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ABSTRACT
There is a recent surge in interest for imitation learning, with large
human video-game and robotic manipulation datasets being used
to train agents on very complex tasks. While deep neuroevolution
has recently been shown to match the performance of gradient-
based techniques on various reinforcement learning problems, the
application of deep neuroevolution techniques to imitation learn-
ing remains relatively unexplored. In this work, we propose to
explore whether deep neuroevolution can be used for behaviour im-
itation on popular simulation environments. We introduce a simple
co-evolutionary adversarial generation framework, and evaluate
its capabilities by evolving standard deep recurrent networks to
imitate state-of-the-art pre-trained agents on 8 OpenAI Gym state-
based control tasks. Across all tasks, we find the final elite actor
agents capable of achieving scores as high as those obtained by
the pre-trained agents, all the while closely following their score
trajectories. Our results suggest that neuroevolution could be a
valuable addition to deep learning techniques to produce accurate
emulation of behavioural agents. We believe that the generality and
simplicity of our approach opens avenues for imitating increasingly
complex behaviours in increasingly complex settings, e.g. human
behaviour in real-world settings.We provide our source code, model
checkpoints and results at github.com/MaximilienLC/gane/.
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1 INTRODUCTION
In order to generate strong behavioural agents, deep neuroevolu-
tion works often target reinforcement learning problems. Various
evolutionary algorithms have recently been shown to be capable
of optimizing deep neural network parameters, at times matching
the performance of gradient-based techniques on popular mod-
ern reinforcement learning benchmarks [15, 19, 20, 23]. Yet, deep
neuroevolution techniques are at times unable to produce strong
agents across full sets of reinforcement learning benchmarks, even
when evolving large populations over thousands of generations
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[15, 20, 23]. This phenomenon is not unique to neuroevolution: deep
learning algorithms are also known to struggle with reinforcement
learning problems in which reward signals are sparse and provide
limited information about the current state of optimization [16].

In this work, we propose to explore whether neuroevolution
is capable of producing strong behavioural agents through self-
supervised imitation learning rather than reinforcement learning.
Specifically, we introduce a generative adversarial co-evolutionary
optimization framework wherein two equal sized populations of
agents repeatedly match against each other over the course of the
evolutionary process. The first population consists of agents gener-
ating data points that can take any format (text, audio, behaviour,
etc), which we call generator agents, while the second population
contains agents, which we call discriminator agents, tasked to dis-
criminate between generated data points and data points sampled
from some target distribution. In order to evaluate the capabilities of
this optimization framework, we propose to imitate the behaviours
of state-of-the-art pre-trained deep reinforcement learning agents
on various popular state-based control tasks available through the
OpenAI Gym API [4]. Across all tasks, as the adversarial optimiza-
tion process unfolds, we find generator agents to obtain increasingly
high scores, with the final elite agents matching pre-trained agent
performance across all tasks while closely following their target
agents’ score trajectories.

2 BACKGROUND
Reinforcement learning [24] is an artificial intelligence paradigm
in which artificial agents learn to maximize some notion of cumu-
lative reward in an environment. These quantitative signals are
often hand-crafted to proxy for qualitative estimations of what
constitutes valuable behaviours. And while much success has been
found through this learning paradigm over the past couple of years
[3, 17, 26], it is known to possess two major shortcomings. First, it
has been observed that optimizing for reward signals is prone to
produce both unexpected and undesired behaviour [6]. Secondly, in
many reinforcement learning problems, reward signals are sparse
and provide limited amounts of valuable information for optimiza-
tion algorithms, especially when contrasted with supervised and
self-supervised learning paradigms [16].

While reinforcement learning is often the preferred choice to
generate strong behavioural agents through deep neuroevolution,
other learning paradigms could be of interest. Imitation learning,
for instance, is a powerful and practical alternative in which agents
are optimized to produce sequential decision-making policies given
some existing target behaviour [12]. Bypassing the need for a hand-
crafted reward function and the challenges it carries, this learning
paradigm has recently been applied to various complex problems
[25], such as video-game playing [2] and robotic manipulation [5].
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However, many imitation learning techniques fall under the
supervised learning regime and therefore require handcrafting a
similarity metric between behaviours, potentially also leading to
unexpected and undesired behaviour. To address this shortcoming,
recent research has shown that self-supervised learning techniques
like generative adversarial networks can be utilized instead, and
have been shown to be capable of generating strong control task
behaviours across diverse tasks [11].

While self-supervised imitation learning has, to the best of our
knowledge, not been explored in the context of neuroevolution,
several works have already harnessed self-supervised learning tech-
niques for tasks like image generation [7]. In the broader evolu-
tionary computation context, such multi-population evolutionary
techniques pertain to the field of competitive co-evolution which
has in the past been explored both in relation to dynamically com-
plexifying neural networks [22] and deep neural networks for high-
dimensional problems [13]. Finally, it was also recently argued [1]
that competitive co-evolution techniques were actually an integral
to recent state-of-the-art game-playing agent AlphaStar [26].

3 EVOLUTIONARY ADVERSARIAL
GENERATION

Overview. We now present a generic co-evolutionary framework
for generative adversarial optimization, that purposely neither im-
poses restrictions on the agent inner mechanisms, nor the data
format, nor the proceedings of both variation and selection evolu-
tionary stages. We maintain, in this evolutionary framework, two
separate populations of agents. The first population consists of gen-
erator agents tasked to generate data points, which can in principle
fall under any modality: image, text, behaviour, etc. The second
population is composed of discriminator agents tasked to discrim-
inate between generated data points and data points originating
from some target distribution.

Agent interactions. For every iteration of the evolutionary
process, during the agent evaluation stage, each discriminator is
randomly matched to one unique generator and one data point
drawn from the target distribution 𝑝𝑇 . In a givenmatch, generator𝐺
first produces data point 𝑥𝐺 . In turn, discriminator 𝐷 observes both
𝑥𝐺 and a true target point 𝑥𝑇 . For each datapoint, the discriminator
outputs a confidence estimate that the point truly originated from
the target distribution 𝑝𝑇 rather than the generator 𝐺 , resulting
in two scores: 𝐷 (𝑥𝐺 ) and 𝐷 (𝑥𝑇 ). This confidence estimate is then
used to compute the fitnesses of both generator and discriminator
agents, as follows.

Agent fitnesses. Making use of discriminator outputs 𝐷 (𝑥𝐺 )
and 𝐷 (𝑥𝑇 ), the generator’s fitness 𝑓 𝑖𝑡𝐺 is first set to 𝐷 (𝑥𝐺 ), mean-
ing that it is proportionally rewarded by the discriminator’s incor-
rect assessment of 𝑥𝐺 . In turn, the discriminator’s fitness 𝑓 𝑖𝑡𝐷 is
contrasting both prediction scores, 𝐷 (𝑥𝑇 ) −𝐷 (𝑥𝐺 ), meaning that it
is increasingly rewarded for correctly assessing 𝑥𝑇 and increasingly
penalized for incorrectly assessing 𝑥𝐺 .

We have outlined here a version of the co-evolutionary frame-
work wherein generators and discriminators are only paired once.
However it is quite straightforward to increase the number of pair-
ings between agents to construct fitnesses from a larger number of
interactions, thus trading off execution speed with lower bias.

4 EXPERIMENTS

Figure 1: Agent evaluation pseudo-code. Trimmed code snippet
of the generator & discriminator evaluation for a given task.
Task environments. In order to evaluate the adversarial gener-
ation framework described above, we propose to run imitation
learning experiments on a subset of the state-based control task
environments available in OpenAI Gym [4]. We select 8 state-based
tasks with a pre-trained agent available (see section below) and in-
put/output dimensions amenable to rapid experimentation. Across
these environments, agents get to control simplified virtual robotic
arms, vehicles and simulated bodies. In order to perform these con-
trol tasks, agents are iteratively fed input values characterizing
various pieces of information like the position, angle and speed
of their body parts. In turn, agents are expected to output values
representing various actuation forces onto their body components.
These environments also provide termination criteria and reward
signals as a means to drive behaviour in reinforcement learning set-
tings. Finally, environment instances can be slightly altered (agent
starting position, etc) to assess out of distribution generalisation.

Target and Evolved Agents. We retrieve pre-trained agents
from the “RL Baselines3 Zoo” library [18]. The 8 agents (1 per task)
achieve state-of-the-art performance on their respective tasks and
are optimized through various popular deep reinforcement learning
algorithms [8, 10, 14, 17, 21]. In order to imitate these agents, we
employ the co-evolutionary adversarial framework to optimize the
parameters of static deep recurrent neural networks. We set up 2
populations, each composed of 64 neural network agents. As all
tasks make use of different input and output sizes, we equip all
generator agents with recurrent networks of dimension (d_input,
50, 50, d_output) and all discriminator agents with recurrent net-
works of dimension (d_input, 50, 50, 1), the last hidden layer being
recurrent for both types of agents, similar to the networks described
by Salimans et al. [20] in their experiments. As is common practice
[9], recurrent layers make use of hyperbolic tangent activations
while dense layers make use of rectified linear units (ReLU).

Evolved agent inputs and outputs. As input distributions
vary between environments, we implement across all control tasks
a running standardization of inputs for all generator and discrimi-
nator agents. In environments requiring continuous action values,
we clip the ReLU activated values emitted from the generators’
network’s output nodes in the range [0, 1] and scale them to the
expected range of outputs. In environments requiring discrete ac-
tion values, we instead feed the index of the output node emitting
the largest value. In turn, the discriminators’ network’s ReLU acti-
vated outputs are clipped in [0,1]. In order to emit prediction scores,
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the discriminator agents’ outputs are averaged over the total num-
ber of episode states experienced by the observed (generator or
pre-trained) agent to emit a final prediction score also in range
[0,1].

Evolutionary algorithm.Wenowdetail how the co-evolutionary
framework was implemented for the 8 control tasks. As a proof of
feasibility, we demonstrated the adversarial learning framework
using a basic genetic algorithm, stripped of crossover and specia-
tion mechanisms, iterating over variation, evaluation and selection
stages as described in [23]. All neural network weights and biases
are initialized at 0 and perturbed every generation, during the vari-
ation stage, by values sampled from N(0, 0.01), where N(`, 𝜎2)
is the normal distribution with mean ` and variance 𝜎2. During
the evaluation stage, on each task, we set both the generator and
pre-trained agents to produce behaviour in their own instances of
the same task environment. Finally, during the selection stage, we
make use of a 50% truncation selection within each agent popula-
tion, meaning that the top 50% agents in terms of fitness score are
selected and duplicated over the bottom 50% agents.

5 RESULTS
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Figure 2: Averaged scores. Progression of the mean population
and elite scores, averaged over 10 environment instances never ob-
served during optimization. Across all tasks, elite generator agents
match the target pre-trained agents’ performances. The population
generally does not lag far behind.

Evolution of mean scores. Our main aim is to assess whether
agents evolved through the adversarial framework are able to gen-
erate behaviour comparable to that of their targets. Figure 2 shows
the progress of both the whole population and its elite agent, av-
eraged over 10 environment instances never observed during the
evolutionary process. On all 8 tasks, we find the generator agents
capable of achieving as high scores as the target pre-trained deep
reinforcement learning baselines. In certain environments, such as
Acrobot, CartPole and MountainCarContinuous, the process is quite
fast, with elite (highest performing) generator agents reaching pre-
trained agent performance in less than 100 generations. However, in
other environments, such as LunarLanderContinous and Pendulum,
this process is quite slower, taking up to a few thousand generations
for elite generator agents to match target performance. We also ob-
serve that in certain tasks like Acrobot and LunarLanderContinuous,
performance at times plunges before rising again, suggesting that in
certain periods of the evolutionary process, generator agents were
required to experiment with initially detrimental behaviour shifts
in order to fool their now more competent paired discriminator
agents. Finally, the generator populations consistently follow quite
closely the elite scores across all 8 tasks, suggesting that elite gen-
erator agents are not simple outliers and that the entire generator
populations are indeed evolving towards high scores.
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Figure 3: Elite agent score trajectories. Elite generator agents
tend to increasingly closely match the score trajectories of their
target. The score trajectories for Acrobot, MountainCar, CartPole
have been slightly shifted to prevent them from overlapping.
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Score trajectories. There often exists a wide range of policies
capable of achieving high scores in reinforcement learning envi-
ronments. To understand the heterogeneity of policies in our agent
population, Figure 3 shows the progression of agent scores over
the course of one episode, running each task on an environment
instance never observed during the optimization process. For each
task, we show the progression of the target pre-trained agent as
well as elite generator agents at various stages of the evolution
process, namely the 1st generation, and 25%, 50%, 75% and 100% of
the total number of generations. We systematically observe that, as
the number of generations increases, score trajectories of evolved
agents become increasingly similar to those of the target pre-trained
agents. In Acrobot and MountainCar, constant negative rewards are
emitted until termination, through either success or time expiration.
Elite agents are able to terminate the episode at an increasingly
similar timestep to that of the pre-trained agent. In CartPole, the
reward function emits constant positive rewards until termination
by failure or time expiration. Elite agents increasingly hold off fail-
ure until time expiration. In MountainCarContinuous, rewards are
emitted until termination by either success or time expiration. Elite
agents are able to complete the task at an increasingly similar pace
to that of the pre-trained agent. In task LunarLanderContinuous,
the reward function emits rewards until termination by success,
failure or time expiration. Elite agents go from failing, to reaching
time expiration, to finally succeeding and closely following the
score trajectory of the pre-trained agent. Finally, in Pendulum and
Swimmer, the reward function emits rewards until time expiration.
Elite agents’ score trajectories also become increasingly similar to
that of the pre-trained agent.

6 DISCUSSION
We have observed, throughout our experiments, generated be-
haviours increasingly similar to their targets according to both
their final score and score trajectories. These results seem to indi-
cate that the generative adversarial evolution framework is capable
of evolving generator agents able to emulate various types of be-
haviour, all the while utilizing very limited information signals.
Indeed, the generator agents are in particular blind to both their
own score and the particular behaviors of the target agent they are
trying to imitate. The generator agent population instead evolves
in complete reliance on prediction scores emitted by discrimina-
tor agents from successive single generator-discriminator matches.
This condensed and potentially noisy information however appears
sufficient to produce accurate behaviors across these control tasks.

We also remark that this framework is quite flexible and thus
could be used in many other evolutionary settings, and we believe
that many improvements over the basic implementation described
here are possible. For instance, calculating agent fitnesses from
more than a single random generator-discriminator pairing could
stabilize the evolutionary process. Last but not least, making use of
dynamic network architectures [15] instead of static network archi-
tectures could potentially bring a multitude of additional benefits
such as higher compression and faster inference.

Within a broader machine learning context, we believe our work
to bring out a different approach to the imitation learning problem.
Indeed, deep imitation learning is often framed as a supervised

learning problem wherein networks are trained to model, to vari-
ous degrees, state-action pair probabilities. Our framework instead
approaches the imitation learning problem from a broader point
of view, wherein agents are instead evolved to model full episodes
of behaviour, and therefore hypothesize that our approach could
enable the imitation of higher-level characteristics of behaviour.

7 CONCLUSION
We introduced in this work a simple yet general evolutionary ad-
versarial generation framework. We evaluated its capabilities by
evolving deep recurrent network agents to imitate full episodes of
pre-trained reinforcement learning agents on various state-based
control tasks. We found the evolved generators to produce similarly
strong behaviour across all the tasks and increasingly follow the
pre-trained agents’ score trajectories. We believe our work opens
avenues to imitate more valuable behaviours, such as human or
animal behaviours in order to solve currently challenging tasks.
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