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Abstract

Multi-objective optimisation problems involve �nding solutions with varying trade-o�s between
multiple and often con�icting objectives. Ising machines are physical devices that aim to �nd
the absolute or approximate ground states of an Ising model. To apply Ising machines to multi-
objective problems, a weighted sum objective function is used to convert multi-objective into
single-objective problems. However, deriving scalarisation weights that archives evenly distributed
solutions is not trivial. Previous work has shown that adaptive weights based on dichotomic search,
and one based on averages of previously explored weights can explore the Pareto front quicker
than uniformly generated weights. However, these adaptive methods have only been applied to
bi-objective problems in the past. In this work, we extend the adaptive method based on averages
in two ways: (i) we extend the adaptive method of deriving scalarisation weights for problems with
two or more objectives, and (ii) we use an alternative measure of distance to improve performance.
We compare the proposed method with existing ones and show that it leads to the best performance
on multi-objective Unconstrained Binary Quadratic Programming (mUBQP) instances with 3 and 4
objectives and that it is competitive with the best one for instances with 2 objectives.
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1 Introduction

Multi-objective optimisation problems have multiple and often con�icting objectives. The goal of multi-objective
optimisation is to �nd the Pareto front (PF). The PF is the set of solutions where no other feasible solution can improve
on at least one objective without sacri�cing the performance of at least one other objective.
Unconstrained Binary Quadratic Programming (UBQP) problems also known as Quadratic Unconstrained Binary
Optimisation (QUBO) problems have been widely studied. QUBO is of particular interest within the context of Ising
machines because combinatorial optimisation problems can be formulated as QUBO, allowing Ising machines to be
applied to a wide range of practical problems. Many practical problems naturally have multiple and often con�icting
objectives e.g. the Cardinality Constrained Mean-Variance Portfolio Optimisation Problem (CCMVPOP) [Chang
et al., 2000] which entails minimising risks while maximising returns. Ising machines such as Fujitsu’s Digital
Annealer (DA) [Hiroshi et al., 2021] and D-wave’s Quantum Annealer (QA) [McGeoch and Farré, 2020] are however
single-objective solvers. To apply Ising machines to multi-objective problems, the problem needs to be converted to a
single-objective problem.
Scalarisation by means of weighted sum is a common approach for transforming multi-objective problems into
single-objective ones, allowing the application of single-objective solvers. The scalarisation weights play a critical
role in determining the balance between the objectives and must be chosen carefully to achieve evenly distributed
solutions around the PF. Several methods for deriving scalarisation weights have been proposed in previous work.
In previous work applying Ising machines to multi-objective problems, scalarisation weights were derived ex-
perimentally, using problem-speci�c knowledge, uniformly generated weights, or adaptively generated weights.
For example, scalarisation weights were derived experimentally [Elsokkary et al., 2017] or using problem-speci�c
knowledge [Phillipson and Bhatia, 2021] when QA was applied to multi-objective portfolio optimisation problems.
Scalarisation weights were also derived experimentally when a QA-inspired algorithm was applied to the problem of
designing analog and mixed-signal integrated circuits [Martins et al., 2021]. Ayodele et al. [2022] proposed an adaptive
method (referred to as an iterative method) for the CCMVPOP, which they compared with randomly and uniformly
generated weights. The adaptive method derives new weights by calculating the average of a pair of previously
explored scalarisation weights. The pair of weights selected are those that lead to the solutions with the highest
Manhattan distance between their objective function values. Ayodele et al. [2022] showed that a higher hypervolume
[Zitzler and Thiele, 1998] (Section 4.3.2), a popular algorithm performance metric in multi-objective optimisation, was
achieved when compared to uniformly or randomly generated weights. The improved performance of the adaptive
method is consistent with previous �ndings based on classical algorithms. For example, a dichotomic procedure that
derives new weights perpendicular to two solutions in the objective space that have the largest Euclidean distance
between them was applied to the bi-objective traveling salesman problem [Dubois-Lacoste et al., 2011], bi-objective
permutation �ow-shop scheduling problem [Dubois-Lacoste et al., 2011] and bi-objective UBQP [Liefooghe et al.,
2015]. This adaptive method is shown to have better anytime behaviour when compared to uniformly generated
weights. This means that the adaptive approach can deliver a good performance even with a small number of weights.
These adaptive methods have only been applied to bi-objective problems. The higher the number of objectives, the
higher the number of weights typically needed to reach a good PF representation. Therefore, it becomes important to
explore better techniques for deriving scalarisation weights for problems with more than two objectives. In this work,
we extend the adaptive method in [Ayodele et al., 2022] in the following ways:

• We extend the approach for more than 2 objectives,
• We consider replacing the Manhattan distance metric with Euclidean distance,
• We experiment with the proposed approach on mUBQP instances with 2, 3, and 4 objectives.

To assess the performance of the proposed adaptive method, we compare it to other scalarisation techniques: uniformly
generated weights based on Maximally Dispersed Set (MDS) of weights (also known as the simplex lattice design)
proposed by Steuer [1986], an adaptive method based on dichotomic search and Euclidean distance [Dubois-Lacoste
et al., 2011] (for 2 objectives only) and an adaptive method based on average weights and Manhattan distance [Ayodele
et al., 2022]. To be consistent with the term used in recent work, we will refer to the MDS as simplex lattice design
for the rest of this work. To achieve a fair comparison, the same single-objective solver (DA) is used within the
scalarisation frameworks. Moreover, although the DA has been used in this study as the underlying Ising machine,
the scalarisation methods are applicable to any Ising machine.
The rest of this work is structured as follows. The mUBQP problem formulation is presented in Section 2. The
techniques of deriving scalarisation weights are presented in Section 3. Parameter settings and the considered mUBQP
instances are presented in Section 4. Results and conclusions are presented in Sections 5 and 6.

2



Ising Machine for Multi-objective QUBO Solving A Preprint

2 Multi-objective Unconstrained Binary Quadratic Programming

The multi-objective UBQP (mUBQP) is formally de�ned as [Liefooghe et al., 2014]:

ck(x) =

n∑
i=1

n∑
j=1

Qijkxixj k ∈ {1, 2, . . . ,m} , (1)

s.t. x ∈ {0, 1}n , (2)

where Q is a 3-dimensional matrix consisting of m number of n× n QUBO matrices, m is the number of objectives,
c = (c1, . . . , cm) is an objective function vector and n is the problem size (number of binary variables).
We combine the objectives using a vector of scalarisation weights λλλ = (λ1, . . . , λm), such that,

∑m
j=1 λj = 1. The

aim is to minimise the energy E(x) de�ned as:

Minimise E(x) = λ1 · c1(x) + · · ·+ λm · cm(x) (3)

3 Scalarisation Methods for QUBO solving

In this section, we present the Ising machine as well as scalarisation techniques used in this work.

3.1 Digital Annealer

Fujitsu’s DA belongs to the category of Ising machines and has evolved over the years, from the 1st and 2nd generation,
which is capable of solving QUBO problems of up to 1,024 bits and 8,192 bits, respectively, to the 3rd and 4th generations,
which are able to solve Binary Quadratic Problems (BQPs) with up to 100,000 bits. Although the 3rd and 4th generation
DAs have more capabilities than previous generations such as automatic tuning of constraint coe�cients, the ability
to handle inequality constraints, and a higher number of bits, these capabilities were not needed for the mUBQP
instances used in this study. We, therefore, use the 2nd generation DA. More details about the DA are presented
in [Hiroshi et al., 2021, Matsubara et al., 2020]. In the rest of this work, DA will be used to refer to the 2nd generation
DA.

3.2 Scalarisation Methods

In this section, we present the scalarisation techniques used in this work.

• Uniformly generated weights based on simplex lattice design [Zhou et al., 2018] (Section 3.2.1)
• an adaptive method based on dichotomic search [Dubois-Lacoste et al., 2011] (Section 3.2.2)
• proposed extension of the adaptive method based on averages proposed in [Ayodele et al., 2022] (Section

3.2.3)

We note that the frameworks can be used for other Ising machines by replacing the DA with another Ising machine.

3.2.1 UniformWeights: Simplex Lattice Design

Algorithm 1 presents a scalarisation technique that utilises uniformly distributed scalarisation weights. Such evenly
distributed weights are generated using the simplex lattice design. The required parameters are P , the list of QUBOs

Algorithm 1 Uniform Method based on Simplex Lattice Design
Require: P , n_weights, alg_parameters

1: Λ← SimplexLatticeDesign(H,m)
2: A← ∅ . Initialise archive
3: for each λλλ = (λ1, . . . , λm) ∈ Λ do . In any arbitrary order
4: Q←sum(Pj · λj ∀ j ∈ {1, . . . ,m})
5: Y ← Solver(Q, alg_parameters)
6: add all solutions in Y to A
7: end for

8: return all non-dominated solutions from archive A

3
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Algorithm 2 Adaptive Method based on Dichotomic Search
Require: P , n_weights, dm = ‘Euclidean’, alg_parameters

1: Λ← SimplexLatticeDesign(1,m) . H = 1
2: A← ∅, W ← {} . Initialise archive and mapping between weights and cost functions
3: for each i ∈ {1, . . . , n_weights} do

4: if i ≤ 2 then

5: λλλ = (λ1, λ2)← Λi
6: else

7: sort W by c1(x)
8: select 2 adjacent solutions (y and z) from W , that lead to the largest dm distance in objective space where
c1(y) > c1(z)

9: temp_λ1←c2(y)− c2(z)
10: temp_λ2←c1(z)− c1(y)
11: sum_λ← temp_λ1 + temp_λ2
12: λλλ←

((
temp_λ1

sum_λ

)
,
(
temp_λ2

sum_λ

))
13: end if

14: Q← (P1 · λ1) + (P2 · λ2)
15: Y ← Solver(Q, alg_parameters)
16: add all solutions in Y to A
17: Wi ← [x, (c1(x), c2(x))] where x = Y0 . save solution and cost function values for the best solution in Y
18: end for

19: return all non-dominated solutions from archive A

representing all the objectives, n_weights, number of weights, and alg_parameters, a set of parameters used by the
Ising Machine of choice (DA). Parameters used in this work are presented in Table 1. The simplex lattice design is a
common approach for generating evenly distributed weights when solving multi-objective problems with scalarisation
techniques [Zhou et al., 2018, Chen et al., 2022, Zhang and Li, 2007]. The simplex lattice design consists of two
parameters H and m (Algorithm 1, line 1). A simplex-lattice mixture design of degree H consists of H + 1 points
of equally spaced values between 0 and 1 for each objective, while m is the number of objectives. The possible
scalarisation weights will be taken from

{
0
H ,

1
H , . . . ,

H
H

}
. These weights are combined such that they sum to 1. The

number of scalarisation weight vectors that can be generated using this approach is
(
H+m−1
m−1

)
= (H+m−1)!

H!(m−1)! ; e.g if
m = 2 and H = 3, the number of weights is 4 which are [(0.00, 1.00) , (0.33, 0.67) , (0.67, 0.33) , (1.00, 0.00)]. To
achieve 10 weights used in this study H = 9, 3 or 2 when m = 2, 3 or 4, respectively (Algorithm 1, line 1).
The solver (DA) is applied to a weighted aggregate (Algorithm 1, line 5) of the QUBOs representing all objectives.
DA returns a set of more promising solutions by default. All of these are added to the archive (A). The �nal step
(Algorithm 1, line 8) entails �ltering A such that only the non-dominated solutions are returned. A solution is
non-dominated if there is no other solution that is better in one objective without being worse in another objective.

3.2.2 Adaptive Weights - Dichotomic Search

Scalarisation technique based on dichotomic search is presented in Algorithm 2. In addition to parameters (P ,
n_weights, alg_parameters) used in Section 3.2.1, a parameter dm, metrics, is also used. This method is initialised
with a set of weights Λ that minimise each individual objective (e.g [(0.00, 1.00) , (1.00, 0.00)] for two objectives
or [(0.00, 0.00, 1.00) , (0.00, 1.00, 0.00) , (1.00, 0.00, 0.00)] for three objectives). Once these weights are exhausted,
new weights are derived adaptively by targeting the largest gap within the set of solutions found. The largest gap
between each pair of solutions is measured in the objective space based on the selected dm; i.e Euclidean distance.
The di�erences in cost function values that correspond to the largest gap are used to derive new weights for the next
iteration (Algorithm 2, lines 9–12). The di�erence in the �rst and second cost function values are normalised such
that they sum to 1, and are used as the scalarisation weights for the second and �rst objective respectively. This
method was designed for problems with two objectives only. The best solutions returned by the DA during each
scalarisation are saved to the archive A which are then �ltered for non-dominated solutions.

3.2.3 Adaptive Weights - Averages

The proposed extension to the adaptive method in [Ayodele et al., 2022] is presented in Algorithm 3. This adaptive
method was originally proposed for QUBO formulations of the bi-objective Cardinality Constrained Mean-Variance

4
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Portfolio Optimisation Problem (CCMVPOP). In this work, we extend this adaptive approach for QUBO problems
with more than two objectives. We also extend the distance metric dm to include Euclidean distance. We note that
only Manhattan distance was used in [Ayodele et al., 2022].
Similar to the adaptive method based on dichtomic search, parameters (P , n_weights, alg_parameters, dm) are used.
This method is also initialised with a set of weights that minimise each individual objective independently. Once
these weights are exhausted, new weights are derived adaptively by targeting the largest gap in the objective space
(measured by the selected dm ∈ {Manhattan,Euclidean}) of the set of solutions found. The two weight vectors
(corresponding to all objectives) that lead to the largest gap are averaged for each objective (Alg. 3, line 9) and used in
subsequent iterations until the stopping criterion is met (i.e. n_weights is reached). The best solutions returned by the
DA during each scalarisation are saved to the archiveA. The �ltered set of non-dominated solutions is returned as the
�nal output (Alg. 3, line 19). Unlike the dichotomic method, this approach can be applied to any number of objectives.
Note that for all of the methods presented in this work, Solver refers to the DA while alg_parameters refers to
DA parameters (Algorithm 1, line 5; Algorithm 2, line 2; Algorithm 3, line 13). In [Ayodele et al., 2022], a set of
top solutions (solutions with lower energies/cost function) were considered for non-dominance. We use the same
approach in this work since the DA returns a set of top solutions by default. To apply the presented methods using an
alternative Ising machine, Solver will refer to such Ising machine.

Algorithm 3 Proposed Adaptive Method based on Averages
Require: P , n_weights, alg_parameters, dm ∈ [‘Euclidean’, ‘Manhattan’]

1: Λ← SimplexLatticeDesign(1,m) . H is set to 1
2: A← ∅, W ← {} . Initialise archive and mapping between weights and cost functions
3: for each i ∈ {1, . . . , n_weights} do

4: if i ≤ m then

5: λλλ = (λ1, . . . , λm)← Λi
6: else

7: sort W by λ
8: select two adjacent parent weight vectors U and V from W , that lead to the largest dm distance in

objective space
9: λλλ←

(
U1+V1

2 , · · · , Um+Vm

2

)
10: end if

11: Q←sum(Pj · λj ∀ j ∈ {1, . . . ,m})
12: Y ← Solver(Q, alg_parameters)
13: add all solutions in Y to A
14: Wi ← [λ, (c1(x), . . . , cm(x))] where x = Y0 . save weight vector and cost function values for the best

solution in Y
15: end for

16: return all non-dominated solutions from archive A

4 Experimental Settings

In this section, we present the mUBQP instances, parameter settings and performance measures considered in this
study.

4.1 Multi-objective Unconstrained Binary Quadratic Programming Instances

The mUBQP instances used in this study have been obtained and are available from mUBQP Library.2 The Library
consists of instances with varying ρ-values (objective correlation coe�cient), m (number of objective functions),
n (length of bit strings), and d the matrix density (the frequency of non-zero numbers). In this study, we use
eleven instances with n = 1000, varying ρ ∈ {−0.9,−0.2, 0.0, 0.2, 0.5, 0.9}, m ∈ {2, 3}, d ∈ {0.4, 0.8}. In order to
experiment the proposed approach on instances with four objectives, we use the instance generator3 provided as
part of the mUBQP Library using parameters n = 1000, ρ ∈ {−0.2, 0.2, 0.5, 0.9}, m = 4, d = 0.8 to generate four
additional instances. All �fteen instances used in this study are made available.4

2https://mocobench.sourceforge.net/index.php?n=Problem.MUBQP#Code
3http://svn.code.sf.net/p/mocobench/code/trunk/mubqp/generator/mubqpGenerator.R
4https://github.com/mayoayodelefujitsu/mUBQP-Instances
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4.2 Parameter Settings

Parameter settings used by DA are presented in Table 1. The DA is capable of executing multiple annealing methods
in parallel. The number of parallel executions is controlled by the number of replicas parameter. Each replica executes
for a given number of iterations, this is controlled by the number of iterations parameter. T0 is the initial temperature
used by the DA, the temperature is reduced at the rate speci�ed by β after every I iteration(s). We use the exponential
mode of reducing the temperature. The exponential mode calculates the temperature at each iteration based on the
temperature at the previous iteration. The DA employs an escape mechanism called a dynamic o�set, such that if a
neighbour solution was accepted, the subsequent acceptance probabilities are arti�cially increased by subtracting a
positive value from the di�erence in energy associated with a proposed move [Matsubara et al., 2020].
The number of weights (n_weights) explored by all methods is 10. Where uniformly generated weights are used
H = 9 when m = 2, H = 3 when m = 3 and H = 2 when m = 4.

Table 1: DA parameters.
Parameters Values

Start Temperature (T0) 104

Temperature Decay (β) 0.2
Temperature Interval (I) 1
Temperature Mode Exponential: Tn+1 = Tn · (1− β)
O�set Increase Rate 103

Number of Iterations 106

Number of Replicas 128
Number of Runs 20

Table 2: Upper bounds for each objective (c1, . . . , cm) used to calculate hypervolume values.
mUBQP

Instances

Upper Bounds

c1(x) c2(x) c3(x) c4(x)

0.0_2_1000_0.4_0 -6252 -15028
-0.2_2_1000_0.8_0 129723 144311
0.2_2_1000_0.8_0 -92667 -105015

-0.9_2_1000_0.4_0 433558 445875
0.9_2_1000_0.4_0 -431553 -407759

-0.9_2_1000_0.8_0 615079 634719
0.9_2_1000_0.8_0 -623322 -599608

-0.2_3_1000_0.8_0 278097.0 272357 233905
0.5_3_1000_0.8_0 -318508 -304189 -323912
0.0_3_1000_0.8_0 36284 22530 29425
0.2_3_1000_0.8_0 -137236 -99275 -106184
0.5_4_1000_0.8_0 -282205 -303711 -281095 -302613
0.2_4_1000_0.8_0 -83247 -106177 -83183 -71990
0.9_4_1000_0.8_0 -565435 -565734 -561872 -554756

-0.2_4_1000_0.8_0 72351 44347 72781 70330

4.3 Performance Measures

4.3.1 Empirical Attainment Function (EAF)

The EAF of an algorithm gives the probability, estimated from multiple runs, that the non-dominated set produced by
a single run of the algorithm dominates a particular point in the objective space. The visualisation of the EAF [Grunert
da Fonseca et al., 2001] has been shown as a suitable graphical interpretation of the quality of the outcomes returned
by local search methods. The visualisation of the di�erences between the EAFs of two alternative algorithms indicates

6
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Table 3: Comparing Adaptive and Uniform Methods of Generating Scalarisation Weights (10 weights): Mean and
standard deviation hypervolume of the returned non-dominated set across 20 runs are presented. The best mean values
as well as mean values that are not signi�cantly worse than the best are presented in bold. Statistical signi�cance
measure using student t-test

Problem

Category

Problem Name

ρ_m_n_d

Uniform

Simplex Lattice
Design

(existing method)

Adaptive-Averages -

Manhattan

dm = Manhattan
proposed m ≥ 2

Adaptive-Averages-

Euclidean

proposed
dm = Euclidean
proposed m ≥ 2

Adaptive-

Dichotomic-

dm = Euclidean
existing method

Mean HV Std HV Mean HV Std HV Mean HV Std HV Mean HV Std HV

mUBQP

(2 objectives)

0.0_2_1000_0.4_0 1.73E+11 4.01E+08 1.74E+11 2.31E+08 1.74E+11 3.52E+08 1.74E+11 2.98E+08
-0.2_2_1000_0.8_0 5.32E+11 1.07E+09 5.34E+11 1.31E+09 5.36E+11 1.02E+09 5.36E+11 1.02E+09
0.2_2_1000_0.8_0 2.72E+11 5.35E+08 2.72E+11 4.59E+08 2.72E+11 4.90E+08 2.72E+11 4.03E+08

-0.9_2_1000_0.4_0 4.43E+11 3.81E+09 5.10E+11 1.72E+09 5.10E+11 1.76E+09 5.18E+11 1.31E+09
0.9_2_1000_0.4_0 3.51E+09 5.62E+06 3.50E+09 1.01E+07 3.51E+09 5.54E+06 3.51E+09 4.00E+06

-0.9_2_1000_0.8_0 9.17E+11 4.28E+09 1.04E+12 1.77E+09 1.04E+12 2.73E+09 1.05E+12 3.00E+09
0.9_2_1000_0.8_0 4.11E+09 4.64E+06 4.10E+09 7.48E+06 4.10E+09 7.03E+06 4.09E+09 7.47E+06

mUBQP

(3 objectives)

-0.2_3_1000_0.8_0 2.46E+17 2.46E+15 2.98E+17 2.39E+15 3.02E+17 2.89E+15
0.5_3_1000_0.8_0 2.29E+16 1.99E+14 2.39E+16 1.94E+14 2.40E+16 3.26E+14
0.0_3_1000_0.8_0 1.14E+17 1.57E+15 1.33E+17 2.26E+15 1.41E+17 1.88E+15
0.2_3_1000_0.8_0 6.68E+16 5.52E+14 7.13E+16 7.74E+14 7.52E+16 7.00E+14

mUBQP

(4 objectives)

0.5_4_1000_0.8_0 2.15E+21 6.98E+19 3.69E+21 8.05E+19 3.99E+21 8.28E+19
0.2_4_1000_0.8_0 5.94E+21 2.49E+20 1.70E+22 9.42E+20 1.90E+22 2.27E+20
0.9_4_1000_0.8_0 1.23E+19 3.25E+17 1.50E+19 3.06E+17 1.51E+19 2.45E+17

-0.2_4_1000_0.8_0 2.47E+19 1.02E+18 3.90E+20 1.30E+19 4.74E+20 1.32E+19

Table 4: Comparing Adaptive and Uniform Methods of Generating Scalarisation Weights (10 weights): Mean and
standard deviation numbers of non-dominated solutions (#ND) found across 20 runs are presented.

Problem

Category
Problem Name

Uniform

Simplex Lattice
Design

(existing method)

Adaptive-Averages -

Manhattan

dm = Manhattan
proposed m ≥ 2

Adaptive-Averages-

Euclidean

proposed
dm = Euclidean
proposed m ≥ 2

Adaptive-

Dichotomic-

dm = Euclidean
existing method

Mean #ND Std #ND Mean #ND Std #ND Mean #ND Std #ND Mean #ND Std #ND

mUBQP

(2 objectives)

0.0_2_1000_0.4_0 92 4 92 4 96 6 93 4
-0.2_2_1000_0.8_0 93 5 99 5 105 5 101 5
0.2_2_1000_0.8_0 93 4 95 4 98 6 95 4

-0.9_2_1000_0.4_0 95 4 110 4 112 5 120 6
0.9_2_1000_0.4_0 49 4 48 5 49 3 50 5

-0.9_2_1000_0.8_0 98 4 108 8 109 4 119 5
0.9_2_1000_0.8_0 40 2 41 3 41 4 43 3

mUBQP

(3 objectives)

-0.2_3_1000_0.8_0 125 5 136 5 139 5
0.5_3_1000_0.8_0 108 7 120 6 121 6
0.0_3_1000_0.8_0 119 6 128 4 131 6
0.2_3_1000_0.8_0 121 4 126 4 129 6

mUBQP

(4 objectives)

0.5_4_1000_0.8_0 124 6 129 7 129 7
0.2_4_1000_0.8_0 133 7 143 7 143 7
0.9_4_1000_0.8_0 110 6 111 5 111 5

-0.2_4_1000_0.8_0 19 1 27 3 38 3

how much better one method is compared to another in a particular region of the objective space [López-Ibáñez et al.,
2010]. EAF visualisations were generated using the eaf R package.5

4.3.2 Hypervolume

The hypervolume [Zitzler and Thiele, 1998] is one of the most frequently used quality metrics in multi-objective
optimisation because it never contradicts Pareto optimality and measures both the quality and diversity of a non-
dominated set. The hypervolume measures the size of the objective space (the area in 2D, the volume in 3D) that is
dominated by at least one of the points of a non-dominated set bounded by a reference point that is dominated by all
points in all non-dominated sets under comparison, for a given problem. Larger hypervolume values indicate better

5http://lopez-ibanez.eu/eaftools
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performance. The reference points used for hypervolume calculation in this study are presented in Table 2. These
values were derived experimentally: they are the highest values attained by the DA for each objective when using the
uniform method of generating weights.

4.3.3 Number of Non-dominated Solutions

Although the number of non-dominated solutions found by a multi-objective algorithm is not su�cient to assess its
performance, it can provide valuable information when compared with other quality metrics such as hypervolume. In
this study, we report both the number of non-dominated solutions and the hypervolume achieved by each method.

5 Results and Discussion

The mean and standard deviation of hypervolume values of solutions found across 20 runs are presented in Table 3.
Column Uniform presents the performance of the DA based on evenly generated weights (Algorithm 1), column
Adaptive-Averages-Manhattan presents the performance of the DA based on an adaptive method (averages) of
generating weights (Algorithm 3) where the distance metric is based on the Manhattan distance, column Adaptive-
Averages-Euclidean presents the performance of the DA based on an adaptive method (averages) of generating
weights (Algorithm 3) where the distance metric is based on the Euclidean distance and column Adaptive-Dichotomic-
Euclidean presents the performance of the DA based on an adaptive method (dichotomic search) of generating weights
(Algorithm 2) where the distance metric is based on the Euclidean distance.
For the problem instances with two objectives, executing the DA with the Uniform method leads to the worst
performance on instances with negative or no correlation between their objectives. The Uniform method however
leads to more promising performance on instances with positive correlations between their objectives. The DA reaches
the best mean hypervolume when executed with the Uniform method on an instance with a positive correlation
between its objectives (0.9_2_1000_0.8_0) and the same mean hypervolume as the DA executed with Adaptive-
Averages-Euclidean orAdaptive-Dichotomic-Euclideanmethod on two instances with positive correlations between their
objectives (0.2_2_1000_0.8_0 and 0.9_2_1000_0.4_0). We show that running the DA with the Adaptive-Dichotomic-
Euclidean method is consistently among the best on 6 of 7 mUBQP instances with 2 objectives. This method however
cannot be applied to instances with more than 2 objectives. With the exception of instance ‘0.9_2_1000_0.8_0’,
the proposed Adaptive-Averages-Euclidean is also consistently as good as or better than Uniform on instances with
2 objectives. We also show that the hypervolume of the DA with the proposed Adaptive-Averages-Euclidean is
consistently either as good as or better than the existing counterpart Adaptive-Averages-Manhattan.
We show this performance di�erence in more detail using EAF visualisations in Figures 1–3. Darker regions indicate
regions of the front where one algorithm is better than the other. We see more evenly distributed darker regions
when the DA is executed with Adaptive-Averages-Euclidean compared to Adaptive-Averages-Manhattan. We also see
more evenly distributed darker regions when the DA is executed with Adaptive-Averages-Euclidean compared to
Uniform, as shown in the EAF plots in Figure 4–6) particularly on instances where higher mean hypervolume values
were recorded.
For problems with 3 or 4 objectives, we do not present results for Adaptive-Dichotomic-Euclidean because it cannot be
applied to problems with more than 2 objectives. When the DA is executed with the proposed Adaptive-Averages-
Euclidean, signi�cantly higher mean hypervolume values are attained when compared toAdaptive-Averages-Manhattan
or Uniform on all mUBQP instances with 3 or 4 objectives. Uniform particularly presents the worst performance on
all mUBQP instances with 3 or 4 objectives.
Table 4 also shows that Uniform returns the least mean number of non-dominated solutions. There is however no one
adaptive method which consistently leads within the context of the number of non-dominated solutions found.
The better performance (hypervolume) of Adaptive-Averages-Euclidean compared to Adaptive-Averages-Euclidean
indicates that Euclidean distance works better than Manhattan distance on the instances used in this work. The
poorer performance of Uniform is not unexpected. It should be noted that in real-world scenarios, it is often the
case that we do not want any of the objectives to have their weight equal to zero as this completely disregards
the objective. In the case of uniform weights generated using the simplex lattice design, a minimum of H = m is
needed at the very least to explore weights where none of the values is equal to 0. The number of weights when
H = m is n_weights =

(
2m−1
m−1

)
. This value can grow very large as the number of objectives increases; 3 weights for 2

objectives, 10 weights for 3 objectives, 35 weights for 4 objectives, . . . , and 378 weights for 10 objectives. However, the
adaptive approach explores a set of weights where none of the values is equal to 0 in a minimum of m+ 1 weights.
Adaptive methods will therefore, particularly in scenarios where trying scalarisation weights greater than

(
2m−1
m−1

)
is

impractical, be more suitable.
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6 Conclusions

This research explored various techniques for generating scalarisation weights within the context of multi-objective
QUBO solving. The �ndings demonstrate that adaptive methods of weight generation can enhance the performance
of the DA. We also show that the proposed method, which is based on Euclidean distance, leads to competitive
performance on problems with 2 objectives and the best performance on instances with 3+ objectives. Areas of
further research include comparing the presented approaches on QUBO problems with more objectives, verifying
whether increasing the number of weights leads to a di�erence in relative performance, and exploring multi-objective
QUBO formulations of other combinatorial optimisation problems.
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Figure 1: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.
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Figure 2: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.
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Figure 3: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.
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Figure 4: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.

13



Ising Machine for Multi-objective QUBO Solving A Preprint

−7e+05 −5e+05 −3e+05 −1e+05
objective 1

−
6e

+
05

−
3e

+
05

ob
je

ct
iv

e 
2

0.2_2_1000_0.8_0: Euclidean

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

−7e+05 −5e+05 −3e+05 −1e+05
objective 1

−
6e

+
05

−
3e

+
05

ob
je

ct
iv

e 
2

0.2_2_1000_0.8_0: Uniform

−7e+05 −4e+05 −1e+05
objective 1

−
6e

+
05

−
2e

+
05

ob
je

ct
iv

e 
2

−0.2_2_1000_0.8_0: Euclidean

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

−7e+05 −4e+05 −1e+05
objective 1

−
6e

+
05

−
2e

+
05

ob
je

ct
iv

e 
2

−0.2_2_1000_0.8_0: Uniform

−5e+05 −2e+05 0 2e+05
objective 1

−
4e

+
05

0
4e

+
05

ob
je

ct
iv

e 
2

−0.9_2_1000_0.4_0: Euclidean

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)

−5e+05 −2e+05 0 2e+05
objective 1

−
4e

+
05

0
4e

+
05

ob
je

ct
iv

e 
2

−0.9_2_1000_0.4_0: Uniform

Figure 5: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.
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Figure 6: Comparing proposed Adaptive-Averages-Euclidean and Adaptive-Averages-Manhattan.
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