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Figure 1: Overview of an optimisation system that Keeps Learning

ABSTRACT
We consider optimisation in the context of the need to apply an

optimiser to a continual stream of instances from one or more

domains, and consider how such a system might ‘keep learning’: by
drawing on past experience to improve performance and learning

how to both predict and react to instance and/or domain drift.
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1 MOTIVATION
Combinatorial problems are ubiquitous across many sectors where

delivering optimised solutions can lead to considerable economic
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benefits in many fields, e.g. in logistics, manufacturing, and sched-

uling. In many scenarios, optimisation algorithms are repeatedly

applied to instances from a domain. For example, in routing appli-

cations such as online delivery, routes might be produced many

times a day in response to demand, while in factories, processes on

machines need to be repeatedly scheduled based on customer or-

ders. In these types of domain, the frequency with which instances

occur (and need to be solved) can also vary widely across domains,

ranging from many times a day to longer timescales. We argue that

optimisation in the context of continually arriving instances (i.e.

streaming data) offers a unique opportunity for an optimiser to

learn:

• Over time, a rich history of data is accumulated, comprising

of at minimum the instance data, the solution and the algo-

rithm used to solve it. Therefore this information could be

mined and exploited in order to improve existing solvers

• The characteristics of the stream of instances are likely to

change over time, given that the world in which we oper-

ate is intrinsically dynamic. Optimisers could therefore au-

tonomously learn to recognise change (whether it is gradual

or sudden) and adapt accordingly

If optimisers are not capable of learning after deployment, then

in the best case this leads to systems that deliver sub-optimal per-

formance, while at worst, systems that are completely unfit for

purpose. Therefore, in this position paper we discuss the questions

of when to learn, what to learn and address the question of how to

learn in the context of optimisers applied to a continual stream of

instances. The discussion is separated into two parts. In the first,

we discuss how optimisers might learn from experience. We follow

this with a discussion of how optimisers can recognise change in

an instance stream and react accordingly.

2 LEARNING FROM EXPERIENCE
In the machine-learning community, Silver [8] noted a decade ago

that “.. it is now appropriate for the AI community to move beyond
learning algorithms to more seriously consider the nature of systems
that are capable of learning over a life time”. While the ML com-

munity has embraced this challenge, for example via continual
learning and transfer learning [7] — learning a new task through

the transfer of knowledge from a related task
1
that has already

been learned — it is much less common in optimisation. We suggest

that knowledge can be transferred at multiple levels. For instance,

an algorithm configuration; an initial starting solution (i.e. warm-

starting [4]); partial solutions (i.e. fragments of a good solution);

at the operator level (e.g. specific mutation operators or sequences

of operator applications). While algorithm-configuration methods

have received some attention in the literature, population-based

meta-heuristic optimiser tend to start a search from scratch each

time a new instance appears, assuming zero prior knowledge about

the task at hand. Recently, there has been growing interest in the

field of evolutionary transfer optimisation (ETO) [12]: a paradigm

that integrates meta-heuristic solvers with knowledge learning and

transfer methods across related instances and domains
2
to either

1
We interpret the term ‘task’ to apply either a new instance, a new objective function

or a new domain

2
typically referred to as multi-task optimisation in the literature

improve efficiency or performance. Part of the challenge is of course

deciding what information to transfer. Another pertinent question

is ‘when is an instance sufficiently like a previous one that informa-

tion can usefully be transferred’. Often this is tackled by extracting

human-designed features from an instance (either based on the

instance data or its fitness landscape).

Furthermore, meta-heuristic approaches expect handcrafted rep-

resentations tailored to the problem at hand, which makes them

unable to learn about the effects of different representations. How-

ever, novel systems [2, 6] can reformulate a domain into different

representations and select one automatically. This means it is now

possible to learn from previous selections, which should inform

future decisions. These tools can tap into a large variety of gen-

eral systematic solvers, such as constraint and SAT solvers, Linear

Programming solvers, and Satisfiability Modulo Theory solvers by

translating the problem to the appropriate input language. Given

the right reformulation and configuration, these solvers can poten-

tially tackle combinatorial problems in a wide range of domains.

We suggest that this is better tackled by understanding similar-

ities/differences from multiple points of view by looking at the

interactions between instances, representations and solvers rather

than just features. Clearly, there is much potential for future work

in this area, focusing on the what, how and when of choosing to

transfer information.

3 LEARNING TO ADAPT
We suggest that it is essential that optimisers that face continual

streams of instances to optimise are able to adapt to unknown data.

On the one hand, a system should be able to deal with instances

from a domain that lies in a region of an instance-space [10] that

is outwith the known footprint of an algorithm or portfolio: here

we should also be able to distinguish between drift (the instance
lies close to known regions) and surprise (the instance lies in a

completely new region). On the other hand, it should ideally also

be able to deal with instances from a completely different domain.

This has two challenges. The first is related to how to detect

whether an instance lies in an unknown region or in a new domain,

and secondly how to deal with these scenarios. With respect to

the former, instance-space analysis techniques [10] offer a visual

way to detect drift or surprise, but have some shortcomings [9].

Anomaly-detection methods derived from the ML community may

also have a role to play here, particularly if they can quantify the

magnitude of change [5]. Detecting domain drift is more challeng-

ing: a minimal requirement for this would be to have a common

representation that can be used across multiple domains. One way

to facilitate this is via the use of high-level constraint specification

languages such as Essence [3], which allows a combinatorial (op-

timisation) problem to be specified at a level of abstraction above

that at which modelling decisions are made, and potentially enables

one domain to be transformed into another at this level. Change

at a lower level might be dealt with by parameter tuning for a

given solver. On the other hand, significant change may involve

updating a portfolio or automated-algorithm generation techniques

[11]. Going even further, a system should also be able to predict
change, i.e. be proactive rather than reactive. If this can be achieved

(e.g. by tracking trajectories through instance-space), then this can
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be tackled by first generating new instances in predicted regions

of space [1], and secondly, using automated-algorithm generation

techniques as suggested above.

4 CONCLUSION
In summary, this short position paper suggests that optimisation

systems should:

• Learn from experience (therefore improving over time), in-

cluding learning across domains

• React seamlessly to drift and surprise with respect to a stream

in instances from a domain

• Be able to handle completely new tasks from unseen domains

There are many avenues of current research within both the

meta-heuristic and constraint-based programming community that

tackle pieces of this jigsaw that can be drawn upon and adapted to

create the utopian optimisation system we envisage. It also seems

clear that this needs to be an interdisciplinary effort, particularly

drawing in techniques from the ML community in continual and

multi-task learning and anomaly detection.
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