The window for
optimal dense mutation is quite small even for this toy network
and simple dataset. When mutations become more sparse, the
model is able to maintain a good classification boundaries
while displaying small variations of prediction diversity. This
kind of behavior is desirable for neuroevolutionary populations
as ensemble learning research has shown that populations
perform better with large numbers of both accurate and diverse
members [3].



B. Mutation Ablations

Next, we aim to explore whether the intuitions about how
mutations affect predictions translate to a much larger con-
volutional network on benchmark computer vision datasets.
For this experiment, we conduct ablations on the CIFAR-10
and CIFAR-100 datasets [18]. These are popular benchmark
datasets and their use is widespread in computer vision re-
search. They each contain 50,000 training and 10,000 test
samples of colored 32x32 pixel images. CIFAR-10 contains
samples belonging to one of 10 classes while CIFAR-100
contains samples belonging to one of 100 classes. We use
a WideResNet-28x10 model for our parent network, which is
a highly accurate network architecture that contains ∼ 36M
parameters. This network is a variant on the popular ResNet
that decreases the depth and increases the width of each
convolutional layer [38].

We implement a standard training algorithm for this type
of model where we train for 100 epochs using Stochastic
Gradient Descent with Nestorov momentum [30]. A stepwise
learning rate decay is used where an inital value of 0.1 decays
to 0.01 after 50% of training and decays again to 0.001 for
the final 10% of training. We use standard data augmentation
schemes for CIFAR that includes a random crop and random
horizontal flip along with mean standard normalization. We
split the test set in half in order to conduct a validation set
used for model selection.

The parent networks achieve an accuracy of approximately
96% on CIFAR-10 and approximately 80% on CIFAR-100.
Using these saved models as parent networks, we then perturb
the models with varying amounts of mutation strengths, σ ∈
(0.0, 0.05], and sparsities, ρ ∈ [0.01, 0.99], and we evaluate
their performance on the test sets.

Figure 3 displays the results of these experiments on
CIFAR-10 where we start by measuring the effect that mu-
tations have on KL Divergence. Predictably, we see that
KL divergence quickly increases as the density and strength
of mutations increase. The rapid increase in KL divergence
for dense perturbations illustrates how quickly performance
collapses between very small changes in mutation strength.

We then implement a single evolutionary generation where
a population of 16 models are created by perturbing the parent
model according to a given mutation strength and sparsity. The
top 4 models with the best accuracy on the validation set are
then selected and evaluated. We then report accuracy on the
test set where the weights of the top 4 models are averaged to-
gether. We also evaluate these four models as if they were part
of an ensemble, where each model is evaluated independently
and their predictions are combined. The averaged weights
model is much more consistent compared to the ensemble
which displays large amounts of variance for strong mutations.
While the differences are small in this case, ensembles tend to
slightly outperform averaged weight models for lower levels of
mutation strengths (where individual model accuracy is higher)
while averaged models outperform ensembles for higher levels
of mutation (where individual model performance is worse).

We repeat the above experiments with both static and
dynamic subspace evolution. For static subspace evolution, we
mutate the same subnetwork for each generated member in
the population. For dynamic subspace evolution, each child is
mutated with a random subnetwork mask. On this task, we
see little difference between static and dynamic subspaces,
suggesting that the specific subnetwork that we mutate does
not matter in the context of both averaged and ensemble
evaluations.

C. Large Scale Evaluation

We then explore our approach on the difficult benchmark
computer vision dataset, ImageNet [19]. ImageNet is a large
scale collection of images that have been hand labelled for
use in machine learning tasks and is organized according to
the wordnet dataset hierarchy. Over 14 million images and
20,000 labels have been collected in total. We use the 2012
ImageNet collection which consists of a training set of 1.2
million images and a validation set of 50,000 images, each
belonging to one of 1000 categories. Images have varying sizes
and aspect ratios and consist of both colored and grayscale
photos. We normalize all images are normalized with mean
and standard deviation scaling and we implement standard data
augmentation which consists of resizing to 256x256 pixels and
center cropping to 224x224 pixels.

We evaluate our approach with ten popular deep neural
network architectures of varying sizes and generalization ca-
pacities in order to demonstrate the generality and power of
our approach in many different contexts. All networks are
pretrained and available from the torchvision repository [27].

We break the ILSVRC 2012 set of 50,000 images into a
50/50 split between validation and test sets that each contain
25,000 samples. All fitness evaluations and model selections
use the validation set and all reported results are evaluated on
the holdout test set.

We report accuracy, negative log likelihood, and estimated
calibration error for the parent network and our evolutionary
ensemble. We run each model twice and report the best results.

We conduct a hyperparameter grid search in order to find
appropriate hyperparameter values for mutation strength and
sparsity for each model. Using a separate holdout dataset
of 1000 samples we measure the average KL Divergence
and accuracy while we ablate sparsity ρ ∈ [0.5, 0.99] and
mutation strength σ ∈ [0.001, 0.015]. We then choose both a
mutation strength and sparsity value that maximizes accuracy
while targeting a KL Divergence of ∼ 0.05. This value was
found to be an empirically safe option for most models,
balancing the accuracy of candidate models with exploration to
reliably improve generalization performance when candidates
are combined.

Using the sparse mutation hyperparameters found from the
short grid search, a population of 16 models are created with
mirrored sampling. Each is evaluated on a validation set and
the top 8 candidates with the best accuracy are selected. We
then evaluate the top 8 candidates independently and combine
their predicted probabilities as if they were part of an ensemble
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Fig. 3: Results of mutation ablations on a trained WideResNet-28x10 model on CIFAR-10. Lines of different colors correspond to the
percentage of sparsity for the mutations. Dashed lines correspond to static subspace evolution while solid lines correspond to dynamic
subspace evolution. The left most graph reports the average KL divergence. The middle graph reports the accuracy of an averaged model of
the four top candidates after one generation of evolution. The rightmost graph reports accuracy if you treat those four models as an ensemble.

Model Acc ↑ NLL ↓ ECE ↓ eAcc ↑ eNLL ↓ eECE ↓ ∆Acc ↑ Parameters σ ρ KL

AlexNet 56.46 1.904 0.021 56.52 1.903 0.019 0.06 61.1M 0.006 0.80 0.038
DenseNet-121 74.43 1.014 0.024 74.68 1.004 0.021 0.25 8.0M 0.007 0.85 0.077
Inception-V3 69.57 1.819 0.184 69.98 1.681 0.169 0.41 27.2M 0.008 0.90 0.037
MobileNet-V2 72.12 1.136 0.072 72.14 1.132 0.024 0.02 3.5M 0.007 0.90 0.085
ResNet-18 69.76 1.247 0.026 69.93 1.238 0.022 0.17 11.7M 0.010 0.90 0.060
ResNext-50 77.64 0.945 0.065 77.72 0.929 0.059 0.08 25.0M 0.005 0.80 0.051
ShuffleNet-V2 69.51 1.354 0.072 69.57 1.351 0.071 0.06 2.3M 0.012 0.95 0.052
SqueezeNet 58.10 1.852 0.017 58.14 1.852 0.017 0.04 1.2M 0.007 0.75 0.072
VGG-16 71.62 1.140 0.027 71.64 1.138 0.028 0.02 138.4M 0.010 0.95 0.019
WideResNet-50 78.47 0.879 0.054 78.60 0.852 0.038 0.13 68.9M 0.011 0.90 0.178

TABLE I: Results for sparse mutation ensembles on ImageNet with a wide variety of models. Mutation sparsity and strength are determined
from a small hyperparameter grid search. Accuracy (Acc), Negative Log Likelihood (NLL), and expected calibration error (ECE) are reported
for the parent and the ensemble. Metrics prepended with e refer to the ensemble results. ∆Acc is the change in accuracy between the parent
and the ensemble, σ is the mutation strength, ρ is the mutation sparsity, and KL is the average output divergence between the mutated
models and the parent models. 16 models are generated and the 8 most accurate candidates on a validation set are used together as an
ensemble. We see a small but reliable improvement in generalization performance in every single case.

and report the accuracy, negative log likelihood and expected
calibration error.

Table I contains both the parent results and the ensemble
results. From only one generation of evolutionary tuning, we
see consistent improvement in all metrics for each model.
While the difference between generalization performance is
very small in many cases, it is notable that convergence is ex-
tremely stable and appears to be monotonic with optimal muta-
tion hyperparameters. We don’t observe the noisy oscillations
you’d commonly see with fine tuning using stochastic gradient
descent. There’s also a question of how much potential is able
to be squeezed out of the fully trained networks. There is
no accepted method for determining the theoretical ceiling of
generalization capacity for complex network architectures. It
is possible that these small improvements are significant in
the grand scheme of things where an improvement of 0.5%
accuracy on a dataset of 50,000 images corresponds to 250
more correct predictions, which can be significant in some
contexts. It is notable that our results only incorporate a single
generation of evolutionary fine tuning and future research with
more iterations and more thorough hyperparameter searches
will likely improve performance further.

V. CONCLUSION

We introduce Sparse Mutation Decompositions as an ap-
proach to alleviating the challenges of mutating deep neu-
ral networks by breaking up dense mutations into low-
dimensional subspaces. This widens the critical mutation win-
dow, which can significantly reduce the variance as children
in evolutionary populations can handle stronger perturbations
before performance collapse. We explore how these sparse mu-
tations can be implemented with a standard neuroevolutionary
method in order to fine-tune and further optimize pre-trained
networks and we show how ensembles of the top candidates
in a population can aid in generalization.

We conduct several ablation studies in order to explore
the interplay between sparsity and mutation strength on net-
work behavior. We conduct a decision boundary experiment
where visualizations are created that show the predictions
of a model on a binary classification dataset. After being
perturbed with dense mutations, the model sees a rapid
decline in performance while sparsity significantly helps in
maintaining accurate predictions while encouraging diverse
representation. We then explore how these insights translate



to a wide residual network on CIFAR where we explore
parameter sensitivity, static/dynamic subspace evolution, and
the differences between averaged model performance and
population ensemble performance as result of different levels
of mutation strength and sparsity. Our findings reaffirm the
idea that sparse mutations produce more accurate models more
reliably than dense mutations.

We then introduce the first large scale exploration of
evolutionary fine tuning with sparse mutations on ImageNet
with a wide variety of deep neural network architectures.
We use a relatively small population of 16 models in which
the top 8 most accurate on a validation set are selected and
evaluated together as an ensemble. Our approach reliably and
consistently improves performance on every model with only
a single evolutionary generation.
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