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ABSTRACT
In this work we introduce a new framework for multi-objective
Bayesian optimisation where the multi-objective functions can only
be accessed via choice judgements, such as “I pick options x1, x2, x3
among this set of five options x1, x2, . . . , x5”. The fact that the option
x4 is rejected means that there is at least one option among the
selected ones x1, x2, x3 that I strictly prefer over x4 (but I do not
have to specify which one). We assume that there is a latent vector
function u for some dimension 𝑑 which embeds the options into
the real vector space of dimension 𝑑, so that the choice set can
be represented through a Pareto set of non-dominated options. By
placing a Gaussian process prior on u and by using a novel likelihood
model for choice data, we derive a surrogate model for the latent
vector function. We then propose two novel acquisition functions to
solve the multi-objective Bayesian optimisation from choice data.

CCS CONCEPTS
• Theory of computation → Gaussian processes; Active learning;
• Mathematics of computing → Mathematical optimization.
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1 INTRODUCTION
Real-world optimization problems often involve multiple conflicting
objectives that can be technically difficult and costly to quantitatively
evaluate. Consider for instance the problem of finding the best recipe
for a new cake. To achieve our objective of creating the most deli-
cious, soft, and visually appealing cake possible, we must carefully
determine the optimal ingredients and their quantities, such as the
precise amount of flour, butter, sugar, and other necessary compo-
nents. This problem can be formulated as a Bayesian Optimization
(BO) task, as the function involved is expensive to evaluate due to
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the time-consuming process of preparing a cake, which may take
hours. Since it is technically difficult and costly to quantitatively
measure taste/softness/appearance of a cake, a cheaper and fast al-
ternative is to collect preference data from an Individual (we call her
Alice), “cake 𝑐1 is better than cake 𝑐2”, and use preference Bayesian
Optimisation (BO) [6, 15, 30] to optimise the recipe. However, due
to the presence of competing objectives, Alice may not be able to
express a preference between cakes, because for instance cake 𝑐1
can be more tasty than 𝑐2, 𝑐2 can be softer than 𝑐1, 𝑐3 can be more
visually appealing than 𝑐2. Therefore, Alice may not have a prefer-
ence between 𝑐1, 𝑐2, 𝑐3 and, if we ask Alice to express a preference,
this may lead to inconsistency.

In order to handle situations where objects cannot be compared,
it is necessary to use a choice model that enables Alice to make
set-based choices. Choice functions offer a mathematical framework
for this purpose. For any given set of objects 𝐴, they return the
corresponding set-valued choice 𝐶 (𝐴):

𝐴 =
{

, , , ,
}

𝐶 (𝐴) =
{

, ,
}

The statement that an object (a cake) in A is rejected (that is, it is
not in 𝐶 (𝐴)) means that there is at least one object in 𝐴 that Alice
strictly prefers over it. Instead, any two objects in 𝐶 (𝐴) are deemed
to be incomparable by Alice.

In this paper, we develop a novel Bayesian optimization algo-
rithm for multi-objective optimisation based on implicit feedback
expressed via choice statements.

First, we represent each object (cake in the example) by the feature
vector x ∈ R𝑛𝑥 of its characteristics (e.g., amount of butter, sugar,
etc.) and assume an implicit feedback expressed via choice data
{(𝐶 (𝐴𝑠 ), 𝐴𝑠 ), 𝑠 = 1, . . . ,𝑚}, for example

𝐴𝑠 = {x(𝑠 )1 , x(𝑠 )2 , x(𝑠 )3 , x(𝑠 )4 , x(𝑠 )5 }
𝐶 (𝐴𝑠 ) = {x(𝑠 )1 , x(𝑠 )2 , x(𝑠 )4 }.

Second, we use a recent model to learn Choice functions from choice
data proposed by [8]. This model uses Gaussian Processes (GP) to
learn a 𝑑-dimensional latent utility vector function, which embeds
each feature vector x into R𝑑 . Through these utilities, each choice set
𝐶 (𝐴𝑠 ) is then represented as a Pareto set of non-dominated options.
Third, based on this model, we develop a Choice-based Bayesian
multi-objective optimization algorithm (ChoiceBO). In particular,
we propose and numerically compare two acquisition functions for
ChoiceBO. We assess our framework on a number of multi-objective
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benchmark problems assuming the objective functions can only be
evaluated through choice-statements. We also compare ChoiceBO
against an oracle that knows the true value of the latent functions.
We show that, by only working with choice data, we can obtain good
performance results in these benchmarks.

2 BACKGROUND
The paper leverages three topics: (1) Bayesian Optimisation (BO);
(2) multi-objective BO; (3) choice functions. In this section we
briefly review the state of the art of each topic.

2.1 Bayesian Optimisation (BO)
BO [18] aims to find the global maximum of an unknown func-
tion which is expensive to evaluate. For a scalar real-valued func-
tion 𝑔 on a domain Ω ⊂ R𝑛𝑥 , the goal is to find a global max-
imiser x𝑜 = argmaxx∈Ω 𝑔(x). BO formulates this as a sequen-
tial decision problem [14]: a trade-off between learning about the
underlying function 𝑔 (exploration) and capitalizing on this infor-
mation in order to find the optimum x𝑜 (exploitation). BO relies
on a probabilistic surrogate model, usually a Gaussian Process
(GP) [28], to provide a posterior distribution over 𝑔 given a dataset
D = {(x𝑖 , 𝑔(x𝑖 )) : 𝑖 = 1, 2, . . . , 𝑁 } of previous evaluations of 𝑔. It
then employs an acquisition function (e.g. Expected Improvement
[18, 22], Upper Credible Bound [31]) to select the next candidate
option (solution) x𝑁+1. While the true function 𝑔 is expensive-to-
evaluate, the surrogate-based acquisition function is not, and it can
thus be efficiently optimized to compute an optimal candidate to
be evaluated on 𝑔. This process is repeated sequentially until some
stopping criterion is achieved.

2.2 Multi-objective (MO) optimization
The goal of MO optimization is to identify the set of Pareto optimal
options (solutions) such that any improvement in one objective
means deteriorating another. Without loss of generality, we assume
the goal is to maximize all objectives. Let g(x) : Ω → R𝑛𝑜 be a
vector-value objective function with g(x) = [𝑔1 (x), . . . , 𝑔𝑛𝑜 (x)]⊤,
where 𝑛𝑜 is the number of objectives. We recall the notions of Pareto
dominated options and non-dominated set.

DEFINITION 1 (PARETO DOMINATE OPTION). Consider a set
of options X ⊂ Ω. An option x1 ∈ X is said to Pareto dominate
another option x2 ∈ X, denoted as x1 ≻ x2, if both the following
conditions are true:

(1) for all 𝑗 ∈ {1, 2, . . . , 𝑛𝑜 }, 𝑔 𝑗 (x1) ≥ 𝑔 𝑗 (x2);
(2) ∃ 𝑗 ∈ {1, 2, . . . , 𝑛𝑜 }, such that 𝑔 𝑗 (x1) > 𝑔 𝑗 (x2).

DEFINITION 2 (NON-DOMINATED SET). Among a set of options
𝐴 = {x1, . . . , x𝑚}, the non-dominated set of options 𝐴′ are those
that are not dominated by any member of 𝐴, i.e.

𝐴′ = {x ∈ 𝐴 : �x′ ∈ 𝐴 such that x′ ≻ x}.

Given the set of options X, MO aims to find the non-dominated
set of options X𝑛𝑑 , called the Pareto set. The set of evaluations
g(X𝑛𝑑 ) is called Pareto front.

MO BO have been developed for standard cases where multi-
objectives can directly be evaluated (they are not implicit). Many
approaches rely on scalarisation to transform the MO problem

into a single-objective one, like ParEGO [20] and TS-TCH [24]
(which randomly scalarize the objectives and use Expected Improve-
ment and, respectively, Thompson Sampling). [19] derived an ex-
pected improvement criterion with respect to multiple objectives.
[27] proposed an hyper-volume based infill criterion, where the im-
provements are measured in terms of hyper-volume (of the Pareto
front) increase. Other acquisition functions have been proposed in
[4, 13, 16, 26, 33]. The most used acquisition function for MO
BO is expected hyper-volume improvement. In fact, maximizing the
hyper-volume has been shown to produce very accurate estimates
[10, 12, 17, 35, 36, 38] of the Pareto front.

2.3 Choice functions
Individuals are often confronted with the situation of choosing be-
tween several options (alternatives). These alternatives can be goods
that are going to be purchased, candidates in elections, food etc.

We model options, that an agent has to choose, as real-valued
vectors x ∈ R𝑛𝑥 and identify the sets of options as finite subsets of
R𝑛𝑥 . Let Q denote the set of all such finite subsets of R𝑛𝑥 .

DEFINITION 3. A choice function 𝐶 is a set-valued operator on
sets of options. More precisely, it is a map 𝐶 : Q → Q such that, for
any set of options 𝐴 ∈ Q, the corresponding value of 𝐶 is a subset
𝐶 (𝐴) of 𝐴 (see for instance [1]).

The more general interpretation of choice function is as follows.
For a given option set 𝐴 ∈ Q, the statement that an option x𝑗 ∈ 𝐴
is rejected from 𝐴 (that is, x𝑗 ∉ 𝐶 (𝐴)) means that there is at least
one option x𝑖 ∈ 𝐴 that an agent strictly prefers over x𝑗 . The set
of rejected options is denoted by 𝑅(𝐴) and is equal to 𝐴\𝐶 (𝐴).
Therefore choice functions represent non-binary choice models, so
they are more general than preferences.
It is important to stress again that the statement x𝑗 ∉ 𝐶 (𝐴) implies
there is at least one option x𝑖 ∈ 𝐴 that an agent strictly prefers over
x𝑗 . However, the agent is not required to tell us which option(s) in
𝐶 (𝐴) they strictly prefer to x𝑗 . This makes choice functions a very
easy-to-use tool to express choices.

In this paper, we follow an interpretation of choice functions
where the set 𝐶 (𝐴) is seen as the non-dominated set in the Pareto
sense for some latent function. In other words, let us assume that
there is a latent utility vector function u(x𝑖 ) = [𝑢1 (x𝑖 ), . . . , 𝑢𝑑 (x𝑖 )]⊤,
for some dimension 𝑑, which embeds the options x𝑖 into a space
R𝑑 . The choice set can then be represented through a Pareto set
of non-dominated options. For example, in the cake example, 𝑑 =

3 because we used three criteria to assess quality: taste, softness
and appearance. This Pareto-based representation was originally
proposed in [25] to learn choice functions using Neural Networks. It
was then reformulated in a fully probabilistic way (with a different
likelihood) using Gaussian Processes in [8]. This latter approach is
more accurate and offers a valuable measure of uncertainty in the
estimated utility vector. This uncertainty representation can be used
to balance the trade-off between exploration and exploitation in BO.
We will discuss in detail this model in the next section.

It is worth noticing that when 𝑑 = 1 and the dimension of 𝐴 is
two, choice-functions reduce to binary-preference modelling (with a
single utility function that represent the preferences). In preference-
learning, the state-of-the-art surrogate model is based on a method
proposed in [9]. This method assumes that there is an unobservable
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latent utility function 𝑢 (x𝑖 ) associated with each training sample x𝑖 ,
and that the function values {𝑢 (x𝑖 ) : 𝑖 = 1, 2, . . . , 𝑁 } preserve the
preference relations observed in the dataset, that is 𝑢 (x𝑖 ) ≥ 𝑢 (x𝑗 )
whenever x𝑖 “better than” x𝑗 . A framework for preference-based BO
(PBO) was proposed by [30] and a new acquisition function, inspired
by Thomson sampling, was proposed in [15]. More recently, [5, 7]
showed that the posterior of GP preference learning is a Skew GP [5].
Based on this exact model, the authors derived a PBO framework
based on SkewGPs [6]. To the best of our knowledge, no one has yet
developed an implementation for choice-based BO.

3 BAYESIAN LEARNING OF CHOICE
FUNCTIONS

In this section, we review the GP-based choice-function learning
framework proposed in [8]. We consider objects x ∈ R𝑛𝑥 and,
for x ∈ R𝑛𝑥 , we model each latent function in the vector u(x) =

[𝑢1 (x), . . . , 𝑢𝑑 (x)]⊤ as an independent GP [28]:

𝑢 𝑗 (x) ∼ GP𝑗 (0, 𝑘 𝑗 (x, x′)), 𝑗 = 1, 2, . . . , 𝑑, (1)

where the dimension 𝑑 represent the number of latent objectives that
are assumed by the GP prior. Each GP is fully specified by its kernel
function 𝑘 𝑗 (·, ·), which specifies the covariance of the latent function
between any two points. In all experiments in this paper, the GP
kernel is Matérn (𝜈 = 3/2) [28], however the method works for any
choice of a valid positive definite kernel function. Having defined
the prior on u, we now describe the likelihood.

For each 𝐴, 𝐶 (𝐴) is interpreted as the undominated set in the
strong Pareto sense. 𝑅(𝐴) is the set of dominated objects. We assume
that there is a latent vector function u(x) = [𝑢1 (x), . . . , 𝑢𝑑 (x)]⊤, for
some finite dimension 𝑑 , which embeds the objects x into a space R𝑑 .
The choice set is represented via a Pareto set of strongly undominated
objects:

¬
(

min
𝑖∈{1,...,𝑑 }

(𝑢𝑖 (o) − 𝑢𝑖 (v)) < 0, ∀o ∈ 𝐶 (𝐴)
)
,∀v ∈ 𝑅(𝐴), (2)

min
𝑖∈{1,...,𝑑 }

(𝑢𝑖 (o) − 𝑢𝑖 (v)) < 0, ∀o, v ∈ 𝐶 (𝐴), o ≠ v. (3)

Condition (3) means that, for each object in 𝐶 (𝐴), there is no better
object in 𝐶 (𝐴). Condition (2) means that, for each object v ∈ 𝑅(𝐴),
it is not true (¬ is the logical negation) that all objects in 𝐶 (𝐴) are
worse than v, that is there is at least an object in 𝐶 (𝐴) which is
not worse than v. Therefore, these conditions require that the latent
functions values of the objects should be consistent with the choice
function implied relations.

To account for errors in Alice’s choices, we follow [8] and re-
place the hard-constraints (2),(3) with soft-constraints. Consider the
vectors 𝑋 = [x1, x2, . . . , x𝑡 ]⊤ with x ∈ X,

u(x𝑖 ) = [𝑢1 (x𝑖 ), 𝑢2 (x𝑖 ), . . . , 𝑢𝑑 (x𝑖 )],
u(𝑋 ) = [u(x1), u(x2), . . . , u(x𝑡 )]⊤,

and the choice dataset

D𝑚 = {(𝐶 (𝐴𝑠 ), 𝐴𝑠 ) : for 𝑠 = 1, . . . ,𝑚},

where 𝐴𝑠 ⊂ 𝑋 for each 𝑠 = 1, . . . ,𝑚. The likelihood is defined as

𝑝 (D𝑚 |u(𝑋 )) =
𝑚∏
𝑘=1

𝑝 (𝐶 (𝐴𝑘 ), 𝐴𝑘 |u(𝑋 ))

=

𝑚∏
𝑘=1

∏
{o,v}∈𝐶2 (𝐴𝑘 )

(
1 −

𝑑∏
𝑖=1

Φ (𝑢𝑖 (o) − 𝑢𝑖 (v))

−
𝑑∏
𝑖=1

Φ (𝑢𝑖 (v) − 𝑢𝑖 (o))
)

∏
v∈𝑅 (𝐴𝑘 )

(
1 −

∏
o∈𝐶 (𝐴𝑘 )

(
1 −

𝑑∏
𝑖=1

Φ (𝑢𝑖 (o) − 𝑢𝑖 (v))
)

(4)

where Φ(·) is the Cumulative Distribution Function (CDF) of the
standard Normal distribution. The notation {o, v} ∈ 𝐶2 (𝐴𝑘 ) means
that the pair {o, v} is an element of 𝐶2 (𝐴𝑘 ), which is the set of
all possible 2-combination (without repetition) of the elements of
the set 𝐶 (𝐴𝑘 ). The product in the last row in (4) is a probabilistic
relaxation of (2). The product in the first and second row in (4) is a
probabilistic relaxation of (3).

REMARK 4. For 𝑑 = 1 (that is, the latent dimension is one) and
binary options sets, that is |𝐴𝑘 | = 2 for each 𝑘, the likelihood (4),
for a given 𝑘 , simplifies to

𝑝 (𝐶 (𝐴𝑘 ), 𝐴𝑘 |𝑢) = Φ
(
𝑢 (x𝑖 ) − 𝑢 (x𝑗 )

)
, (5)

which has extensively been used in Preferential BO. Therefore, we
can consider the likelihood (4) its extension to the non-binary and
multi-utility case.

Computation of the posterior. The posterior density of u(𝑋 ) is

𝑝 (u(𝑋 ) |D𝑚) = 𝑝 (u(𝑋 ))
𝑝 (D𝑚)

𝑚∏
𝑘=1

𝑝 (𝐶 (𝐴𝑘 ), 𝐴𝑘 |u(𝑋 )), (6)

where the prior over the component of u is defined in (1), the likeli-
hood is defined in (4) and the probability of the evidence is 𝑝 (D𝑚) =∫
𝑝 (D𝑚 |u(𝑋 ))𝑝 (u(𝑋 ))𝑑u(𝑋 ). The posterior 𝑝 (u(𝑋 ) |D𝑚) is in-

tractable therefore we follow [8] and use variational inference to
learn at the same time the hyper-parameters (lengthscales) 𝜽 of the
kernels and a Gaussian approximation of the posterior 𝑝 (u(𝑋 ) |D𝑚).1

The algorithm of variational inference learns the density 𝑞(u(𝑋 )),
an approximation of the posterior 𝑝 (u(𝑋 ) |D𝑚), by minimizing the
Kullback–Leibler divergence of 𝑞 from the posterior. In practice (see
[23] for a comparison) this is achieved by maximizing an evidence
lower bound

𝐸𝐿𝐵𝑂 =

∫
𝑞(u(𝑋 )) log𝑝 (D𝑚 |u(𝑋 ))𝑑u︸                                    ︷︷                                    ︸

likelihood term

−𝐾𝐿[𝑞(u(𝑋 )) | |𝑝 (u(𝑋 ))]︸                        ︷︷                        ︸
KL between priors

Here we approximate the likelihood term with Monte Carlo in-
tegration. Moreover we use an approximation 𝑞(u(𝑋 )) with a full
covariance matrix.

1We implemented our model in PyMC3 [29].

2274



GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Benavoli, Azzimonti and Piga

Prediction and Inferences. Let 𝑋 ∗ = {x∗1, . . . , x
∗
𝑝 } be a set in-

cluding 𝑝 test points and u(𝑋 ∗) = [u(x∗1), . . . , u(x
∗
𝑝 )]⊤. Under the

GP prior assumption on 𝑢, the conditional predictive distribution
𝑝 (u(𝑋 ∗) |u(𝑋 )) is Gaussian and, therefore,

𝑝 (u(𝑋 ∗) |D𝑚) =
∫

𝑝 (u(𝑋 ∗) |u(𝑋 ))𝑝 (u(𝑋 ) |D𝑚)𝑑u(𝑋 ) (7)

can be easily computed analytically by using the VI Gaussian pos-
terior 𝑝 (u|D𝑚). In choice-based BO, we are interested in the infer-
ence:

𝑃 (𝐶 (𝐴∗), 𝐴∗ |D𝑚) =
∫
𝑝 (𝐶 (𝐴∗), 𝐴∗ |u(𝑋 ∗))

𝑝 (u(𝑋 ∗) |D𝑚)𝑑u(𝑋 ∗),
(8)

which returns the posterior probability that Alice chooses the objects
𝐶 (𝐴∗) from the set of objects 𝐴∗. This probability can be com-
puted via Monte Carlo sampling from the approximate posterior
𝑝 (u(𝑋 ∗) |D𝑚), which is Gaussian.

EXAMPLE 1. We present a simple toy example to show how
this model works. We consider the bi-dimensional vector function
g(𝑥) = [𝑒−(𝑥+1)2 , 𝑒−(𝑥−1)2 )]⊤ with 𝑥 ∈ [−3, 3], see blue and or-
ange function in Figure 1(top). We use g to generate choice data.
For instance, consider the set of options 𝐴𝑘 = {−0.8,−1.65,−2.39},
given that

g(−0.8) = [0.039, 0.961]
g(−1.65) = [0.001, 0.655]
g(−2.39) = [0, 0.145]

we have 𝐶 (𝐴𝑘 ) = {−0.8} and 𝑅(𝐴𝑘 ) =𝐴𝑘\𝐶 (𝐴𝑘 ) ={−1.65,−2.39}.
In fact, one can notice that −0.8 dominates −1.65,−2.39 on both
the objectives. We sample 50 inputs 𝑥𝑖 in a uniform grid in [−3, 3]
and, using the above approach, we generate𝑚 = 20 random subsets
{𝐴𝑘 }𝑚𝑘=1 of the 50 points each one of size |𝐴𝑘 | = 3. The location of
these points is shown at the bottom of Figure 1(top). To represent the
20 batches of input triplets included in the sets {𝐴𝑘 }20𝑘=1, we utilized
different colors. Figure 1(bottom) displays the corresponding values
of the two objectives at these points, revealing the Pareto front (we
assume we aim to maximise the objectives).

Fixing the latent dimension 𝑑 = 2, we will use the previously
described model to infer the latent functions from the choice datasets.
We compute the posterior means (lines) and 95% credible intervals
(shaded region) of the latent functions, as shown in Figure 2.

By examining this plot, it can be noticed that the shape of the
learned utility functions (mean) resembles the original utilities, but
there are notable differences. This occurs because from choice data,
we are only able to deduce the inferred objective functions, with the
exception of a monotonic transformation. Only Pareto dominance is
maintained during the learning process. Indeed, it can be observed
that to the left of the crossing point, the orange function lies above
the blue function, while to the right, the opposite holds true. This
guarantees that the learned functions represent the Pareto domi-
nance implied by the choice data. As we will see in the next sections,
the non-full-identifiability (due to this invariance to monotonic trans-
formations), that is inherent in the utility functions implied by choice
data, impacts the efficacy of some of the acquisition functions we
utilize for Bayesian optimization.

Figure 1: Objectives (top) and Pareto front (below). Colors rep-
resent the different batches of input triplets.

Figure 2: Posterior latent utilities estimated from choice data

4 CHOICE-BASED BAYESIAN OPTIMISATION
In the previous sections, we have introduced a GP-based model to
learn latent choice functions from choice data. We will now focus on
the acquisition component of Bayesian optimization. In choice-based
BO, we never observe the actual values of the functions. The data
is (𝑋, {𝐶 (𝐴𝑘 ), 𝐴𝑘 }𝑚𝑘=1}), where 𝑋 is the set of the𝑚 training inputs
(options), 𝐴𝑘 is a subset of 𝑋 and 𝐶 (𝐴𝑘 ) ⊆ 𝐴𝑘 is the choice-set for
the given options 𝐴𝑘 . We denote the Pareto-set estimated using the
GP-based model as X̂𝑛𝑑 . In choice-based BO, the objective is to
seek a new input point x. Since g can only be queried via a choice
function, this is obtained by optimizing an acquisition function
𝛼 (x, X̂𝑛𝑑 ) w.r.t. x, where X̂𝑛𝑑 is the current (estimated) Pareto-set.
We define acquisition functions of the form 𝛼 (x, X̂𝑛𝑑 ), with the aim
to find a point that dominates the points in X̂𝑛𝑑 . That is, given the set
of options 𝐴∗ = x ∪ X̂𝑛𝑑 , we aim to find x such that 𝐶 (𝐴∗) = {x}.

The acquisition function must also consider the trade-off between
exploration and exploitation. Therefore, we propose here two acqui-
sition functions: choiceUCB and choiceThompson.
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4.1 choiceUCB
The acquisition function choiceUCB, denoted by 𝛼𝑈𝐶𝐵 (x, X̂𝑛𝑑 ), is
equal to the 𝛾% (in the experiments we use 𝛾 = 95) Upper Credible
Bound (UCB) of 𝑝 (𝐶 (𝐴∗), 𝐴∗ |u∗) with u∗ ∼ 𝑝 (u∗ |D𝑚), 𝐴∗ = x ∪
X̂𝑛𝑑 and 𝐶 (𝐴∗) = {x}.
Note that the requirement for our acquisition function is strong. We
could also define 𝛼 (x, X̂𝑛𝑑 ) with different objectives in mind. For
example we could seek to find a point x which allows to reject at least
one option in X̂𝑛𝑑 . We opted for UCB of 𝑝 (𝐶 (𝐴∗), 𝐴∗ |u∗) because it
leads to a fast to evaluate acquisition function. In particular we only
need to compute one probability for each new function evaluation.

4.2 choiceThompson
We also propose an alternative acquisition function built on the idea
of Thompson sampling [32]. We define the acquisition function
choiceThompson 𝛼𝑇ℎ𝑜𝑚 (x,D𝑚) as the increase in hyper-volume
of the Pareto front for a posterior realization when the Pareto front
is calculated by evaluating the posterior utility at x. We can com-
pute this value by (i) generating a posterior realization of the latent
utilities at the training inputs 𝑋 , ũ(𝑋 ) ∼ 𝑝 (u(𝑋 ) |D𝑚); (ii) comput-
ing the Pareto set for this specific realization, denoted by X̃𝑛𝑑 ; (iii)
evaluate the same realization on 𝑋 ∪ {x}, obtaining ũ(𝑋 ∪ {x}); (iv)
compute the Pareto set implied by ũ(𝑋 ∪ {x}), denoted by X̃𝑛𝑑

x ;
(v) the value of 𝛼𝑇ℎ𝑜𝑚 (x,D𝑚) is the difference in hyper-volume
between the Pareto fronts ũ(X̃𝑛𝑑

x ) and ũ(X̃𝑛𝑑 ).
Note that the posterior realization ũ in steps (ii) and (iv) has to

be the same otherwise the resulting Pareto sets are not comparable.
Usually this is achieved by selecting, a priori, a large set of candidate
points, generating a posterior realization on this set and then eval-
uating 𝛼𝑇ℎ𝑜𝑚 (x,D𝑚) only on those candidate points. Here instead
we follow [2] and build a predictive process for each posterior real-
ization. We initially select a large set of points where the posterior
GP is initially sampled. We use those samples to train one anchor
GP for each realization. The trained anchor GPs provide a fast to
evaluate predictive posterior which is a surrogate for the original
GP realization. This allows for a continuous optimization of the
acquisition function and which is not limited to a fixed number of
candidate points. An alternative approach could exploit the efficient
posterior samples introduced in [34].

EXAMPLE 2. We continue the previous example to show the
point that maximise the two acquisitions functions proposed pre-
viously. The point that maximised the UCB acquisition function is
shown in Figure 3-bottom. It is interesting to notice how the point
𝑥𝑢𝑐𝑏 = −0.49 is on the Pareto front and, in particular, in a region
where there are no observations. So in this example this acquisi-
tion function correctly balances exploitation-exploration. A similar
comment holds for the Thompson-based acquisition. Figure 3-top
shows two functions sampled from the posterior which are then used
as surrogate objectives to maximised the hyper-volume of the cur-
rent Pareto front. Note again that the shape is very different from
the original Gaussian functions, but the crossing and dominance
are preserved. This leads to the new point 𝑥𝑡ℎ = −0.11. This point
changes when we sample new functions, Figure 3-center, leading
to 𝑥𝑡ℎ = −0.55. However, both the selected new points are on the
Pareto front Figure 3-bottom.

Figure 3: Sampled utilities (top, center) and chosen 𝑥𝑛𝑒𝑥𝑡 (bot-
tom).

4.3 Query the agent for choices
After computing the maximum of the the acquisition function, de-
noted with x𝑛𝑒𝑤 , consistently with the definition of the acquisition
function, we should query the agent to express their choice among
the set of options in 𝐴∗ = x𝑛𝑒𝑤 ∪ X̂𝑛𝑑 . Here we assume that the
costly element of our pipeline is the production of an element and
not the act of choosing between elements. In the example of sec-
tion 1, the costly element of comparing three cakes is baking the
cakes and not the act of choosing between already made cakes. For
this reason, once we have a new set of features x𝑛𝑒𝑤 , we produce
the item associated with those features and then we ask the user to
produce choice sets 𝐶 (𝐴∗

𝑗
) from option sets 𝐴∗

𝑗
of fixed size |𝐴∗

𝑗
|

made with 5 combinations of x𝑛𝑒𝑤 with |𝐴∗
𝑗
| −1 elements from X̂𝑛𝑑 .

In the experiments we fix |𝐴∗
𝑗
| = 3.

4.4 Connection with priori and posteriori methods
Multi-objective optimization can be categorized into three types
based on the level of engagement of the decision maker (DM): a
priori, a posteriori, and interactive approaches (see for instance [21]).
A priori approaches require the DM to specify their preferences
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before optimization begins. This transforms the problem into a sin-
gle objective optimization, but it can be challenging for the DM
to express their preferences without seeing the alternatives. A pos-
teriori approaches, which are more common, attempt to identify a
good approximation of the Pareto frontier, and the DM can then
choose their preferred solution from this set. However, finding the
entire Pareto front can be computationally expensive. Interactive
approaches try to learn the DM’s preferences during optimization
and focus the search on the most preferred area of the Pareto front.
This often involves comparing pairs of solutions and assuming a
scalarisation utility function model (e.g., the Tchebychev utility).

Our proposed method is an interactive approach. It aims to effi-
ciently identify a good approximation of the Pareto frontier when the
DM’s implicit criteria align with the true objectives. However, when
the DM’s implicit criteria may be different from the true objectives,
our method learns the DM’s choice function during optimization. In
this case, the BO search is focused on the most preferred area of the
Pareto front based on the latent utility functions held by the DM.

Consider the example of baking a cake, where the DM (Alice)
may use a choice function based on taste, softness, and appearance as
the objectives. However, Alice’s choice function may also take into
account combinations of these criteria reducing to 2D-objectives or
even nD-objectives. Indeed, Alice’s choice function may be complex
and multifaceted, but the ChoiceBO is designed to work without
requiring her to explicitly state her decision criteria.

In the next section, we make the simplifying assumption that we
know the number of criteria that Alice is considering, but we do not
assume that we know the specific form of her utility functions but
we learn them based on her choices.

5 NUMERICAL EXPERIMENTS
In this section we assume 𝑑 = 𝑛𝑜 (that is we assume that the latent
dimension is known) and evaluate the performance of our algorithm
on the use of choice functions in multi-objective BO. See [8] for
experimental results on recovering the latent dimensions and on the
accuracy of learning choice functions.

We consider an underlying oracle g(x) from six standard multi-
objective benchmark functions: Kursawe (𝑛𝑥 = 3, 𝑛𝑜 = 2), ZDT2
(𝑛𝑥 = 3, 𝑛𝑜 = 2), ZDT1 (𝑛𝑥 = 4, 𝑛𝑜 = 2), DTLZ1 (𝑛𝑥 = 4, 𝑛𝑜 = 2),
DTLZ1 (𝑛𝑥 = 4, 𝑛𝑜 = 3), and Vehicle-Safety2 (𝑛𝑥 = 5, 𝑛𝑜 = 3).
These are minimization problems, which we converted into maxi-
mizations so that the acquisition function in Section 4 is well-defined.
We compare the Choice-GP BO (with 𝑑 = 𝑛𝑜 ) approach proposed in
this paper against ParEGO.3 For ParEGO, we assume the algorithm
can query directly g(x) and, therefore, we refer to it as Oracle-
ParEGO. Note that ParEGO uses a random Tchebyshev scalarisation
to scalarise the objectives and then performs standard BO. This ap-
proach can only be applied if the values of g(x) are known (which
is necessary in order to define a scalarisation). 4 Conversely, Choice-
GP BO can only query g(x) via choice functions. A parameter that
needs to be chosen in advance is |𝐴𝑘 |, the size of the choice set. It
was observed in [8] that increasing the size of the choice set |𝐴𝑘 |
2The problem of determining the thickness of five reinforced components of a vehicle’s
frontal frame [37]. This problem was previously considered as benchmark in [11].
3We use the BoTorch implementation [3].
4The most recent MO BO approaches mentioned in Section 1 outperform ParEGO. We
use ParEGO only as an Oracle reference.

could lead to better estimates, however a human is known to be able
to compare well only up to 5 objects. In our experiments we fixed
|𝐴𝑘 | = 3 as this is a reasonable number for a user. We use both
choiceUCB and choiceThompson as acquisition functions and we
also consider a quasi-random baseline that selects candidates from a
Sobol sequence denoted as “Sobol”.

We evaluate optimization performance on the six benchmark prob-
lems in terms of log-hyper-volume difference, which is defined as
the difference between the hyper-volume of the true Pareto front5

and the hyper-volume of the approximate Pareto front based on the
observed data X. Each experiment starts with 20 initial (randomly se-
lected) input points which are used to initialise Oracle-ParEGO. We
generate 10 pairs {𝐶 (𝐴𝑘 ), 𝐴𝑘 } of size |𝐴𝑘 | = 3 by randomly select-
ing 10 subsets 𝐴𝑘 of these 20 points. These choices {𝐶 (𝐴𝑘 ), 𝐴𝑘 }10𝑘=1
are used to initialise Choice-GP BO. A total budget of 100 itera-
tions are run for both the algorithms. Further, each experiment is
repeated 20 times with different initialization. In these experiments
we optimize the kernel hyperparameters by maximising the marginal
likelihood for Oracle-ParEGO and its variational approximation for
Choice-GP.
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Figure 4: Kursawe and DTLZ1 benchmark functions (𝑛𝑜 = 2).

Figures 4, 5, 6 show the performance of the proposed acquisition
functions versus the performance of the Oracle and a random method.
Note that all benchmarks in figure 4 and 5 have two objectives. We
notice that choiceUCB performs much better than choiceThompson
5This known for the six benchmarks.
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on all benchmarks, both in terms of speed of convergence and small-
est log-hyper-volume difference. In most benchmarks choiceThomp-
son tends to get stuck in local optima and does not provide sufficient
exploration. On the other hand, choiceUCB is also able to outper-
form Oracle-ParEGO, in most benchmarks, even if choiceUCB only
has access to choice sets. We believe that this performance is moti-
vated by the multiple comparisons we are able to do for each new
proposed point. As outlined in section 4.3, for each new proposed
point we ask the user to provide five additional choice sets. This
does not come at an additional cost for the user, however it provides
a much better posterior distribution over the choices. The effect is
reflected in exploitation but also in the exploration properties of
choiceUCB. In all benchmarks and all repetitions, choiceUCB does
not tend to get stuck in local optima.

Focusing on DTLZ1, Kursawe (Figure 4), and DTLZ1 and Vehicle-
Safety (Figure 6), it can be noticed how choiceUCB convergences
to the performance of the Oracle-ParEGO at the increase of the
number of iterations. The overall performance shows that the pro-
posed approach is very effective. In ZDT1 and ZDT2, Figure 5,
choiceUCB outperforms Oracle-ParEGO. The bad performance of
Oracle-ParEGO is due to the used acquisition function, which does
not correctly balance exploitation-exploration in these two bench-
marks. Instead, the UCB acquisition function for choiceUCB works
well in all the benchmarks.
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Figure 5: ZDT1 and ZDT2 benchmark functions (𝑛𝑜 = 2).
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Figure 6: DTLZ1 and Vehicle safety benchmarks (𝑛𝑜 = 3).

6 CONCLUSIONS
We have developed a Bayesian method to learn choice functions from
data and applied to choice function based Bayesian Optimisation
(BO). As future work, we plan to develop strategies to speed up the
learning process by exploring more efficient ways to express the
likelihood. We also intend to explore different acquisition functions
for choice function BO.
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