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ABSTRACT
This paper verified the effects of a supervised multi-objective op-

timization algorithm (SMOA) efficiently upconverting the Pareto

front representation by utilizing known solutions on a real-world

multi-objective building facility control optimization problem. Also,

several sampling methods for evaluating promising candidate solu-

tions in SMOA were proposed and compared. Evolutionary varia-

tions, such as crossover and mutation involving randomness, are

not preferred in practical scenarios, particularly when the objec-

tive functions are computationally expensive. In order to suppress

obtaining inferior solutions, SMOA constructs the Pareto front

and Pareto set estimation models using known solutions, samples

promising candidate solutions, and evaluates them. It was reported

that SMOA could efficiently generate well-distributed solutions

that upconvert the Pareto front representation compared to evolu-

tionary variations with limited solution evaluations in artificial test

problems. This paper focuses on the real-world building facility

control problem with 15 known solutions, and results show that

SMOA can efficiently improve the Pareto front representation com-

pared to evolutionary variations. Also, results show that crowding

distance-based one-time sampling considering the distribution of

the known solutions achieved the best Pareto front approximation

performance in the sampling methods compared in this paper.
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1 INTRODUCTION
Carbon neutral has attracted attention, and its activity has been

growing rapidly. New sustainable schemes to reduce CO2 emissions

and electricity consumption are required. We have been focused on

office buildings as a partially controllable environment where office

workers spend a lot of time together as a small society [5, 7, 8].

Our main concern is reducing the electricity consumption of the

building facilities, such as air conditioning, lighting, and ventila-

tion. However, an excessive reduction in electricity consumption

deteriorates the comfort of the office workers in the building, and it

harms productivity. Therefore, we have aimed to reduce electricity

consumption while maintaining or improving the comfort of office

workers. So far, we have addressed the optimization of temperature

settings in an air conditioning system [7] and the optimization of

air conditioning as well as lighting and ventilation systems [5, 8].

These two cases employed evolutionary algorithms because they

have multiple objectives, and each objective function involves a

complex building simulation that must be treated as a black box.

The goal of multi-objective optimization is to acquire Pareto

optimal solutions, known as the Pareto set, representing the Pareto

front, which is the optimal trade-off among objectives in the objec-

tive space. The Pareto set may involve infinite solutions depending

on the problem. Generally, the larger the number of solutions ob-

tained, the higher the Pareto front approximation. However, most

real-world optimization problems require repetitive executions of

computationally expensive objective functions, and it is hard to

obtain a large number of evaluated solutions. In addition, since

evolutionary variations such as crossover and mutation involve

randomness, it is not rare to be disappointed that evaluated solu-

tions taking a long evaluation time are inferior. It is desirable to

avoid evaluating inferior solutions as much as possible and effi-

ciently improve the quality of the Pareto front approximation.

In order to efficiently improve the Pareto front approximation

quality by suppressing to obtain inferior solutions and encourag-

ing to obtain non-inferior solutions, a supervised multi-objective

1963

https://doi.org/10.1145/3583133.3596339
https://doi.org/10.1145/3583133.3596339
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596339&domain=pdf&date_stamp=2023-07-24


GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal Okumura, et al.

optimization algorithm (SMOA) was proposed [12]. SMOA is a

data-driven optimization method. SMOA assumes that several good

solutions are known in advance and utilizes them as training data.

SMOA estimates the Pareto front by smoothly complementing the

known solutions in the objective space using the Kriging inter-

polation [10]. SMOA also estimates the Pareto set by smoothly

complementing the known solutions in the variable space using

the Kriging interpolation [10]. SMOA maintains every relationship

between each point in the estimated Pareto front and its corre-

sponding point in the Pareto set. SMOA samples well-distributed

points upconverting the Pareto front approximation from the es-

timated Pareto front and executes the objective functions to their

corresponding points in the variable space. Thus, SMOA attempts

to obtain promising solutions to improve the quality of the Pareto

front approximation without depending on evolutionary variations

involving randomness. It was reported that SMOA could efficiently

improve the Pareto front quality compared to evolutionary vari-

ations in the DTLZ test problems [4] with a limited number of

solution generations [12]. However, the effects of SMOA in real-

world scenarios still need to be clarified. In addition, the method to

sample points from the estimated Pareto front to be evaluated has

an impact on the Pareto front upconvert. Although the quality of

generated solutions is affected by the accuracies of the estimated

Pareto front and estimated Pareto set, it is important to sample

points from the estimated Pareto front appropriately.

In this work, we focus on the multi-objective building facility

control problem as a real-world problem and verify the effects of

SMOA on it. In addition, we propose and compare four sampling

methods to select points from the estimated Pareto front to be

evaluated. First, we apply a multi-objective evolutionary algorithm

to the multi-objective building facility control problem and obtain

a set of solutions. We use them as known solutions and execute

SMOA. To sample promising solutions from the estimated Pareto

front, we propose four methods: Method 1 is a confidence interval-

based iterative sampling, Method 2 is a crowding distance-based

one-time sampling, Method 3 is a crowding distance-based iterative

sampling, and Method 4 is a truncation method based one-time

sampling. We compare the Pareto front approximation qualities

by the above four SMOAs with Methods 1–4 and an evolutionary

solution generation using crossover and mutation.

2 MULTI-OBJECTIVE OPTIMIZATION
PROBLEMWITH CONSTRAINTS

For given variable space X and 𝑑 dimensional variable vector 𝒙 =

(𝑥1, 𝑥2, . . . , 𝑥𝑑 ) ∈ X, a multi-objective optimization problem with

𝑚 objective functions 𝑓𝑖 (𝑖 = 1, 2, . . . ,𝑚) and 𝑘 constraint functions

𝑔 𝑗 ( 𝑗 = 1, 2, . . . , 𝑘) is given by{
Minimize 𝑓𝑖 (𝒙) (𝑖 = 1, 2, . . . ,𝑚)
Subject to 𝑔 𝑗 (𝒙) ≤ 0 ( 𝑗 = 1, 2, . . . , 𝑘) .

(1)

For each constraint 𝑗 , 𝜔 𝑗 (𝒙) = max{0, 𝑔 𝑗 (𝒙)} is considered as

a constraint violation. Solution 𝒙 satisfying 𝜔 𝑗 (𝒙) = 0 for all

𝑖 ∈ {1, 2, . . . , 𝑘} is said to be feasible and infeasible otherwise. For
two feasible solutions 𝒙 and 𝒚, 𝒙 dominates 𝒚 (𝒙 ⪯ 𝒚) if ∀𝑖 ∈
{1, 2, . . . ,𝑚} : 𝑓𝑖 (𝒙) < 𝑓𝑖 (𝒚) and ∃ 𝑗 ∈ {1, 2, . . . ,𝑚} : 𝑓𝑗 (𝒙) ≤ 𝑓𝑖 (𝒚).
In a feasible solution set𝑋 ⊆ X, non-dominated solutions are given
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Figure 1: Target two rooms for the simulation [5, 8]

by {𝒙 ∈ 𝑋 | �𝒚 ∈ 𝑋 : 𝒙 ⪯ 𝒚}. The task is to find the set of Pareto

optimal solutions, the Pareto set, X∗ = {𝒙 ∈ X | �𝒚 ∈ X : 𝒙 ⪯ 𝒚},
which is the set of the non-dominated solutions in the whole vari-

able space X. The Pareto front is given by F ∗ = {𝒇 (𝒙) | 𝒙 ∈ X∗},
which is the set of the objective vectors of the Pareto set X∗ and
represents the optimal trade-off between the objectives.

3 MULTI-OBJECTIVE BUILDING CONTROL
OPTIMIZATION PROBLEM

In this study, we focus on the multi-objective building control opti-

mization problem defined in [5, 8], which is a real-world problem

with multiple objectives and constraints.

Fig. 1 shows the target two rooms in the building. The area of

each room is 84 [m
2
]. Each room has three facilities: air condi-

tioning, lighting, and ventilation. This problem uses the building

simulator EnergyPlus [6] for a digital twin simulation that precisely

copies the target rooms in real space into digital space. The input to

the simulator is a set of facility control parameters, which are the

variable vector described next. EnergyPlus simulates the room en-

vironment, such as temperature, humidity, and illuminance, based

on the given facility control parameters with weather conditions,

and the number of office workers in the rooms. Consequently, the

simulator outputs multiple quantitative values used in the objective

and constraint function values.

3.1 Variables
The facility control parameters of each room are represented by

an eight-dimensional real-value vector normalized in the range

[0, 1]𝑑=8. Each value represents the start and end times of the air

conditioning system, start and end times of the lighting system,

temperature settings of cooling and heating, dimming rate, and

ventilation level. For the two rooms, the design variable vector is

represented by 𝒙 ∈ X = [0, 1]𝑑=16.

3.2 Objectives
The previous study [8] addressed seven objectives. This study ad-

dresses two of them to visually observe the optimization effects in

the two-dimensional objective space. The first is the annual elec-

tricity consumption 𝑓1 and the second is environmental satisfaction

𝑓2 (𝒙). Both the objective functions should be minimized. The details

can be found in [8].
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Figure 2: One-time supervised multi-objective optimization algorithm (O-SMOA) [13]

Figure 3: Iterative supervised multi-objective optimization algorithm (I-SMOA) [14]

3.3 Constraints
There are six constraints [8]. They are the upper limit of annual

electricity consumption 𝑔1 (𝒙), upper and lower limits of tempera-

ture 𝑔2 (𝒙), upper and lower limits of humidity 𝑔3 (𝒙), upper limit

of CO2 concentration 𝑔4 (𝒙), lower limit of illuminance 𝑔5 (𝒙), and
lighting time 𝑔6 (𝒙). The details can be found in [8].

4 PARETO FRONT AND SET ESTIMATION
4.1 Summary
SMOA uses Pareto front estimation and Pareto set estimation us-

ing several known solutions P [11]. Known solutions P are mu-

tually non-dominated feasible ones that have already been eval-

uated and exhibit good objective values. Each member of P is

represented as (𝒇 , 𝒙), which is a pair of an objective vector 𝒇
and a variable vector 𝒙 . The known solution set is represented

as P = {(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }.

4.2 Pareto Front Estimation
Pareto front estimation first converts the objective vector 𝒇 of each

known solution (𝒇 , 𝒙) ∈ P into an 𝐿1 norm 𝑛 =
∑𝑚
𝑖=1 𝑓𝑖 and an 𝐿1

unit vector 𝒆 = 𝒇/𝑛. 𝒆 is the direction of the objective vector 𝒇 in

the objective space. 𝑛 is the distance to the objective vector 𝒇 in

direction 𝒆. The Pareto front estimation builds 𝒇 -model based on

the Kriging method [10] using 𝒆 as the input and 𝑛 as the output

in the known solution set P. For any 𝐿1 unit vector 𝒆, 𝒇 -model

can output the estimated 𝐿1 norm �̂�, and it can be converted to

the estimated objective vector
ˆ𝒇 (= �̂� · 𝒆). We input a large 𝐿1 unit

1965
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Algorithm 1 O-SMOA based on One-time Sampling [13]

Require: Known candidate solutions (training data) P =

{(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }, 𝐿1 unit vector set E = {𝒆1, 𝒆2, . . . }, size
of upconvert solution set 𝑁

Ensure: Upscaled solution set P ∪ P′
1: Q ← ∅ ⊲ Sampled estimated solutions

2: P′ ← ∅ ⊲ Newly evaluated solutions

3:

4: (1) Estimation Modeling
5: 𝒇 -model← Train Pareto front estimation model (P)
6: for 𝑖 ← 1, 2, . . . , 𝑑 do
7: 𝑥𝑖 -model← Train Pareto set estimation model (P)
8: end for
9: (2) Estimation
10:

ˆP ← ∅
11: for all 𝒆 ∈ E do
12:

ˆ𝒇 ← 𝒇 -model (𝒆)
13: for 𝑖 ← 1, 2, . . . , 𝑑 do
14: 𝑥𝑖 ← 𝑥𝑖 -model (𝒆)
15: end for
16:

ˆP ← ˆP ∪ {( ˆ𝒇 , �̂� = (𝑥1, 𝑥2, . . . , 𝑥𝑑 ))}
17: end for
18: (3) Sampling
19: Q ← Multiple sampling(P, ˆP, 𝑁 )
20: (4) Evaluation
21: for all ( ˆ𝒇 , �̂�) ∈ Q do
22: 𝒇 ← Evaluate (�̂�)
23: P′ ← P′ ∪ {(𝒇 , �̂�)}
24: end for
25: return P ∪ P′

vector set E = {𝒆1, 𝒆2, . . . } into the 𝒇 -model, obtain the estimated

𝐿1 norm set { ˆ𝑛1, ˆ𝑛2, . . . }, and convert it to the estimated objective

vector set { ˆ𝒇 1 (= ˆ𝑛1 · 𝒆1), ˆ𝒇 2 (= �̂�2 · 𝒆2), . . . }, which is the estimated

Pareto front.

4.3 Pareto Set Estimation
Pareto set estimation focuses on each of variable elements 𝑥𝑖 (𝑖 =

1, 2, . . . , 𝑑) in 𝒙 . We build 𝑥𝑖 -model based on the Kriging method

using 𝒆 as the input and 𝑥𝑖 as the output in the known solution

set P. For any 𝐿1 unit vector 𝒆, 𝑥𝑖 -model can output the estimated

variable value 𝑥𝑖 . 𝑑 models, 𝑥𝑖 -model (𝑖 = 1, 2, . . . , 𝑑), can output

the estimated variable vector �̂� = (𝑥1, 𝑥2, . . . , 𝑥𝑑 ) for any direc-

tion 𝒆 in the objective space. We input a large 𝐿1 unit vector set

E = {𝒆1, 𝒆2, . . . } into the 𝑥𝑖 -model (𝑖 = 1, 2, . . . , 𝑑), and obtain the

estimated variable vector set { ˆ𝒙1, ˆ𝒙2, . . . }, which is the estimated

Pareto set.

4.4 Estimated Solution Set
For the known solution set P and a large 𝐿1 unit vector set E =

{𝒆1, 𝒆2, . . . }, the Pareto front estimation outputs the estimated ob-

jective vector set { ˆ𝒇 1, ˆ𝒇 2, . . . }, and the Pareto set estimation outputs

the estimated variable vector set {�̂�1, �̂�2, . . . }. The estimated solu-

tion set is represented by
ˆP = {( ˆ𝒇 1, �̂�1), ( ˆ𝒇 2, �̂�2), . . . }.

Algorithm 2 I-SMOA based on Iterative Sampling [14]

Require: Known candidate solutions (training data) P =

{(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }, 𝐿1 unit vector set E = {𝒆1, 𝒆2, . . . }, size
of upconvert solution set 𝑁

Ensure: Upscaled solution set P ∪ P′
1: Q ← ∅ ⊲ Sampled estimated solutions

2: P′ ← ∅ ⊲ Newly evaluated solutions

3: for each 1, 2, . . . , 𝑁 do
4: (1) Estimation Modeling
5: 𝒇 -model← Train Pareto front estimation model (P ∪ P′)
6: for 𝑖 ← 1, 2, . . . , 𝑑 do
7: 𝑥𝑖 -model← Train Pareto set estimation model (P∪P′)
8: end for
9: (2) Estimation
10:

ˆP ← ∅
11: for all 𝒆 ∈ E do
12:

ˆ𝒇 ← 𝒇 -model (𝒆)
13: for 𝑖 ← 1, 2, . . . , 𝑑 do
14: 𝑥𝑖 ← 𝑥𝑖 -model (𝒆)
15: end for
16:

ˆP ← ˆP ∪ {( ˆ𝒇 , �̂� = (𝑥1, 𝑥2, . . . , 𝑥𝑑 ))}
17: end for
18: (3) Sampling
19: Q ← Q ∪ ( ˆ𝒇 , �̂�) ← Single sampling(P, ˆP,P′)
20: (4) Evaluation
21: 𝒇 ← Evaluate (�̂�)
22: P′ ← P′ ∪ {(𝒇 , �̂�)}
23: end for
24: return P ∪ P′

5 SUPERVISED MULTI-OBJECTIVE
OPTIMIZATION ALGORITHM (SMOA)

We describe two SMOAs: the one-time SMOA (O-SMOA) [13] and

the iterative SMOA (I-SMOA) [14].

5.1 One-time SMOA (O-SMOA)
O-SMOA estimates the Pareto front and set, samples 𝑁 estimated

solutions at a time, and evaluates them [13]. Fig. 2 shows a concep-

tual figure with𝑚 = 3 objectives and 𝑑 = 3 variables. Algorithm 1
shows the pseudo code. O-SMOA has four processes: (1) estimation

modeling, (2) estimation, (3) sampling, and (4) evaluation.

The input is a known solution set P = {(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }.
In (1) estimation modeling, we generate the Pareto front estima-

tion model 𝒇 -model and the Pareto set estimation model 𝑥𝑖 -model

(𝑖 = 1, 2, . . . , 𝑑) using the known solution set P according to the

procedure described in the previous section. In Fig. 2, |P | = 10

known solutions are shown in red.

In (2) estimation, we input a large 𝐿1 unit vector set E = {𝒆1, 𝒆2,
. . . } into 𝒇 -model and 𝑥𝑖 -model (𝑖 = 1, 2, . . . , 𝑑) and obtain the

estimated solution set
ˆP = {( ˆ𝒇 1, �̂�1), ( ˆ𝒇 2, �̂�2), . . . }. In Fig. 2, each

estimated objective vector
ˆ𝒇 and estimated variable vector �̂� is

shown in gray.

In (3) sampling, we sample 𝑁 estimated solutions from the esti-

mated solution set
ˆP as the sampled estimated solution set Q, i.e.,
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Q ⊆ ˆP. Note that the sampling method of Q from
ˆP affects the

quality of the Pareto front approximation.

In (4) evaluation, we execute the objective functions 𝑓𝑖 (𝑖 =

1, 2, . . . ,𝑚) to the estimated variable vector �̂� of each sampled esti-

mated solution ( ˆ𝒇 , �̂�) ∈ Q and add a pair of obtained objective and

variable vectors (𝒇 , �̂�) to the newly generated solution set P′.

5.2 Iterative SMOA (I-SMOA)
Aforementioned O-SMOA samples 𝑁 estimated solutions from the

estimated solution set
ˆP at a time and evaluates them. On the other

hand, I-SMOA described here samples a single estimated solution

from the estimated solution set
ˆP at a time and evaluates it. I-SMOA

then re-constructs the estimation models using the newly generated

solution. I-SMOA repeats this process 𝑁 times. Fig. 3 shows the

conceptual figure. Algorithm 2 shows the pseudo code.

There are three differences between Algorithm 1 of aforemen-

tioned O-SMOA and Algorithm 2 of I-SMOA described here. First,

I-SMOA repeats processes (1)–(4) 𝑁 times, whereas O-SMOA ex-

ecutes processes (1)–(4) once. Second, in (1) estimation modeling,

I-SMOA builds estimation models using the known solution set P
and generated solutions P′ whereas O-SMOA builds estimation

models using the known solutions P only. Third, in (3) sampling,

I-SMOA samples a single solution, whereas O-SMOA samples 𝑁

solutions.

Since I-SMOA builds estimation models 𝑁 times, its computa-

tional cost is higher than that of O-SMOA. However, the accuracy

of the estimation models of I-SMOA can be expected to increase

gradually during the repetition, and the difference between the

estimated and true objective vectors of the sampled solution can be

expected to decrease. We anticipate this contributes to improving

the accuracy of the newly generated solution set P′.

6 PROPOSAL: SAMPLING METHODS OF
ESTIMATED SOLUTIONS

6.1 Summary
In this work, we propose and compare four sampling methods

of estimated solutions Q from the estimated solution set
ˆP in (3)

sampling process of two SMOAs of Algorithm 1 and Algorithm
2, respectively. Four methods are summarized in Table 1. Each
method is based on O-SMOA of Algorithm 1 or I-SMOA of Algo-
rithm 2 and calls its own sampling method at (3) sampling process.

Method 1 is a confidence interval-based iterative sampling, Method

2 is a crowding distance-based one-time sampling, Method 3 is

a crowding distance-based iterative sampling, and Method 4 is a

truncation method-based one-time sampling. Details are described

below.

6.2 Method 1: Confidence Interval-Based
Iterative Sampling

The Kriging-based estimation model can output the estimated value

and its confidence interval [10]. Method 1 takes an iterative sam-

pling that samples a single estimated solution with the largest

confidence interval, evaluates it, and updates the estimation models

to reduce the confidence interval of the estimation model.

Table 1: Four SMOA Variants

SMOA

One-time Iterative (3) sampling

Algorithm 1 Algorithm 2
Method 1 - ✓ Algorithm 3
Method 2 ✓ - Algorithm 4
Method 3 - ✓ Algorithm 5
Method 4 ✓ - Algorithm 6

Method 1 is based on Algorithm 2 of I-SMOA. In (3) sampling

process in blue, Method 1 calls Algorithm 3. In Algorithm 3,
Method 1 finds the estimated solution ( ˆ𝒇 , �̂�) with the maximum

confidence interval of 𝐿1 norm �̂� of
ˆ𝒇 in the estimated solution set

ˆP and returns it as the sampled result.

6.3 Method 2: Crowding Distance-Based
One-Time Sampling

Method 2 takes a one-time sampling that samples 𝑁 estimated

solutions at a time based on the crowding distance used in NSGA-II

[3], which is a diversity maintenance criterion for the solutions in

the objective space.

Method 2 is based on Algorithm 1 of O-SMOA. In (3) sampling

process in red, Method 2 calls Algorithm 4. In Algorithm 4, the
estimated solution set

ˆP is copied to the sampled estimated solution

setQ; note | ˆP| = |Q| ≫ 𝑁 at this time.Method 2 finds the estimated

solution ( ˆ𝒇 , �̂�) ∈ Q with the shortest crowding distance in the

combined set of the known solution set P and Q and deletes it from

Q, i.e., Q = Q\( ˆ𝒇 , �̂�). The purge of a single estimated solution from

Q is repeated until its size |Q| gets 𝑁 . Method 2 returns Q of size

𝑁 as the sample result.

6.4 Method 3: Crowding Distance-Based
Iterative Sampling

Method 3 also uses the crowding distance but takes an iterative

sampling that samples a single estimated solution at a time.

Method 3 is based on Algorithm 2 of I-SMOA. In (3) sampling

process in blue, Method 3 calls Algorithm 5. In Algorithm 5,
Method 3 finds and returns the estimated solution ( ˆ𝒇 , �̂�) ∈ ˆP with

the longest crowding distance in the combination set of the known

solution set P, the newly evaluated solution set P′, and ( ˆ𝒇 , �̂�) as
the sample result.

6.5 Method 4: Truncation Method-Based
One-Time Sampling

Method 4 takes a one-time sampling that samples 𝑁 estimated

solutions at a time based on the truncation method used in SPEA2

[17], which is an alternative diversity maintenance criterion.

Method 4 is based on Algorithm 1 of O-SMOA. In (3) sampling

process in red, Method 4 calls Algorithm 6. In Algorithm 6, the
estimated solution set

ˆP is copied to the sampled estimated solution

setQ; note | ˆP| = |Q| ≫ 𝑁 at this time.Method 4 finds the estimated

solution ( ˆ𝒇 , �̂�) ∈ Q to be truncated from Q and deletes it from Q,
i.e., Q = Q\( ˆ𝒇 , �̂�). In the truncation method [17], we first find two
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Algorithm 3Method 1: Confidence Interval Based Iterative Sam-

pling

Require: Known candidate solutions (training data)

P = {(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }, Estimated solution set

ˆP = {( ˆ𝒇 1, �̂�1), ( ˆ𝒇 2, �̂�2), . . . }, Newly evaluated solution

set P′ = {(𝒇 1′, 𝒙1′), (𝒇 2′, 𝒙2′), . . . }
Ensure: Single sampled estimated solution ( ˆ𝒇 , �̂�)
1: function Single Sampling(P, ˆP,P′)
2: return ( ˆ𝒇 , �̂�) ← arg max

( ˆ𝒇 ,�̂� ) ∈ ˆP
Confidence interval of

ˆ𝒇

3: end function

Algorithm 4 Method 2: Crowding Distance Based One-Time Sam-

pling

Require: Known candidate solutions (training data)

P = {(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }, Estimated solution set

ˆP = {( ˆ𝒇 1, �̂�1), ( ˆ𝒇 2, �̂�2), . . . }, Sample size 𝑁

Ensure: Sampled estimated solutions Q
1: function Multiple Sampling(P, ˆP, 𝑁 )

2: Q ← ˆP
3: while |Q| > 𝑁 do
4: ( ˆ𝒇 , �̂�) ← arg min

( ˆ𝒇 ,�̂� ) ∈Q
CD of

ˆ𝒇 in P ∪ Q

5: Q ← Q\{( ˆ𝒇 , �̂�)}
6: end while
7: return Q
8: end function

solutions with the shortest Euclidean distance between them in

the objective space from Q. For each of the two found solutions,

we compute the distance to the second nearest solution and take

one with a shorter distance than another to be truncated. If two

distances to their second nearests are the same, we compute the

distances to their third nearests and so on. The purge of a single

solution from Q is repeated until its size |Q| gets 𝑁 . Method 4

returns Q with size 𝑁 as the sample result.

7 EXPERIMENTAL SETTINGS
7.1 Problem
We used the multi-objective building facility control problem with

two objectives: annual electricity consumption 𝑓1 (𝒙) and environ-

mental satisfaction 𝑓2 (𝒙).
As the known solution set P, we used |P | = 15 non-dominated

solutions obtained by executing the indicator-based evolutionary

algorithm (IBEA) [8, 16] to solve the problem. Note that we cannot

avoid executing evolutionary optimization to obtain non-dominated

solutions P used as the input of SMOA since the multi-objective

building facility control problem is a black box problem. Note that

the role of SMOA is to efficiently upconvert the Pareto front repre-

sentation of the known non-dominated solutions P.

7.2 Algorithms
We compared five solution generation methods.

Algorithm 5Method 3: Crowding Distance Based Iterative Sam-

pling

Require: Known candidate solutions (training data)

P = {(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }, Estimated solution set

ˆP = {( ˆ𝒇 1, �̂�1), ( ˆ𝒇 2, �̂�2), . . . }, Newly evaluated solution

set P′ = {(𝒇 1′, 𝒙1′), (𝒇 2′, 𝒙2′), . . . }
Ensure: Single sampled estimated solution ( ˆ𝒇 , �̂�)
1: function Single Sampling(P, ˆP,P′)
2: return ( ˆ𝒇 , �̂�) ← arg max

( ˆ𝒇 ,�̂� ) ∈ ˆP
CD of ( ˆ𝒇 , �̂�) in P ∪ P′ ∪ ( ˆ𝒇 , �̂�)

3: end function

Algorithm 6 Method 4: Truncation Method Based One-Time Sam-

pling

Require: Known candidate solutions (training data)

P = {(𝒇 1, 𝒙1), (𝒇 2, 𝒙2), . . . }, Estimated solution set

ˆP = {( ˆ𝒇 1, �̂�1), ( ˆ𝒇 2, �̂�2), . . . }, Sample size 𝑁

Ensure: Sampled estimated solutions Q
1: function Multiple Sampling(P, ˆP, 𝑁 )

2: Q ← ˆP
3: while |Q| > 𝑁 do
4: ( ˆ𝒇 , �̂�) ← Truncation(Q)
5: Q ← Q\{( ˆ𝒇 , �̂�)}
6: end while
7: return Q
8: end function

The first method is based on evolutionary variations. We com-

puted the IBEA-based fitness [16] for each known solution in P. We

selected two parents based on a binary tournament selection using

fitness and applied the simulated binary crossover (crossover ratio

1.0, distribution index 20) and the polynomial mutation (mutation

ratio 1/𝑑=0.0625, distribution index 20) [2]. We repeated it until

obtaining 𝑁 = 50 of newly generated solutions P′. It should be

noted that this method involves randomness.

The remaining four methods are SMOA variants, Methods 1–4.

Each method obtained 𝑁 = 50 of newly generated solutions P′. As
a large 𝐿1 unit vector set E for the Pareto front and Pareto set esti-

mations, we employed |E | = 10, 001 of 𝐿1 unit vectors generated by

the simplex lattice design [1] with division parameter 𝐻 = 10, 000.

That is, the upconverted Pareto front and Pareto set were respec-

tively represented by |E | = 10, 001 points. We utilized the MATLAB

Kriging Toolbox [9] and PlatEMO [15] for the implementation.

7.3 Metric
Hypervolume (𝐻𝑉 ) [18] was used to assess the quality of the Pareto
front approximation. 𝐻𝑉 treating𝑚 = 2 objectives is an area en-

closed by solutions for the Pareto front approximation and a domi-

nated reference point 𝒓 in the objective space. The larger the 𝐻𝑉 ,

the better the Pareto front approximation. In general, the conver-

gence, diversity, uniformity, and number of solutions affect 𝐻𝑉 .

In particular, in this study, the last three aspects strongly affect

𝐻𝑉 because the convergence is almost satisfied by the known solu-

tion set P. In this study, we normalized the objective values into
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(c) Method 3
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(d) Method 4

Figure 4: Distribution of sampled estimated solutions Q by SMOA variants
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(c) Method 3
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(d) Method 4

Figure 5: Distribution of the newly generated solutions P′ by SMOA variants

[0,1]
𝑚=2

involving all the obtained solutions and calculated 𝐻𝑉

with 𝒓 = (1.0, 1.0).

8 RESULTS AND DISCUSSION
8.1 Distribution of Sampled Estimated Solutions
In Figs. 4 (a)–4 (d), the known solution set P is in blue, the esti-

mated Pareto front
ˆP is in gray, the sampled solution set Q of each

of Methods 1–4 is respectively in different colors.

Fig. 4 (a) shows that most of the sampled estimated solutions Q
by Method 1 are distributed in the central area of the Pareto front.

Confidence levels in the central area of the convex Pareto front

tend to be high [11] since the Pareto front is estimated using 𝐿1

unit vectors. This would affect the result in this work.

Figs. 4 (b) and 4 (c) show that the sampled estimated solutions

Q by Methods 2 and 3 are distributed in the less-crowded areas of

the known solution set P. Methods 2 and 3 sample the estimated

solutions Q from the estimated solution set
ˆP by considering the

distribution of the known solution set P. However, we see that

Method 3 intensively samples estimated solutions around (𝑓1, 𝑓2) =
(1.3,−0.31), (𝑓1, 𝑓2) = (1.4,−0.325) in the objective space. Method

3 iteratively samples a single estimated solution while updating the

estimation models with its evaluated one. If the sampled estimated

objective vector and its true objective vector are distanced due to
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Figure 6: Distribution of the newly generated solutions P′
by evolutionary variations

the accuracy of the estimation models, these intensive samplings

arise.

Fig. 4 (d) shows that the sampled estimated solutions Q by

Method 4 are distributed with a high uniformly for the known

solution set P in the objective space. This is because Method 4

uniformly samples the estimated solutions Q from the estimated

solution set
ˆP without considering the distribution of the known

solution set P.
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Table 2: 𝑯𝑉 of newly generated set P′

Method 1 Method 2 Method 3 Method 4 Evolutionary variations

0.71864 0.76663 0.73466 0.76839 0.75681

Table 3: 𝑯𝑉 of known and newly generated sets P ∪ P′

Method 1 Method 2 Method 3 Method 4 Evolutionary variations

0.76848 0.76852 0.76838 0.76841 0.76806

8.2 Distribution of Newly Generated Solutions
Figs. 5 (a)–5 (d) shows 𝑁 = 50 of newly generated solutions P′
by SMOA variants respectively with Methods 1–4. Fig. 6 shows

𝑁 = 50 of newly generated solutions P′ by evolutionary varia-

tions of crossover and mutation. ⃝ are feasible solutions and × are

infeasible solutions.

Fig. 6 shows that the evolutionary variations generate many

solutions dominated by the known solution set P. This is because
crossover and mutation have randomness, even parents in the

known solution set P have good objective values.

Figs. 5 (a)–5 (d) show that SMOAs generate dominated solu-

tions less than those of the evolutionary variations. SMOAs gen-

erate many non-dominated solutions that are distributed around

the known solution set P. These results reveal that SMOAs can

generate well-distributed solutions upconverting the Pareto front

representation with a limited number of solution generations com-

pared to evolutionary variations. However, even SMOA generates

infeasible solutions. This suggests that the multi-objective building

facility control problem has promising areas in terms of objective

values around the border of feasible and infeasible areas in the vari-

able space. Another reason is that SMOAs do not have any special

mechanism to obtain feasible solutions.

From Figs. 4 (a)–4 (d) and Figs. 5 (a)–5 (d), we see that distri-
butions between the sampled estimated solutions and their eval-

uated solutions are distanced. Especially in the range of 𝑓2 =

[−0.24,−0.15], we sampled estimated solutions Q as shown in Figs.
4 (a)–4 (d). However, their evaluated solutions are not there actually
as shown in Figs. 5 (a)–5 (d). Thus, the accuracy of the estimation

models depends on each part of the Pareto front and the Pareto set.

8.3 Quantitative Comparison Using HV
Table 2 shows 𝐻𝑉 of newly generated solution set P′ without
the known solution set P. Table 3 shows 𝐻𝑉 of the combined

set P ∪ P′ of the known solution set P and the newly generated

solution set P′. Only for evolutionary variations, the tables show

the average values of 31 runs.

From Table 2, we can see that Method 4 using the SPEA2-based

truncation mechanism achieves the highest 𝐻𝑉 among the five

methods when we only assess the newly generated solution set P′.
This is because Method 4 samples the estimated solutions without

considering the distribution of the known solution set P, which is

distributed biasedly in the objective space. Methods 1 and 3 show

lower 𝐻𝑉 values than that of evolutionary variations since the

newly generated solution with the minimum 𝑓1 was infeasible as

shown in Figs. 5 (a) and 5 (c), respectively. Although effects of

Methods 1 and 3 may be under-evaluated from their 𝐻𝑉 values

due to the infeasible solution with the minimum 𝑓1, we see their

newly generated solutions are well-distributed around the rage 𝑓2 =

[−0.24,−0.35] respectively shown in Figs. 5 (a) and 5 (c) compared

to those of evolutionary variations shown in Fig. 6.
From Table 3, we can see that 𝐻𝑉 values of Methods 1–4 based

on SMOA are higher than those of the evolutionary variations. This

result quantitatively reveals that SMOA-based solution generations

can efficiently generate better solutions than evolutionary varia-

tions involving randomness in the multi-objective building facility

control problem with the known solution set P. Also, we can see

that Method 2 achieves the highest 𝐻𝑉 among the five methods

when we assess the combined set P ∪ P′ of the known solution

set P and the newly generated solution set P′. Methods 2, which

considers the distribution of the known solution set P, achieves
a higher 𝐻𝑉 than Method 4 without considering this. Method 2

samples estimated solutions Q all at once, and Method 3 iteratively

samples a single estimated solution and updates the estimation

models. Although Method 3 is expected to be better in terms of al-

gorithmic aspects, Method 2 is superior to Method 3 quantitatively

in this case. The number of known solutions and the accuracy of

the estimation models would affect the results. In Method 3, if the

true objective vector of the sampled estimated objective vector is

distanced, it would result in this case.

9 CONCLUSIONS
In this work, we aimed to verify the effects of the supervised multi-

objective optimization algorithm (SMOA) in the multi-objective

building facility problem as a real-world problem. Also, we pro-

posed and compared four methods to sample promising solutions

to be evaluated from the estimated Pareto front. The experimental

results showed that SMOAs could generate better solutions in terms

of objective value than evolutionary variations using crossover and

mutation frequently used in evolutionary algorithms, and efficiently

improve the quality of the Pareto front approximation with a lim-

ited number of solution generations. When we required the Pareto

front approximation quality by newly generated solutions only,

Method 4, based on truncation method in SPEA2 without consider-

ing the distribution of the known solution set, achieved the best.

When we required the Pareto front approximation quality by the

newly generated solutions and the known ones, Method 2, based

on crowding distance-based one-time sampling by considering the

distribution of the known solution set, achieved the best.

In future work, we will verify the effects of SMOA by varying

the number of known solutions and accuracy of their estimation

models. In addition, we will observe the accuracy transition of the

estimation models in the iterative SMOA over time. Furthermore,

we will study a method to estimate feasible regions in the variable

space.
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