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A B S T R A C T

Evolutionary Algorithms (EAs) are often challenging to apply in real-world settings since evolutionary
computations involve a large number of evaluations of a typically expensive fitness function. For example,
an evaluation could involve training a new machine learning model. An approximation (also known as meta-
model or a surrogate) of the true function can be used in such applications to alleviate the computation cost.
In this paper, we propose a two-stage surrogate-assisted evolutionary approach to address the computational
issues arising from using Genetic Algorithm (GA) for feature selection in a wrapper setting for large datasets.

We define ‘‘Approximation Usefulness’’ to capture the necessary conditions to ensure correctness of the
EA computations when an approximation is used. Based on this definition, we propose a procedure to
construct a lightweight qualitative meta-model by the active selection of data instances. We then use a
meta-model to carry out the feature selection task. We apply this procedure to the GA-based algorithm
CHC (Cross generational elitist selection, Heterogeneous recombination and Cataclysmic mutation) to create a
Qualitative approXimations variant, CHC𝑄𝑋 . We show that CHC𝑄𝑋 converges faster to feature subset solutions
of significantly higher accuracy (as compared to CHC), particularly for large datasets with over 100K instances.
We also demonstrate the applicability of the thinking behind our approach more broadly to Swarm Intelligence
(SI), another branch of the Evolutionary Computation (EC) paradigm with results of PSO𝑄𝑋 , a qualitative
approximation adaptation of the Particle Swarm Optimization (PSO) method. A GitHub repository with the
complete implementation is available.2
1. Introduction

Feature Selection (FS) and Instance Selection (IS) are two well-
known data mining techniques used to identify subsets of the most
informative features and instances for a given learning task. Feature
selection and instance selection primarily aims to achieve two goals:
(a) reduce computational complexity by using fewer features, and
instances, for model training; (b) improve generalization performance
and model accuracy by reducing overfitting. In practice, these tasks
are often performed in a greedy manner, since finding the best so-
lution is often intractable, and even meta-heuristic optimizations are
prohibitively slow. In this paper, we propose a method that uses active
sampling to create an approximate, fast meta-model.

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: mohammed_ghaith.altarabichi@hh.se (M.G. Altarabichi), slawomir.nowaczyk@hh.se (S. Nowaczyk), sepideh.pashami@hh.se (S. Pashami),

peyman.mashhadi@hh.se (P.S. Mashhadi).
1 http://hh.se/caisr
2 https://github.com/Ghaith81/Fast-Genetic-Algorithm-For-Feature-Selection

Genetic Algorithm (GA) pioneered by Holland et al. (1992) is a bio-
inspired method widely used to solve complex optimization problems.
GA has been shown to outperform classical non-evolutionary methods
like Sequential Floating Search (Kudo & Sklansky, 2000), and Greedy-
like Search (Vafaie, Imam, et al., 1994) to solve large-scale feature
selection tasks. Moreover, better instances reduction rates and higher
classification accuracy were obtained under experimental conditions
using an instance selection GA in comparison with several experiments
using non-evolutionary methods (Cano, Herrera, & Lozano, 2003).

High computational cost is however a major drawback of using GA
for feature selection. Typically used as a wrapper method, the process
of GA involves a large number of evaluations that are computationally
heavy, particularly with on data sets containing a large number of
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Fig. 1. A qualitatively useful approximation for a combinatorial optimization is shown in (a). The approximation correctly identifies the maximum of the original function, even
though the approximation error is large. On the other hand, the approximation in (b) offers better quantitative approximation (values closer to the original fitness), but it leads
to a false optimum.
instances. As a result, research employing GA for feature selection have
been mostly limited to data sets with a small number of instances,
i.e., less than 1000 (Xue, Zhang, Browne, & Yao, 2015).

In this work, we use a light-weight approximation of the compu-
tationally expensive GA fitness function to guide the feature selection
task. We propose a novel active sampling method to construct high
quality approximations. It is based on a concept introduced first by Jin,
Hüsken, Sendhoff, et al. (2003), who used ‘‘qualitative’’ to define
a useful approximation. This meta-model ranks different individuals
similarly to the original fitness function, but not necessarily reproduces
the exact value. An example of a useful qualitative approximation
constructed using our method is shown in Fig. 1(a). The values of
the approximate meta-model are consistently significantly lower than
those of the original function. It preserves the qualitative properties of
the original function in terms of relative fitness of different solutions.
Therefore, the meta-model can be useful to lead the evolutionary opti-
mization irrespective of the quantitative measures such as mean error.
We define ‘‘Approximation Usefulness’’ and use the expected value of
Spearman rank correlation (𝜌) (Spearman, 1910, 1961) between the
original function and meta-model evaluations as a quality measure of
the meta-model.

An approximate classifier is trained with a subset of samples se-
lected by our novel informed selection method. The accuracy of this
surrogate model is used in the evolutionary computation of feature
selection on data sets which are orders of magnitude larger than
previous work reported in the literature. In our experiments, we tested
the proposed method using data sets with hundreds of thousands of in-
stances, and thousands of features. We have shown empirically that our
algorithm CHC𝑄𝑋 scales better than its classical wrapper counterpart,
CHC, for larger datasets. Our algorithm is shown to converge faster to
better feature subset solutions for datasets larger than 10K instances
and was always significantly superior for datasets larger than 100K.
We also have demonstrate the applicability of this approach to another
class of EC by observing similar results with an algorithm based on PSO,
namely PSO𝑄𝑋 .

2. Related work

The survey undertaken by Jin (2005) established two major con-
cerns of approximating fitness evaluation in evolutionary computation.
First, the approximation must ensure that the evolutionary algorithm
convergences to a global optimum, or near-optimum, of the original
fitness function. Second, the computational cost should be reduced. A
subsequent survey (Jin, 2011) highlighted the limited success achieved
in applications of meta-model based on evolutionary optimization even
given what had been considerable growth in interest in using such
meta-models within the research field.

Evolutionary feature selection methods can be grouped into three
types: filter, hybrid and wrapper methods. Filters are computationally
2

more efficient comparing to wrapper algorithms as they utilize mea-
sures such as correlation (Hall et al., 1999), mutual information (Jha
& Saha, 2021; Zhou, Wang, & Zhu, 2022), ReliefF (Sun, Yin, Ding,
Qian, & Xu, 2020), fisher score (Gu, Li, & Han, 2012), inconsistency
rate (Lanzi, 1997; Liu, Setiono, et al., 1996) or even an ensemble of
such measures (Ghosh et al., 2019) to estimate the fitness of feature
subsets. Filter methods, however share the fundamental limitation of
being agnostic towards the Machine Learning (ML) algorithm (Zhang,
Li, Wang, & Zhang, 2013). Whereas wrappers evaluate the feature sub-
sets based on the induction algorithm performance (Maldonado, Riff, &
Neveu, 2022), which often results in better performance (Altarabichi,
Fan, Pashami, Mashhadi and Nowaczyk, 2021; El Aboudi & Benhlima,
2016; Jović, Brkić, & Bogunović, 2015). In a review of 22 different
filter methods (Bommert, Sun, Bischl, Rahnenführer, & Lang, 2020)
concluded that no filter method outperforms all other methods on a
consistent basis.

Hybrid methods combine a filter with a wrapper in a two-staged
approach. In a hybrid a filter is applied first to the features with the goal
of reducing the search space. Only the top ranked-features are used by
the meta-heuristic in the second stage. This approach of filtering low-
ranked features was used by Oreski and Oreski (2014), Rani, Kumar,
Jain, and Chawla (2021), Song, Zhang, Gong, and Gao (2021), Sun, Jin,
Xu, and Cichocki (2021) and Tan, Fu, Zhang, and Bourgeois (2008).
Such approaches however suffer from two major drawbacks. First, the
reduction in search space is only applicable to features. Therefore, a
data set with large number of instances would not benefit much from
this filter technique. Secondly, low-ranked features might turn out to
be important when combined with other features. This filter-based
approach also misses any potential feature interactions. Some hybrid
approaches overcome this by employing local search along with the bi-
nary optimization algorithms (Chattopadhyay, Kundu, Singh, Mirjalili,
& Sarkar, 2022; Ghosh, Malakar, Bhowmik, Sarkar, & Nasipuri, 2017;
Kabir, Shahjahan, & Murase, 2011). It remains challenging however to
determine how much such approaches are compromising the accuracy
to reduce computation time without a comparison against a wrapper.
As such methods are often only compared with baseline models and
other hybrid and filter methods.

The final approach to feature selection is the wrapper, and our
method belongs to this category. Wrapper approaches rely on the ML
model to explicitly evaluate the fitness of feature subsets. The first work
to address the computational cost of GA for the feature selection task
using an approximate model in a wrapper settings was Brill, Brown,
and Martin (1992). They proposed two key ideas: first, a simple k-
Nearest Neighbours (kNN) is used to approximate fitness evaluations of
a Neural Network. Secondly, they proposed a method named ‘‘training
set sampling’’, in which only a portion of the training set is used to
train a model for GA evaluations. However, their method was only
validated using one small data set of 30 features and 150 of instances.
Also, re-sampling on each generation using this training set sampling
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method forced more evaluations, and consequently incurred a high
computational cost. A recent work by Altarabichi, Nowaczyk, Pashami
and Mashhadi (2021) combined the ‘‘training set sampling’’ concept
with ideas from progressive sampling to create a multi-level surrogate-
assisted algorithm that outperformed a wrapper GA by both being
faster to converge and by leading to feature subset solutions of higher
accuracy.

Progressive Sampling used by Le, Van Tran, Nguyen, and Nguyen
(2015) to identify the Optimal Sample Size (OSS) which has been de-
fined as the smallest sample size that offers minimum achievable error
for a given learning algorithm. A model trained with OSS was used
in fitness function evaluations of GA. Additionally, Le et al. proposed
parallelization of the fitness function computation to reduce the run-
time of GA. The algorithm was used to perform feature selection for
the Named Entity Recognition (NER) task.

A Coevolutionary approach to performing feature and instance se-
lection simultaneously for data set reduction showed promising results
over a wide range of data sets . The largest data set used, in terms of
number of instances, however, had 1728 instances. Whereas the largest
in terms of features, had only 60 features (Derrac, García, & Herrera,
2009).

A GA feature selection method based on the MapReduce paradigm
was proposed by Peralta et al. (2015). The algorithm in this method
decomposed the original data set into blocks of instances to learn from
in the map phase; then, the obtained partial results are merged into a
final vector of feature weights in the reduce phase. The selected features
are identified using a threshold applied to feature weights vector.
Although the work was sufficiently convincing to show the usefulness
of the MapReduce paradigm in reducing the computational cost, the
performance of the method was only compared against baseline models
trained with all features for two large data sets.

3. Problem formulation

In this section we further formally define the feature selection
problem. We also offer a fundamental overview of using GA as a
feature selection method in a wrapper setting, and its computational
challenges. In the second part of this section, we discuss approximating
the fitness function using a quantitative approximation and demon-
strate the major obstacles of constructing a light-weight approximation
following a quantitative approach.

3.1. Feature selection using genetic algorithm

We start by defining the feature selection problem for a machine
learning task. We are given a data set D of labelled pairs of the
dimensions (𝑛 × 𝑘), of which 𝑛 represents the number of instances and
𝑘 is the number of features. An instance 𝑥⃗ can be expressed as a 𝑘-
imensional real-valued vector 𝑥⃗ ∈ R𝑘. The goal of the feature selection
ask is to select a new subspace R𝑙 from R𝑘 (where 𝑙 ≤ 𝑘), while
aintaining a comparable (or even better) performance to the one

btained with the original feature space R𝑘. An instance 𝑥′ after feature
election can be expressed as a 𝑙-dimensional real vector 𝑥′ ∈ R𝑙.

Typically, a GA used for feature selection is initiated with a random
opulation of individuals encoding feature subsets as chromosomes of
inary strings. An individual 𝑔 can be expressed as 𝑔 ∈ {0, 1}𝑘, where

1 indicates the selection of feature of the corresponding index, while
0 indicates exclusion. As a wrapper method, GA evaluates individual’s
fitness by constructing a classification (or regression) model using the
feature subset represented by this individual’s chromosome.

The algorithm proceeds from one generation to the next by applying
crossover and mutation operators to the selected individuals to produce
offspring. The process resembles natural selection in that it chooses
individuals with the highest level of fitness as the most likely to prop-
agate to the following generation. In this work, we have used the CHC
Genetic Algorithm (Whitley & Sutton, 2012) to lead our search process
3

b

as it has been shown to perform well with small populations (Eshelman,
1991), whilst being more computationally efficient. Whenever a GA is
mentioned in the rest of this paper, it is always CHC-based.

Finding the optimal features subset of high-dimensional data sets,
even for a small population, requires running a large number of fitness
function evaluations (for the experiments in Section 5.2 it varied from
1002 to 2216) — where each evaluation is computationally expen-
sive. The computational cost of GA is linearly dependent on the time
complexity of the model used to evaluate fitness of different feature
subsets (Altarabichi, Nowaczyk et al., 2021). The time complexity of
many classification algorithms as a function of the number of samples
is 𝑂(𝑛𝑐 ), where (𝑐 ≥ 1). For example the training complexity of kNN
is 𝑂(𝑛2𝑘) (Brill et al., 1992), while nonlinear SVM is between 𝑂(𝑛2)
and 𝑂(𝑛3) (Bottou & Lin, 2007). Consequently, the complexity order of

wrapper feature selection GA using kNN is 𝑂(𝑛2𝑘𝑡), and is between
(𝑛2𝑡) and 𝑂(𝑛3𝑡) for SVM, where t is the total number of fitness

unction evaluations.
As the feature selection 𝐺𝐴 is quadratic or even cubic with re-

pect to the number of training instances, several methods utilized
rocessing models trained with smaller samples for fitness evaluations.
e categorize these methods under three main categories: training

et sampling (Altarabichi, Nowaczyk et al., 2021; Brill et al., 1992;
e et al., 2015), dividing the dataset into small pieces (Peralta et al.,
015) and instance selection (Derrac et al., 2009). Our method belong
o the last category as we speed up the computation by reducing the
umber of training instances. Several other methods suggested recon-
tructing the training set through instance selection. Liu, Wang, Wang,
v, and Konan (2017) identified useless instances that are unlikely to be
upport vectors to make the training time of SVM manageable. Saha,
arker, Al Saud, Shatabda, and Newton (2022) selected instances in
nsupervised fashion from the centre and borders of the clusters found
sing K-Means algorithm. Shaw et al. (2021) proposed an instance
election algorithm to select instances in class imbalance settings.

Our approach can be distinguished from all mentioned methods that
ely on quantitative measures (e.g., accuracy of the model trained with
elected instances) to evaluate the goodness of the resulting training
et. We select instances that lead to correct selection of solutions during
eature selection.

.2. The drawbacks of a quantitative approximation approach

In this section we highlight the major drawbacks of constructing
n approximation of the original function following a quantitative
pproach. A quantitative approximation offers a small approximation
rror when compared to the original function. In the context of approxi-
ating the fitness function of the feature selection task, a natural choice
ould be classifier C𝑜𝑠𝑠 trained with the optimal sample size OSS, as
𝑜𝑠𝑠 offers a close quantitative approximation of C𝐷 trained with the
omplete data set D of n instances.

The first possible drawback of following a quantitative approach is
vident in Fig. 1(b), in which a meta-model with small approximation
rror fails to guide evolutionary computations properly and leads to a
alse optimum. A false optimum is defined as a point in the optimization
urface that corresponds to an optimum3 of the approximate function,
ut not of the original fitness function (Jin, 2005). Convergence to such
alse optima in the approximate model is a major problem in surrogate-
ssisted evolutionary optimization (Jin, Olhofer, & Sendhoff, 2000).
he severity of the problem depends, of course, on how close the real
original fitness) optimum is to the false optimum — however, this is
mpossible to know at the start, and even for an approximation with
mall degree of error this can be arbitrarily distant.

3 A false optimum could either correspond to a maximum or a minimum,
ased on the nature of the optimization task.
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Fig. 2. The Learning Curve of the covtype data set using a Decision Tree model,
and a Geometric Sampling Schedule 𝑆𝑔 = {32, 64, 128, . . . , 262 144}. The last point
to the right represents training with all the available 348 861 training set instances.

Additionally, there are no guarantees that the OSS will correspond
to a small number of instances. The performance of most ML models,
especially Deep Learning (DL) but also many simpler ML models, does
not converge quickly, and continues to improve significantly with more
labelled data. Progressive sampling (PS) could be used to establish
the relation between sample size and model accuracy using batches
that incrementally grow in size. The relation can be depicted with a
learning curve showing model accuracy as a function of sample size.
A well-behaved learning curve usually follows an inverse power law
function (Yelle, 1979). Fig. 2 shows the learning curve of the covtype
data set from the UCI ML repository. The sample batch in the figure
increases in size following a Geometric Schedule (Provost, Jensen, &
Oates, 1999) by the equation 𝑆𝑔 = 𝑎𝑖 ⋅ 𝑛0. We may observe from Fig. 2
that the convergence point is not reached, for a simple Decision Tree
classifier, even when training on more than 250𝐾 instances. Therefore,
our goal is to generally identify a much smaller sample size (compared
to OSS) to train a meta-model used for the feature selection task.

4. Method

Our method section is divided into two subsections. In the first
one, we formulate the definition of ‘‘Approximation Usefulness’’ and
introduce the concept of measuring the value of qualitative approxima-
tion. In the subsequent subsection, we present our method of actively
sampling instances with the purpose of creating a light-weight meta-
model that, to a high degree, satisfies the ‘‘Approximation Usefulness’’
definition.

4.1. Approximation usefulness

In our work, we construct a classifier C𝑠 trained with a particular
subset of samples (s), where 𝑠 ⊂ 𝐷 and |𝑠| ≪ 𝑛, to carry out the FS
task. Our approach exploits the idea highlighted by Jin et al. (2003),
that from an evolutionary computation perspective, the quantitative
quality of the approximation is irrelevant, only the correct selection
must be ensured. In our FS problem, the approximate classifier C𝑠

must rank different feature solutions similar to C𝐷 to be considered
a useful approximation. However, its overall accuracy can be much
lower. We therefore define ‘‘Approximation Usefulness’’ to indicate the
necessary conditions that must be satisfied to ensure correctness of the
GA computations when an approximation is used.

Definition 1. A meta-model is sufficient to lead the evolutionary
computations to the correct maximum4 of the fitness function if the

4 The definition applies as well in the case of a minimization problem. In
this work however, we are always working with finding maximum.
4

Fig. 3. The ‘‘Approximation Usefulness’’ curve of the covtype data set using a
Decision Tree model, and a Geometric Sampling Schedule 𝑆𝑔 = {32, 64, 128, . . . ,
262 144}. The points correspond to the rank correlation scores between the original
classifier and an approximation trained using the corresponding sample size sampled
randomly.

following conditions are satisfied:

∀𝑔1, 𝑔2 ∶ 𝑓𝐷(𝑔1) > 𝑓𝐷(𝑔2) ⟹ 𝑓 𝑠(𝑔1) > 𝑓 𝑠(𝑔2) (1)

∀𝑔1, 𝑔2 ∶ 𝑓𝐷(𝑔1) = 𝑓𝐷(𝑔2) ⟹ 𝑓 𝑠(𝑔1) = 𝑓 𝑠(𝑔2), (2)

where 𝑔1 and 𝑔2 are two possible solutions (individuals), 𝑓𝐷(𝑔) is the
fitness value of individual (𝑔) using the original fitness function (a
classifier trained with the complete data set 𝐷 of 𝑛 instances), 𝑓 𝑠(𝑔) is
the fitness value of individual g using the approximated fitness function
(a classifier trained with the subset s of instances in D).

It is important to highlight that Eqs. (1) and (2) are sufficient
conditions to realize a useful approximation, irrespective to how good
the approximate classifier C𝑠 is in performing the learning task. In other
words, C𝑠 could have a low accuracy5 in comparison to C𝐷, but it can
still be considered a useful approximation of C𝑛 in the feature selection
task, provided both classifiers rank different feature subsets similarly.
The Spearman Rank correlation was used in Jin et al. (2003) as a metric
to measure the quality of meta-models. We will similarly use rank
correlation as a quantitative measure of how valid is the qualitative
approximation in satisfying the Approximation Usefulness conditions.

To visualize the qualitative aspect of the problem, we plot in Fig. 3
what we define as the Approximation Usefulness Curve. Contrary to the
Learning Curve we have observed in Fig. 2, the 𝑦-axis for the Approx-
imation Usefulness plot represents the expected value of rank correla-
tion between evaluations done using the original function (trained with
all data) and the same evaluations done using approximations (trained
with progressively larger sample size). Intuitively, we would expect
the learning algorithm to exploit more complex interactions between
features as more data become available.

A meta-model trained with a very small sample of instances could
rank different feature subset solutions differently than the same learn-
ing algorithm trained with all the data. As we allow the meta-model to
progressively access larger samples, we would expect the meta-model to
have better agreement with the original function on the rank of feature
subsets.

The goal of the Approximation Usefulness Curve is, therefore to cap-
ture the relation between training the meta-model with progressively
larger samples and the agreement with original function evaluations.
We estimate the expected value of rank by randomly generating 𝑞

5 The concept generalizes directly to any other metric of measuring clas-
sifier performance (e.g., recall or AUC). In this work, for simplicity, all
evaluations are based on classifier accuracy.
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feature subsets and evaluating these subsets using the original function,
and meta-models with progressively larger samples.

The vector 𝑢 = (𝑢1, 𝑢2,… , 𝑢𝑞) represents the 𝑞 randomly generated
feature subsets, where 𝑢𝑖 ∈ {0, 1}𝑘. Consequently, for any sample size
𝑚, we create two 𝑞-dimensional vectors 𝑜 = (𝑜1, 𝑜2,… , 𝑜𝑞), and 𝑎𝑚 =
(𝑎𝑚1 , 𝑎

𝑚
2 ,… , 𝑎𝑚𝑞 ), where o𝑖 is the fitness value of u𝑖 calculated using the

original fitness function, and a𝑚𝑖 is the fitness value of u𝑖 calculated
using an approximation trained with a sample of size 𝑚 randomly
sampled from D. Accordingly, we depict approximation usefulness as
a function of sample size using progressive sampling. We calculate the
rank correlation of the two vectors 𝜌(𝑜, 𝑎𝑚) using values of 𝑚 that follow
a geometric sampling schedule.

We may observe from Fig. 3 that already an approximation trained
with a random sample of size 32 768 (less than 10% of available
training instances) of the covtyp data set exceeds 0.95 correlation.
Such meta-model will mostly make correct selections, despite the large
difference in accuracy between the original and approximate models
as observed from Fig. 2; a model trained with all 348 861 training
examples achieved 93.00% accuracy on test set, in comparison to
80.60% for a model trained with 32 768 samples.

4.2. The CHC𝑄𝑋 algorithm

Our approach is based on the hypothesis that well-informed instance
selection can produce high quality meta-models using smaller sample
sizes and it is enough to observe few evaluations of the original function
to identify such key instances. Active selection of samples is shown to
improve model quality significantly in different research areas (Jin,
2005). We propose CHC𝑄𝑋 , CHC Qualitative approXimation, a two-
staged surrogate-assisted evolutionary algorithm for feature selection.
In our algorithm (the full pseudocode is in Algorithm 3), we break
the optimization problem of feature selection into two parts. In the
first part, we use active selection of samples to construct high quality
lightweight meta-model. Once a good meta-model is constructed, we
use it to solve the second optimization problem, i.e., finding the best
possible feature subset.

4.2.1. CHC𝑄𝑋 active sampling phase
Formally, this optimization problem aims to find a small subset of

instances 𝑠 from data set D (where |𝑠| ≪ 𝑛), which maximizes the
expected correlation between C𝑠 and C𝐷. A meta-model trained with
𝑠 is expected to rank feature subsets similarly to the original function.
The data set D′ after instance selection can be expressed as matrix
(|𝑠|×𝑘). CHC𝑄𝑋 uses an instance selection GA to solve this optimization
problem. The instance selection GA is initialized with a population of
individuals 𝑔 ∈ {0, 1}𝑛, where 1 indicates the selection of the instance
of the corresponding index.

To measure the quality of a candidate meta-model during the in-
stance selection phase, we first randomly generate 𝑞 feature subsets.
The randomly generated solutions serve as snapshots of the optimiza-
tion surface of the original function. Intuitively, CHC𝑄𝑋 tries to con-
struct a meta-model with a fitness landscape that is both aligned, and
highly correlated with, the optimization surface of the original function
as in Fig. 1(a).

As we did in 4.1, we denote 𝑢 as the vector of randomly generated
feature subsets, 𝑢 = (𝑢1, 𝑢2,… ., 𝑢𝑞), where 𝑢𝑗 ∈ {0, 1}𝑘, 𝑗 ∈ {1, 2,… , 𝑞}.
We calculate the q-dimensional vector 𝑜 = (𝑜1, 𝑜2,… ., 𝑜𝑞), where o𝑖 is
the fitness value of the corresponding feature subset calculated using
the original fitness function. Accordingly, CHC𝑄𝑋 instance selection
tries to find the instance subset that maximize the expected rank, while
minimizing the number of selected instances according to the following
fitness function:
5

𝑓𝑖𝑠(𝑔) = (1 − 𝜌(𝑂⃗, 𝐴)) +
|𝑠|
𝑛

=
6
∑

𝑖 𝑑
2
𝑖

𝑞(𝑞2 − 1)
+

|𝑠|
𝑛

(3)

where 𝑎 = (𝑎1, 𝑎2,… ., 𝑎𝑞) is a 𝑞-dimensional vector of fitness value of
the corresponding randomly generated feature subset calculated using a
classifier trained with instances identified by individual 𝑔, and 𝑑𝑖 is the
ifference in rank of 𝑟𝑖 (the 𝑖th feature subset) between 𝑜 and 𝑎. Values

of 𝜌(𝑜, 𝑎) fall in the range +1 to −1, where the maximum value of +1
indicates an optimal approximation, with Eqs. (1) and (2) satisfied.

By minimizing the fitness function defined in (3), the instance
selection of CHC𝑄𝑋 optimizes for higher quality meta-model using the
left term of the fitness function, with the smallest number of instances
(as captured by the right term). The fitness of the original function
(an individual trained with all 𝑛 available instances in D), according
to (3), is equal to 𝑓𝑖𝑠(𝑔) = (1 − 1) + 𝑛

𝑛 = 1. A high-quality candidate
approximation trained with small number of instances will have a
fitness below 1 and approaches 0.

We denote 𝑠∗ as the instance subset that results from solving the first
ptimization problem. We use 𝑠∗ to train the approximate classifier C∗

hat will be used next in the feature selection phase.

.2.2. CHC𝑄𝑋 feature selection phase
During the feature selection phase, our algorithm uses the ap-

roximate classifier C∗ that was constructed in the instance selection
hase, together with the original fitness function C𝐷. We carry ma-
ority of feature subset evaluations using the approximation C∗, and
only after a fixed number of generations we reevaluate all individuals
using C𝐷. We control this frequency of using the original function
through the frequency hyper-parameter (𝑓 ). The use of the approximate
model together with the original fitness function is known as evolution
control in evolutionary computations using approximation (Jin et al.,
2000), and has been recognized for its effectiveness in preventing the
approximation from converging to a false optimum (Ratle, 1998).

The fitness function of the second optimization problem is given by
the equation:

𝑓𝑓𝑠(𝑔) = 𝐴𝑐𝑐𝑣𝑎𝑙(𝑔) (4)

here 𝐴𝑐𝑐𝑣𝑎𝑙 is the validation set accuracy of classifier 𝐶∗ when trained
ith feature subset 𝑔. We denote 𝑔∗ as the feature subset that results

rom solving the second optimization problem. The feature subset 𝑔∗ is
he final solution of CHC𝑄𝑋 .

The pseudocode of the instance selection and feature selection
tages of CHC𝑄𝑋 can be found in Algorithm 1 and Algorithm 2. We
xplain the fundamental steps of the CHC algorithm as it is used in
oth stages:

1. Initialization: The initial population 𝑃0 is generated randomly
according to the hyper-parameters 𝑒 that identifies the num-
ber of individuals in the population, and 𝑝𝑟 that indicates the
independent probability of having a 1 in each bit of the string.

2. Reproduction selection: On each generation t, the parents 𝐶𝑡
are selected randomly for reproduction from the population 𝑃𝑡.
But an incest prevention mechanism is applied to prevent similar
parents from mating. Similarity is identified by measuring the
hamming distance between the pair of parents and only pairs
which differ from each other by the threshold given by 𝑑 are
allowed to mate.

3. Heterogeneous recombination: The HUX operator is used to
generate off-springs 𝐶 ′

𝑡 by coping all bits matched in both par-
ents, and then copying half of the different bits from each parent
to the resulting off-springs.

4. Cross generation elitist selection: The algorithm selects the
best individuals from the current generation 𝑃𝑡 and the off-

′
springs 𝐶𝑡 to be passed to the following generation. This cross
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generation elitist strategy ensures that the best solutions found
so far always survive. If the stop criterion is met after this step,
the algorithm simply exits and returns the best found solution.
Alternatively, the process moves to step 5 if the progress stagnate
for several generations. Otherwise, the algorithm goes back to
steps 2 and steps 2–4 are repeated iteratively.

5. Cataclysmic mutation (restarts): Mutation is not used in the
recombination stage of CHC. It is only used whenever conver-
gence is reached based on the 𝑑 value. A restart is initiated
to reintroduce diversity into the population when the progress
stagnate for several generations. The best individual is used as
a template to generate the new population by mutating 35% of
its bits. The process goes back to step 2 after the restart.

Refer to Algorithm 3 for the full pseudocode of CHC𝑄𝑋 feature
election. The main steps of Algorithm 3 are:

1. Instance selection: This step represents the first stage of the
CHC𝑄𝑋 algorithm and is carried to identify the meta-model 𝐶∗

training instances.
2. Feature selection using meta-model: Feature selection is car-

ried using 𝐶∗ for a fixed number of generations according to the
𝑓 value.

3. Reevaluations using original function: Every 𝑓 generations
the whole individuals in the feature selection population 𝑃𝑡 are
reevaluated using the original function 𝐶.

4. Stop criterion: Once the stop criterion is met, the algorithm
returns the best found feature subsets 𝑔∗. Otherwise, we go back
to step 2.

5. Results and discussion

This section describes the experimental design we have used to
evaluate our method, along with the results obtained in several ex-
periments. The first experiment aimed to evaluate CHC𝑄𝑋 against

traditional CHC, an algorithm that uses all the available training
ata for feature selection. We also report the results of another pro-
osed algorithm, PSO𝑄𝑋 , and compare it to PSO. In the second and
hird experiments we conducted sensitivity analysis of the main hyper-
arameters of the algorithm, namely we evaluated the effect of varying
he population size and the frequency of the evolution control hyper-
arameters on CHC𝑄𝑋 performance. Finally, we provide amortized
nalysis of the complexity time of the CHC𝑄𝑋 algorithm and compare
t to CHC.

.1. Experimental setup

Our experiments involve 13 data sets from the UCI Machine Learn-
ng Database Repository. We have included 6 small sized datasets of less
han 10K, 4 medium size datasets between 10K and 100K, and 3 large
atasets with more than 100K instances. The objective was to evaluate
he effectiveness of our approach for datasets of varying sizes. Table 1
rovides a summary of the number of instances, features and classes of
ll data sets used in our experiments.

Each data set is divided into training (60%), validation (20%), and
esting (20%) splits. We have used a Decision Tree classifier in all
xperiments with the default algorithm settings of the Python library
sklearn6) implementation. A unified approach of prepossessing is
dopted for all data sets, including categorical features encoding, im-
utation of missing values, and shuffling of instances. Accuracy of the
odel is the metric we used for the evaluation in all experiments.
ll reported accuracies are the ones realized on the testing set. The

6 https://scikit-learn.org/stable/.
6

Algorithm 1: CHC𝑄𝑋 Active Sampling
Input : (𝑞) number of controlled individuals.

(𝑒) number of individuals in population.
(𝑡𝑚𝑎𝑥) maximum number of generations.
(𝑝𝑟) probability of each instance to be selected

(independently).
(𝑑) diversity parameter.
(𝑑𝑖𝑣) divergence rate on restarts.

Output: (𝑠∗) instances selected to train the meta-model.
// Create vector 𝑢 of 𝑞 randomly generated

feature subset.
1 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒[𝑢, 𝑞];
// Evaluate the 𝑞 feature subsets within u using

the original fitness function.
2 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒[𝑢];
// Initialize the generation counter 𝑡 to zero.

3 𝑡 ← 0;
// Initialize a population of 𝑒 instance

individuals using 𝑝𝑟.
4 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒[𝑃𝑡, 𝑒, 𝑝𝑟];
// Evaluate the initial population.

5 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒[𝑃𝑡];
6 while 𝑡 < 𝑡𝑚𝑎𝑥 do

// Select parents randomly.
7 𝐶𝑡 ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡];

// Mate parents with incest prevention.
8 𝐶 ′

𝑡 ← 𝐻𝑈𝑋[𝐶𝑡, 𝑑];
// Evaluate offsprings.

9 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒[𝐶 ′
𝑡 ];

// Pass best 𝑒 individuals from parents and
offsprings to the following generation.

10 𝑃𝑡 ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡, 𝐶 ′
𝑡 , 𝑒];

// Increase the generation counter by one.
11 𝑡 ← 𝑡 + 1;
12 if 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒[𝑃𝑡] then

// Population is reinitialized as CHC
converged.

13 𝑃𝑡 ← 𝑅𝑒𝑠𝑡𝑎𝑟𝑡[𝑃𝑡, 𝑑𝑖𝑣]

// Select the best instance subset.
14 𝑠∗ ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡, 1];
15 return 𝑠∗

hardware used for all experiments is a laptop with 1.6 GHz processor
and 8 GB of memory.

In describing the experiments, we will use the following terminol-
ogy to refer to different classifiers:

– Baseline DT: The Decision Tree classifier that is trained on all
available instances without performing any feature selection.

– CHC: The Decision Tree classifier that is trained on all available
instances in the training set, after performing feature selection
using CHC with the original fitness function. The population size
of CHC is 50 in all experiments unless explicitly stated otherwise,
while other parameters are set to the recommended settings
suggested in the original paper (Eshelman, 1991). The diversity
parameter is set to (𝑑 = 𝑘

4 ), where 𝑘 is the length of the individual
(number of features), while the divergence rate is (𝑑𝑖𝑣 = 0.35).

– PSO: The Decision Tree classifier that is trained on all available
instances in the training set, after performing feature selection
using PSO with the original fitness function. We have used the
global version of PSO with a topology connecting all particles to
one another. The following options are used {c1: 1.49618, c2:
1.49618, w: 0.7298}, while the number of particles is set to 50 in

all experiments.

https://scikit-learn.org/stable/
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Algorithm 2: CHC Feature Selection
Input : (𝑚𝑜𝑑𝑒𝑙) model to be used for evolutionary evaluations.

(𝑒) number of individuals in population.
(𝑡𝑚𝑎𝑥) maximum number of generations.
(𝑝𝑟) probability of each feature to be selected

(independently).
(𝑑) diversity parameter.
(𝑑𝑖𝑣) divergence rate on restarts.

Output: 𝑔∗ Best found feature subset.
// Initialize the generation counter 𝑡 to zero.

1 𝑡 ← 0;
// Initialize a population of 𝑒 instance

individuals using 𝑝𝑟 < 0.5.
2 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒[𝑃𝑡, 𝑒, 𝑝𝑟];
// Evaluate the initial population.

3 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒[𝑃𝑡, 𝑚𝑜𝑑𝑒𝑙];
4 while 𝑡 < 𝑡𝑚𝑎𝑥 do

// Select parents randomly.
5 𝐶𝑡 ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡];

// Mate parents with incest prevention.
6 𝐶 ′

𝑡 ← 𝐻𝑈𝑋[𝐶𝑡, 𝑑];
// Evaluate offsprings.

7 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒[𝐶 ′
𝑡 ];

// Pass best 𝑒 individuals from parents and
offsprings to the following generation.

8 𝑃𝑡 ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡, 𝐶 ′
𝑡 , 𝑒];

// Increase the generation counter by one.
9 𝑡 ← 𝑡 + 1;
10 if 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒[𝑃𝑡] then

// Population is reinitialized as CHC
converged.

11 𝑃𝑡 ← 𝑅𝑒𝑠𝑡𝑎𝑟𝑡[𝑃𝑡, 𝑑𝑖𝑣]

// Select the best feature subset.
12 𝑔∗ ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡, 1];
13 return 𝑔∗, 𝑃𝑡

– CHC𝑄𝑋 : The Decision Tree classifier that is trained on all avail-
able instances in training set after performing feature selection
using CHC𝑄𝑋 . This algorithm uses the same settings of the base
optimizer as the CHC baseline. The hyper-parameters specific to
CHC𝑄𝑋 are set to 𝑞 = 20 and 𝑓 = 10.

– PSO𝑄𝑋 : The Decision Tree classifier that is trained on all available
instances in the training set after performing feature selection
using PSO𝑄𝑋 . This algorithm use the same settings of the base
optimizer as the PSO baseline. The hyper-parameters specific to
PSO𝑄𝑋 are also set to 𝑞 = 20, and 𝑓 = 10.

5.2. Experiment I: CHC𝑄𝑋 vs. CHC and PSO𝑄𝑋 vs. PSO

In this experiment, we compared our algorithm against a classical
wrapper feature selection method. The objective was to demonstrate
the effectiveness of CHC𝑄𝑋 using datasets of varying sizes in terms
of number of instances and features. To validate whether CHC𝑄𝑋
converges faster than CHC, we ran CHC𝑄𝑋 to convergence (defined as
10 consecutive generations with no improvement for best solution in
population) and allowed CHC to run for the same CPU time. Due to the
stochastic nature of the process, we ran 10 repetitions of each dataset
and reported the median and standard deviation of the runs.

The results in Table 2 show that as expected, in comparison to a
baseline without any feature selection, all feature selection methods
improved the performance significantly, based on paired Student’s 𝑡-
test. It must be noted however, that our algorithms CHC𝑄𝑋 and PSO𝑄𝑋
were so successful in reducing overfitting of the baseline Decision Tree
7

Algorithm 3: CHC𝑄𝑋 Feature Selection
Input : (𝑞) number of controlled individuals.

(𝑒1) number of individuals in instance selection
population.

(𝑒2) number of individuals in feature selection
population.

(𝑡𝑚𝑎𝑥1) maximum number of generations during
instance selection.

(𝑡𝑚𝑎𝑥2) maximum number of generations during
feature selection.

(𝑝𝑟1) probability of each instance to be selected
(independently).

(𝑝𝑟2) probability of each feature to be selected
(independently).

(𝑓 ) frequency of using the original function.
(𝑑) diversity parameter.
(𝑑𝑖𝑣) divergence rate on restarts.

Output: 𝑔∗ best found feature subset.
// Select meta-model training instances from

available data.
1 𝑠∗ ← 𝐶𝐻𝐶𝑄𝑋𝐴𝑐𝑡𝑖𝑣𝑒𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔[𝑞, 𝑒1, 𝑡𝑚𝑎𝑥1, 𝑝𝑟1, 𝑑, 𝑟𝑒𝑠];
// Initialize the feature selection generation

counter 𝑡.
2 𝑡 ← 1;
3 while 𝑡 < 𝑡𝑚𝑎𝑥2 do
4 if 𝑡 mod 𝑓 ≠ 0 then

// Carry feature selection for one
generation using 𝐶∗.

5 𝑔∗, 𝑃𝑡 ← 𝐶𝐻𝐶𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛[𝐶∗, 𝑒2, 1, 𝑝𝑟2, 𝑑, 𝑑𝑖𝑣];
6 else

// Reevaluate the population using the
original function 𝐶.

7 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒[𝑃𝑡, 𝐶];
// Select the best feature subset.

8 𝑔∗ ← 𝑆𝑒𝑙𝑒𝑐𝑡[𝑃𝑡, 1];
// Increase the generation counter by one.

9 𝑡 ← 𝑡 + 1;
10 return 𝑔∗

Table 1
UCI data sets used for evaluation.

Data set No. of instances No. of features No. of classes

dermatology 366 34 6
german 1000 24 2
semeion 1592 265 2
car 1728 6 4
abalone 4177 8 28
qsar 8992 1024 2
adult 32 561 14 2
bank-full 45 211 16 2
connect-4 67 556 42 3
dota2Train 92 650 116 2
diabetes 101 766 49 3
census-income 199 523 41 2
covtype 581 012 54 7

to the degree that the DT model after feature selection managed to
exceed the performance of a Random Forest model trained with all
features (ensemble of 11 Decision Trees) for a number of datasets
(abalone, adult, dota2Train, diabetic and covtype).

The results of Table 2 show no advantage of using CHC𝑄𝑋 for small
datasets with less than 10K instances. This is quite natural and can be
explained by the overhead of the algorithm, which caused a deteriorat-
ing effect in a number of datasets (semeion, abalone and qsar).
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Table 2
The median and standard deviation results of 10 runs, bold indicates significance in comparisons between CHC𝑄𝑋 , PSO𝑄𝑋 against CHC and
PSO, respectively.
Dataset Accuracy

Baseline DT CHC CHC𝑄𝑋 PSO PSO𝑄𝑋

dermatology 95.96% 93.24% ± 1.94 93.24% ± 3.04 95.95% ± 1.70 95.95% ± 1.72
german 66.00% 68.00% ± 3.25 70.00% ± 3.52 66.75% ± 3.10 71.04% ± 4.21
semeion 93.42% 93.73% ± 1.20 93.26% ± 1.61 93.42% ± 1.11 92.63% ± 0.78
car 98.27% 98.27% ± 0.00 98.27% ± 0.00 98.27% ± 0.00 98.27% ± 0.00
abalone 19.98% 25.60% ± 2.35 24.82% ± 3.09 22.07% ± 2.82 19.86% ± 3.51
qsar 89.05% 90.94% ± 0.48 90.69% ± 0.54 90.86% ± 0.68 91.19% ± 0.82

adult 80.58% 85.12% ± 0.04 85.12% ± 0.00 85.11% ± 0.35 85.19% ± 0.27
bank-full 86.77% 89.16% ± 0.06 89.22% ± 0.06 89.26% ± 1.74 89.30% ± 0.07
connect-4 72.00% 75.92% ± 1.26 76.68% ± 0.76 75.60% ± .90 76.54% ± 0.67
dota2Train 51.78% 53.85% ± 0.74 54.04% ± 0.87 53.89% ± 0.48 54.79% ± 0.83

diabetic 49.21% 55.97% ± 1.02 56.93% ± 0.27 56.36% ± 0.68 57.04% ± 0.37
census-income 92.87% 94.63% ± 0.35 94.94% ± 0.07 94.79% ± 0.24 94.94% ± 0.06
covtype 92.99% 93.36% ± 0.16 93.77% ± 0.12 93.51% ± 0.15 93.73% ± 0.08
However, the advantage of using our algorithm is already noticeable
for medium size datasets (between 10K and 100K), as CHC𝑄𝑋 performs
generally better than CHC, and is significantly better according to
the paired 𝑡-test for the bank-full dataset. This trend continues,
and CHC𝑄𝑋 is always significantly better than CHC for all three large
datasets (diabetic, census-income and covtype), i.e., those
with more than 100K instances. This demonstrates the usefulness of our
approach for the purpose it was designed for, namely as the datasets
scale larger in size.

We show similar results with our proposed PSO based algorithm.
As we compare PSO𝑄𝑋 against PSO following the same procedure. The
results of Table 1 show PSO𝑄𝑋 is generally no better than PSO for small
sized datasets, while being generally better for medium sized, and is
always significantly better for large datasets. This demonstrates that
our procedure of constructing high quality meta-models is useful when
used independently from the underlying optimizer.

5.3. Experiment II: Effect of population size on CHC𝑄𝑋 and CHC

The objective of this experiment was to analyse the effect of in-
creasing the population size for both CHC and our proposed algorithm
CHC𝑄𝑋 . We vary the population size hyper-parameter to values equal
to (50%, 100%, 200%, 400%) of the individual length and measure
the impact on convergence time and fitness for both algorithms in
10 repetitions. Unlike the previous experiment, this time we let both
algorithms run to convergence (defined as 10 consecutive generations
with no improvement for the best individual). We studied the effect
using two medium size datasets adult and bank-full, and one large
dataset census-income.

An expected, we observe in Fig. 4 that the convergence time of both
lgorithms increases as we run the optimization with larger popula-
ions. It is clear, however, that CHC𝑄𝑋 converges faster than CHC in

almost all settings. In general, the fitness of both algorithms improves
as we increase the population size. Also, agreeing with the results
of Xu and Gao (1997), we observed a reduced possibility of premature
convergence with larger populations. This was particularly apparent for
CHC (as indicated by lower variations in the quality of final solutions).
However, increasing the population size beyond 200% of the individual
size does not seem to offer any significant improvements for either
of the algorithms. This observation is consistent with results from the
literature which suggests that large population size is not always help-
ful (Chen, Tang, Chen, & Yao, 2012) while other studies recommend
using CHC with small populations of around 50 individuals (Whitley,
1994). We recommend, accordingly, to work with population size
values between 100% and 200% of the individual size for both CHC
and CHC𝑄𝑋 . A fixed value of 50 individuals performed consistently
well for problems of varying complexity across our experiments and
8

was therefore chosen as the default population size setting for CHC𝑄𝑋 .
5.4. Experiment III: Effect of evolution control frequency on CHC𝑄𝑋

In this experiment, we analyse our evolution control strategy by
varying the value of the frequency hyper-parameter. Intuitively, a
trade-off exists between less frequent controls (which risk allowing
the meta-model to mislead the optimization to a false optimum), or
more frequent controls (which require increased computation time). We
studied this trade off by varying the value of the 𝑓 hyper-parameter
between (5, 10, 20, 40). The value of 𝑓 represents the number of
generations that must pass before the original function is used during
feature selection; a high value indicates less frequent use. We use the
same three datasets as in the previous experiment.

We show in Fig. 5 the downside of less frequent use of evolution
control for the value of (f = 40) in the adult dataset and (f = 20, f
= 40) for the bank-full dataset. In these settings, the meta-model
often converges to false optima, as is evident from the significant per-
formance drop in comparison to the more controlled settings (f = 5, f =
10). Interestingly, the less controlled settings perform generally better
for the census-income dataset; this observation could be explained
by the fidelity of the approximate model. Intuitively, a high-quality
meta-model requires less frequent evolution control (Jin, 2005). We
recommend setting the value of 𝑓 to be between 5 and 10, as this range
provided the most well-balanced performance during our experiments.
Ideally, a solution would be to abandon the fixed control strategy
and follow an approach that adjust the frequency of evolution control
adaptively, based on the fidelity of the meta-model (Jin, Olhofer, &
Sendhoff, 2001), however this is work for the future and outside of the
scope of this paper.

5.5. Amortized analysis of the CHC𝑄𝑋 algorithm

As reduction of computation time is the main objective of our
algorithm, we carried out amortized analysis of the time complexity
of CHC𝑄𝑋 in comparison to CHC. We showed that the amortized cost
of one generation of CHC𝑄𝑋 using the algorithm default settings is
in the worst case smaller than its counterpart of CHC, when the two
algorithms run for more than 13 generations. We used the aggregate
method to determine the upper bound of the worst case total run-time
cost of 𝑟 generations of evolution, then calculated the amortized cost
of one generation for each method.

In our analysis both algorithms use a Decision Tree classifier with
complexity 𝑂(𝑛⋅𝑘2) (Su & Zhang, 2006), where 𝑛 represents the number
of instances and 𝑘 is the number of features. The analysis could be
directly extended to any other induction algorithm with a different
complexity.

The time complexity of CHC is linearly dependent on the complexity
of the induction algorithm. This is true for situations in which fitness
evaluations consumes almost all the run-time of the algorithm, the
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Fig. 4. The effect of varying population size on convergence time and accuracy for CHC𝑄𝑋 and CHC. The results of datasets are presented in the row order: adult (top),
bank-full (middle) and census-income (bottom).
time complexity of running the evolutionary operators like crossover
and mutation is negligible in comparison. The time complexity of CHC
could be expressed for Decision Tree as 𝑂(𝑛 ⋅ 𝑘2 ⋅ 𝑒 ⋅ 𝑟), where 𝑒 is the
number of fitness function evaluations per generation.7 The amortized
cost of one generation of evolution using CHC is simply:
𝑇𝐶𝐻𝐶 (𝑟)

𝑟
= 𝑛 ⋅ 𝑘2 ⋅ 𝑒 ⋅ 𝑟

𝑟
= 𝑛 ⋅ 𝑘2 ⋅ 𝑒

The time complexity of CHC𝑄𝑋 consists of the time required to con-
struct the meta-model, and then the time of feature selection. The time
complexity of one generation of CHC𝑄𝑋 is variable, as the algorithm
mostly uses the computationally cheap meta-model to carry fitness

7 The number of evaluations per generation is variable for CHC because of
incest prevention. For CHC case, 𝑒 could represent the expected number of
evaluations per generation instead.
9

evaluations, and only uses the true fitness evaluation occasionally. The
amortized cost of one generation of CHC𝑄𝑋 is:
𝑇𝐶𝐻𝐶𝑄𝑋

(𝑟)

𝑟
=

𝑇𝑖𝑠(𝑟) + 𝑇𝑓𝑠(𝑟)
𝑟

where 𝑇𝑖𝑠(𝑟) is the run-time of the instance selection stage, and 𝑇𝑓𝑠(𝑟)
is the run-time of the feature selection stage.

The instance selection of CHC𝑄𝑋 involves evaluating a fixed number
of randomly selected feature subsets using the original function, the
number of evaluations is a hyper-parameter of the algorithm denoted as
𝑞, with a default value of 10. The total time complexity of this operation
is accordingly 𝑞 ⋅ 𝑛 ⋅ 𝑘2.

CHC𝑄𝑋 uses an instance selection GA to select samples to construct
a meta-model that offers the best trade-off between highest correla-
tion (agreement with original function), and the smallest sample of
instances. The overall run-time of the instance selection GA is hard to
predict due to the stochastic nature of GA. But we estimate the worst
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Fig. 5. The effect of varying evolution control frequency on convergence time and accuracy for CHC𝑄𝑋 . The results of datasets are presented in the row order: adult (top),
bank-full (middle) and census-income (bottom).
case time of this stage based on our selection of hyper-parameters. We
used a population of 4 individuals and carried evolution for a maximum
of 10 generations, we are also using a ‘‘no change’’ counter to early
stop instance selection if fitness does not improve for a number of
generations (we set this value to 3). The worst case total number of
evaluations accordingly is 40. We initialize the starting population with
individuals with no more than 𝑛

2 selected instances. As we used CHC to
carry instance selection, the number of selected instances will never
exceeds 𝑛

2 during evolution due to the averaging effect of the HUX
crossover operator of CHC. We provide the proof in Lemma 1.

Lemma 1. The HUX crossover in binary optimization produces off-springs
with the number of 1s equal to the average of their parents number of 1s.

Proof. Given two binary strings individuals 𝑔1 and 𝑔2, expressed as
𝑔1, 𝑔2 ∈ {0, 1}𝑘, where 𝑘 indicates the length of the string, we define
𝑛 , 𝑛 as the total number of 1s in 𝑔 and 𝑔 , respectively.
10

1 2 1 2
The HUX operator copies all bits matched in both parents, and then
copies half of the different bits from each parent. The probability to
have 1 in the same bit of 𝑔1, 𝑔2 is ( 𝑛1𝑘 . 𝑛2𝑘 ), while the probability to have
different bits is ( 𝑛1𝑘 .(1 − 𝑛2

𝑘 ) + 𝑛2
𝑘 .(1 − 𝑛1

𝑘 )). We can accordingly calculate

𝑛′1, 𝑛
′
2 for off-springs 𝑔′1, 𝑔

′
2 as follows:

𝑛′1
𝑘

=
𝑛′2
𝑘

=
𝑛1
𝑘
.
𝑛2
𝑘

+ 1
2
.
𝑛1
𝑘
.(1 −

𝑛2
𝑘
) + 1

2
.
𝑛2
𝑘
.(1 −

𝑛1
𝑘
)

=
𝑛1.𝑝2
𝑘2

+
𝑛1
2.𝑘

−
𝑛1.𝑛2
2.𝑘2

+
𝑛2
2.𝑘

−
𝑛2.𝑛1
2.𝑘2

=
𝑛1.𝑛2
𝑘2

+
𝑛1 + 𝑛2
2.𝑘

−
𝑛1.𝑛2
𝑘2

=
𝑛1 + 𝑛2
2.𝑘

This indicates that 𝑛′1 = 𝑛′2 =
𝑛1+𝑛2

2

Based on Lemma 1, we can guarantee that the instance selection
phase will never produce individuals larger than the maximum of the



Expert Systems With Applications 211 (2023) 118528M.G. Altarabichi et al.

u
𝑓
t
c

𝑛

t

6

l
b
i
U
t
m

f
I
r
m
e

n
t
h
u
o
i
t
m
p
n
a
t
f
d
H
m
f

o
c
s
o
b
i
A

initial population (with 𝑛
2 instances). Accordingly, The worst case time

for the instance selection phase of CHC𝑄𝑋 is:

𝑇𝑖𝑠(𝑟) = 40 ⋅ 𝑞 ⋅ 𝑛
2
⋅ 𝑘2 + 𝑞 ⋅ 𝑛 ⋅ 𝑘2 = 21 ⋅ 𝑞 ⋅ 𝑛 ⋅ 𝑘2

During feature selection, CHC𝑄𝑋 carries fitness evaluations mostly
sing the meta-model. Only on a predefined number of generations
(by default, 𝑓 = 10), the algorithm re-evaluates all individuals in

he population using the original function. Therefore, the total time of
arrying r generations of feature selection using CHC𝑄𝑋 is:

𝑇𝑓𝑠(𝑟) = 𝑟 ⋅ 𝑒 ⋅ 𝑛′ ⋅ 𝑘2 +
⌈

𝑟
𝑓

⌉

⋅ 𝑒 ⋅ 𝑛 ⋅ 𝑘2

The number of instances in the meta-model is in the worst case
′ = 𝑛

2 based on Lemma 1. Therefore, the worst case total run of the
feature selection phase is:

𝑇𝑓𝑠(𝑟) = ( 𝑟
2
+
⌈

𝑟
𝑓

⌉

) ⋅ 𝑒 ⋅ 𝑛 ⋅ 𝑘2

The total cost of 𝑟 generations of CHC𝑄𝑋 is:

𝑇𝐶𝐻𝐶𝑄𝑋
(𝑟) = 𝑇𝑖𝑠(𝑟) + 𝑇𝑓𝑠(𝑟) = (21 ⋅ 𝑞 + ( 𝑟

2
+
⌈

𝑟
𝑓

⌉

) ⋅ 𝑒) ⋅ 𝑛 ⋅ 𝑘2

By using the algorithm hyper-parameters values of (𝑞 = 10, 𝑓 = 10)
he amortized cost of one generation of CHC𝑄𝑋 is:

𝑇𝐶𝐻𝐶𝑄𝑋
(𝑟)

𝑟
=

(210 + ( 𝑟2 +
⌈

𝑟
10

⌉

) ⋅ 𝑒) ⋅ 𝑛 ⋅ 𝑘2

𝑟
Naturally, the amortized overhead cost of the instance selection

stage represented by 𝑇𝑖𝑠(𝑟)
𝑟 = 210⋅𝑛⋅𝑘2

𝑟 is inversely proportional to the
total number of generations during feature selection. For problems
that can be solved with a small number of generations, the overhead
cost outweighs the benefit of the algorithm. For the default hyper-
parameters of CHC𝑄𝑋 , and a population of 50 individuals (𝑒 = 50) we
can show that for 𝑟 = 13 generations:

𝑇𝐶𝐻𝐶𝑄𝑋
(𝑟 = 13) = (210 + 6.5 ⋅ 50 + 2 ⋅ 50) ⋅ 𝑛 ⋅ 𝑘2 = 635 ⋅ 𝑛 ⋅ 𝑘2

𝑇𝐶𝐻𝐶 (𝑟 = 13) = 13 ⋅ 50 ⋅ 𝑛 ⋅ 𝑘2 = 650 ⋅ 𝑛 ⋅ 𝑘2

⇒ 𝑇𝐶𝐻𝐶𝑄𝑋
(𝑟 = 13) < 𝑇𝐶𝐻𝐶 (𝑟 = 13)

. Conclusion

In this paper, we have proposed a two-staged surrogate-assisted so-
ution for the computational problem of using GA for feature selection
y constructing a meta-model for fitness evaluations following a qual-
tative approximation approach. We defined the term ‘‘Approximation
sefulness’’ and used the expected value of rank correlation to quan-

ify correctness of evolutionary selections, and quality of constructed
eta-models.

According to our experiments, an Approximation Usefulness Curve
ollows an inverse power law function similar to the Learning Curve.
n the left part of the curve, the quality of a meta-model improves
apidly with more training data, until it reaches a stage in which adding
ore data improves the quality of the meta-model very slowly, and

ventually it stops altogether.
We carried an amortized analysis of the computation time of CHC𝑄𝑋

and show that the amortized cost of one generation of our algorithm is
in the worst case smaller than its counterpart algorithm CHC, as long
as the two algorithms run for at least 13 generations. This analysis is
supported by our empirical results where CHC𝑄𝑋 demonstrated better
scalability as datasets grow larger (in terms of number of instances).
We further validated our findings by also creating a variant of the
PSO algorithm PSO𝑄𝑋 and demonstrated similar results using different
11

meta-heuristic.
It must be noted that although CHC𝑄𝑋 can be used with any
learning algorithm, we have deliberately used Decision Tree as the
baseline learning algorithm in all the experiments we performed. Given
that Decision Tree induction is based on a greedy top-down approach
of splitting the data based on an impurity measure, non-informative
features will not be selected for the top nodes of the tree. The implicit
feature selection of Decision Tree makes it a challenging choice for our
experiments. We have observed in our results how feature selection
using our meta-models consistently and significantly improved the
baseline performance of Decision Tree. Our results confirm the supe-
riority of the global search of GA in comparison to the local or greedy
search of a traditional Decision Tree. Interested readers could refer
to Barros, Basgalupp, De Carvalho, and Freitas (2011) to learn more
about how an evolutionary approach might overcome the shortcomings
of a greedy search in a traditional Decision Tree.

7. Limitations

The instance selection stage of CHC𝑄𝑋 involves evaluating a fixed
umber of randomly generated feature subsets using the original func-
ion. Naturally, we would expect the instance selection to produce
igher quality meta-models given a higher number of solutions eval-
ated using the original function. Clearly, the more evaluations we
bserve from the optimization surface of the original function, the eas-
er it gets to produce a qualitatively similar meta-model. The obvious
rade-off is the one between computational cost and quality of meta-
odel. As the main goal of this work is to make the evolutionary
rocess time efficient ideally, we would prefer making the smallest
umber of evaluations using the expensive original function. Addition-
lly, we have used a simple uniform approach with a fixed probability
o control the variability in the number of selected features within the
ixed solutions. However, some recent studies are realizing improved
iversity and performance using low-discrepancy sequences (Bangyal,
ameed, Alosaimi, & Alyami, 2021). The impact of the initialization
ethod on the final outcome of our algorithm could be investigated

urther.
We have learned from the amortized analysis that in the run-time

f one generation of CHC𝑄𝑋 is more computationally efficient than a
lassical wrapper. However, the instance selection phase of CHC𝑄𝑋 is
till computationally expensive. The reason is that it involves several
f the original function evaluations. A better understanding of the
asis of instance selection of CHC𝑄𝑋 could lead us to redefine the
nstance selection fitness function to be more computationally efficient.
s the process of active selection of instances in CHC𝑄𝑋 is realized

using a GA, it is challenging to explain why certain instances are se-
lected by our algorithm. We think a future work could either: evaluate
the characteristics of the selected instances (e.g., distance to decision
boundary), or analyse statistical measures of the selected sample subset
(e.g., Kolmogorov–Smirnov test or KL Divergence). Explanation on the
basis of instance selection is not only useful for the insights. It could
potentially obviate the need to perform evaluations using the original
function.

We have never considered the class imbalance case as it is not the
focus of this paper. In all experiments accuracy was used to evaluate
the fitness of feature subsets. This metric could naturally be replaced
with one that accounts for the imbalance case, e.g., average recall. We
believe our instance selection method would still handle the imbalance
case as the fitness function is designed to construct a meta-model
which is aligned with a model trained using all instances. Instance
subsets that neglect some minority class will lead to meta-models with
poor correlation with the original function. If imbalance is an issue,
a stratified sampling approach could ensure that randomly initialized

instance solutions will not ignore the minority class.
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8. Future work

In this paper, our method of constructing qualitative meta-models
is specifically applied to the feature selection problem. An extension
of this work would be to apply the same algorithm to other, related
optimization problems, for example the hyper-parameters tuning of
Machine Learning models using GA. The process of identifying the best
hyper-parameter combinations shares many of the same computational
challenges as the feature selection task. However, we should highlight
that the fundamental notion that allows CHC𝑄𝑋 to work for the feature
selection problem might not hold for hyper-parameters tuning. A model
trained with a small number of samples would rank different feature
subsets similarly to a model trained with all available data. Intuitively,
both models will struggle to improve generalization performance using
‘‘bad’’ features. This notion however, might not hold for the hyper-
parameters tuning problem and needs to be investigated thoroughly.
For example, intuitively, working with larger data sets permits the
construction of more complex models without overfitting.

In the future, we also intend to study the differences in characteris-
tics of the optimization surfaces between the original function and the
meta-model. It is possible that this makes a difference; if, for example,
the approximation is a lot less smooth than the original (or, on the
contrary, very flat). It might turn out to be a lot more difficult for
the optimization procedure — even if the maximum is correct, and it
may be harder (or easier) to find it. However, we do not address this
question within the scope of this work, only relying on Eqs. (1) and (2)
to measure the quality of meta-models.

PSO𝑄𝑋 demonstrated a capability to perform feature selection for
data sets of high dimensional features (e.g., qsar with 1024 features).
This capability makes PSO𝑄𝑋 useful for Deep Learning applications
with high dimensional input (e.g., images). A future work is planned to
apply and evaluate PSO𝑄𝑋 using such data sets and learning algorithms.
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