
Evidence that PUBO outperforms QUBO when solving
continuous optimization problems with the QAOA
Jonas Stein

jonas.stein@ifi.lmu.de
LMU Munich

Munich, Bavaria, Germany

Farbod Chamanian
LMU Munich

Munich, Bavaria, Germany
farbod.ch.96@gmail.com

Maximilian Zorn
LMU Munich

Munich, Bavaria, Germany
maximilian.zorn@ifi.lmu.de

Jonas Nüßlein
LMU Munich

Munich, Bavaria, Germany
jonas.nuesslein@ifi.lmu.de

Sebastian Zielinski
LMU Munich

Munich, Bavaria, Germany
sebastian.zielinski@ifi.lmu.de

Michael Kölle
LMU Munich

Munich, Bavaria, Germany
michael.koelle@ifi.lmu.de

Claudia Linnhoff-Popien
LMU Munich

Munich, Bavaria, Germany
linnhoff@ifi.lmu.de

ABSTRACT
Quantum computing provides powerful algorithmic tools that have
been shown to outperform established classical solvers in specific
optimization tasks. A core step in solving optimization problems
with known quantum algorithms such as the Quantum Approxi-
mate Optimization Algorithm (QAOA) is the problem formulation.
While quantum optimization has historically centered around Qua-
dratic Unconstrained Optimization (QUBO) problems, recent stud-
ies show, that many combinatorial problems such as the TSP can be
solved more efficiently in their native Polynomial Unconstrained
Optimization (PUBO) forms. As many optimization problems in
practice also contain continuous variables, our contribution in-
vestigates the performance of the QAOA in solving continuous
optimization problems when using PUBO and QUBO formulations.
Our extensive evaluation on suitable benchmark functions, shows
that PUBO formulations generally yield better results, while requir-
ing less qubits. As the multi-qubit interactions needed for the PUBO
variant have to be decomposed using the hardware gates available,
i.e., currently single- and two-qubit gates, the circuit depth of the
PUBO approach outscales its QUBO alternative roughly linearly
in the order of the objective function. However, incorporating the
planned addition of native multi-qubit gates such as the global
Mølmer-Sørenson gate, our experiments indicate that PUBO out-
performs QUBO for higher order continuous optimization problems
in general.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

CCS CONCEPTS
•Hardware→Quantumcomputation; •Mathematics of com-
puting → Continuous functions.

KEYWORDS
Quantum Computing, Continuous Optimization, QAOA, QUBO,
PUBO

ACM Reference Format:
Jonas Stein, Farbod Chamanian, Maximilian Zorn, Jonas Nüßlein, Sebastian
Zielinski, Michael Kölle, and Claudia Linnhoff-Popien. 2023. Evidence that
PUBO outperforms QUBO when solving continuous optimization problems
with the QAOA. In Genetic and Evolutionary Computation Conference Com-
panion (GECCO’23 Companion), July 15–19, 2023, Lisbon, Portugal. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Solving optimization problems is a central task in industries in-
volving domains like production and logistics. Many of these prob-
lems concern scheduling, routing, packing and others, which are
often NP-hard and thus demand for heuristic solvers. A particu-
larly promising approach to solving such optimization problems
is quantum computing, which has already shown results compa-
rable to classical state-of-the-art methods for small problem sizes
[Albash and Lidar 2018; Denchev et al. 2016; Ebadi et al. 2022]
despite current quantum hardware limitations. For a significant
period of time, quantum optimization was driven by D-Wave Sys-
tem’s Quantum Annealing devices, which are technically limited
to solving problems written in Quadratic Unconstrained Binary
Optimization (QUBO) form. This restriction was subsequently lifted
in the Quantum Approximate Optimization Algorithm (QAOA) by
Farhi et al., which essentially simulates the process of Quantum
Annealing on a quantum gate computer and allows for additional
generalization using the larger capabilities of a universal quantum
computer [Farhi et al. 2014].

ar
X

iv
:2

30
5.

03
39

0v
1

 [
qu

an
t-

ph
]

 5
 M

ay
 2

02
3

https://orcid.org/0000-0001-5727-9151
https://orcid.org/0009-0002-3027-8241
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Stein et al.

One particularly powerful generalization of the QAOA is its
ability to solve higher order polynomial problems, i.e., it can na-
tively work with Polynomial Unconstrained Binary Optimization
(PUBO) problems. Instead of having to quadratize the a PUBO
problem into QUBO form using ancillary qubits as is necessary for
D-Wave’s Quantum Annealers, needed multi-qubit interactions can
bemodelled using quantum gates [Nielsen and Chuang 2010].While
current quantum computers generally only support single- and two-
qubit gates, e.g., trapped ion quantum computers are expected to
implement multi-qubit gates such as the (global) Mølmer-Sørenson
gate in the future1. Such gates will allow the execution of the qubit
interactions necessary to model PUBO problems in constant time
without the currently needed decomposition in two- and single-
qubit gates [Maslov and Nam 2018], which scales linearly in the
number of qubits involved.

While some binary, combinatorial optimization problems like
Max-Cut or Number Partitioning are formulated in terms of QUBO
natively, modelling intrinsically non-binary problems like the TSP
for QUBO requires special encoding techniques like the one-hot
encoding, which increase the search space beyond exigence [Salehi
et al. 2022]. For problems like these, it has been shown that their
PUBO versions generally outperform their QUBO analogues in
terms of solution quality as well as the required number of opti-
mization steps and QAOA iterations [Salehi et al. 2022; Tabi et al.
2020].

As many NP-hard problems such as scheduling or packing also
involve continuous variables in higher order terms frequently in
application [Floudas and Lin 2005], we set out to compare the
performance of PUBO and QUBO formulations for the QAOA on
continuous optimization problems. Our two core contributions to
this investigation are:

• an implementation of the QAOA capable of solving arbitrary
polynomial optimization problems, that allows control over
the used bit depth and the domains of the input variables,
and

• an in-depth case-study evaluating the performance of PUBO
and QUBO problem formulations on two established, con-
tinuous optimization benchmark functions.

This paper is structured into five sections. Following this intro-
duction, we visit fundamental background knowledge necessary to
comprehend our methodology in section 2. Section 3 subsequently
contains a detailed description of the concept used to solve higher
order continuous optimization problems with the QAOA. Finally,
the established approach is applied to conduct the aspired evalua-
tion in section 4 while concluding with a contextualization of the
acquired results in section 5.

2 BACKGROUND
In this section, we describe the overall functionality of the QAOA
and its initial motivation to get an overview of all its components
possibly influencing the evaluation results.

The QAOA is inspired by Adiabatic Quantum Computing (AQC),
which is an alternative paradigm of quantum computing besides
the omnipresent Quantum Gate Model (QGM). The main difference
of AQC to the QGM resides in its time evolution being inherently
1https://ionq.com/docs/getting-started-with-native-gates

continuous instead of iteratively applying discrete gates, as done in
the QGM. Drawing upon the adiabatic theorem, which essentially
states that a physical system stays in its instantaneous eigenstate
whenever the time evolution applied to it happens slowly enough
and if there is a gap between the corresponding eigenvalue and
the rest of the Hamiltonian’s spectrum [Born and Fock 1928], an
optimization algorithm can be formulated as:

(1) Prepare an initial state |𝜓 ⟩ that is the ground state of a known
Hamiltonian 𝐻̂𝑀 .

(2) Identify a Hamiltonian 𝐻̂𝐶 modelling the objective function
𝑓 : {0, 1}𝑛 → R where the eigenstates represent possible
solutions to the input problem. The eigenvalues that corre-
spond to the eigenstates embody the objective values of the
respective solution.

(3) Gradually evolve the initial state to the ground state of 𝐻̂𝐶

corresponding to the global optimum of 𝑓 by applying the
Hamiltonian 𝐻̂ (𝑡) = (1 − 𝑡) 𝐻̂𝑀 + 𝑡𝐻̂𝐶 .

The standard choice for the Hamiltonian 𝐻̂𝑀 is 𝐻̂𝑀 B −∑𝑛
𝑖=1 𝜎

𝑥
𝑖

which inherits the easy to prepare ground state |+⟩⊗𝑛 , where 𝜎𝑥
𝑖

denotes the tensor product of 𝑛 − 1 identity matrices 𝐼 with the
Pauli operator 𝜎𝑥 at the 𝑖-th position. For 𝐻̂𝐶 , a possible defini-
tion is 𝐻̂𝐶 B

∑
𝑥 ∈{0,1}𝑛 𝑓 (𝑥) |𝑥⟩ ⟨𝑥 | as this trivially matches its

requirements stated above.
While Quantum Annealers are built to execute the procedure de-

scribed in item 3 for any given Ising Hamiltonian2 𝐻̂𝐶 =
∑
𝑖 ℎ𝑖𝜎

𝑧
𝑖
+∑

𝑖< 𝑗 𝐽𝑖 𝑗𝜎
𝑧
𝑖
𝜎𝑧
𝑗
, discretization andHamiltonian simulation techniques

must be used to implement this time evolution in the QGM, which is
the fundamental idea of the QAOA. The continuous time evolution
of 𝐻̂ (𝑡) is discretized by iteratively simulating the time evolution
of the Hamiltonians 𝐻̂ (𝑡𝑘) with equidistant 𝑡𝑘 ∈ [0, 1] strictly in-
creasing from 0 to 1 and 𝑘 ∈ {1, ..., 𝑃}.

To perfectly approximate the continuous time evolution in the
limit for 𝑃 → ∞, each Hamiltonian 𝐻̂ (𝑡𝑘) is chosen to act for time
1/𝑝. However, especially for small 𝑃 , it is typically unclear how
quickly the time evolution should progress at each intermediate
Hamiltonian. In this context, it has proven useful to introduce pa-
rameters associated with the duration of their time evolution. These
parameters can then be used to, i.a., satisfy the conditions of the
adiabatic theorem, given that 𝑃 is big enough. Notably the concrete
implementations proposed for this parameterization use indepen-
dent parameters for both Hamiltonians: 𝛾𝑘 ∈ R for the Hamiltonian
𝐻̂𝐶 and 𝛽𝑘 ∈ R for the Hamiltonian 𝐻̂𝑀 . This allows for increased
flexibility, especially in the regime of low 𝑃 . For the optimization of
these parameters, many different approaches have been explored,
foremost gradient based techniques like the parameter shift rule in
combination with gradient descent [Mitarai et al. 2018], but also
other heuristic approaches focused on yielding results very quickly,
such as the COBYLA optimizer [Powell 1994].

The QAOA algorithm can thus be understood as an algorithm,
that simulates the time evolution of the Hamiltonian 𝐻̂ (𝑡) on gate

2Ising Hamiltonians represent the energy spectrum in a specific physical system. This
system is described by an Ising model, which is a mathematical model of ferromag-
netism in statistical mechanics. This Hamiltonian has the convenient property of
being isomorphic to the NP-hard quadratic programming problem and hence naturally
allows to model many interesting optimization problems with it.

https://ionq.com/docs/getting-started-with-native-gates

Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA GECCO ’23, July 15–19, 2023, Lisbon, Portugal

based quantum computers. It does so using parameters guiding the
time evolution speed as displayed in figure 1.

3 CONCEPT
In this section, we show how the QAOA can be used to solve higher
order continuous polynomial optimization problems. More specifi-
cally, we employ the following procedures:

(1) Discretization of the objective function
(2) Translating the objective function into a Hamiltonian
(3) Implementing the Hamiltonian using quantum gates

3.1 Discretization of the objective function
For discretizing a given objective function 𝑓 : [𝑎, 𝑏] → R with
𝑎 < 𝑏 ∈ R, we need to select a suitable bit encoding. For the
sake of simplicity, we choose the sign–magnitude representation
which maps any integer to its native binary encoding while initially
disregarding its sign, to then finally represent its sign using an extra
bit at the start, e.g.: 310 ↦→ 0 112 and −310 ↦→ 1 112. In addition to
that simplification, we also restrict the possible domain spaces of
each variable to be of the form]−2𝑛, 2𝑛 [where 𝑛 ∈ N, to alleviate
needed precautions for intervals that are unbalanced or away from
powers of two. This decision allows us to incorporate numbers
beyond the whole numbers in a straightforward manner, i.e., by
using standard floating point representation with a freely selectable
bit resolution 𝑚 ∈ N. The complete binary encoding of a given
𝑥 ∈]−2𝑛, 2𝑛 [and bit resolution𝑚 ∈ N can thus be described by
the following approximation:

𝑥 ≈ (2𝑥0 − 1)
(
𝑛∑︁
𝑖=1

2𝑛−𝑖𝑥𝑖 +
𝑚∑︁
𝑖=1

𝑥𝑛+𝑖2−𝑖
)

(1)

As desired, this discretization leads to the bit string representation
𝑥 ≈ 𝑥0 𝑥1 ...𝑥𝑛, 𝑥𝑛+1 ...𝑥𝑛+𝑚 , so that, e.g.,

]
−22, 22

[
∋ −2, 7510 ↦→

1 10, 1102 for a bit resolution of𝑚 = 3. Note however, that the bor-
ders of the domain space can only be approached when increasing
the bit resolution𝑚, while every additional bit contributes with
advancement of 1/2𝑚+1. Using this bit encoding, we can also repre-
sent functions with higher dimensional input spaces by following
the described substitution procedure for every dimension and then
concatenating the resulting bit strings.

3.2 Translating the objective function into a
Hamiltonian

As described in section 2, there is a native mapping between bi-
nary functions 𝑓 : {0, 1}𝑛 → R and Hamiltonians, i.e., 𝐻̂𝐶 B∑
𝑥 ∈{0,1}𝑛 𝑓 (𝑥) |𝑥⟩ ⟨𝑥 |. This method can be very inefficient how-

ever, if we only have access to 𝑓 as a black box function, because
the Hamiltonian can be comprised of exponentially many non-zero
terms. Given that we have access to 𝑓 in a white boxmanner, we can
conduct this mapping much more efficiently, i.e., by substituting
every 𝑥𝑖 ∈ {0, 1} with a 𝑠𝑖 ∈ {−1, 1} as in 𝑥𝑖 ↦→ (𝑠𝑖+1)/2. In the case
of 𝑓 having higher degree interactions than two in its input bits (i.e.,
e.g., a term like 𝛼𝑥0𝑥1𝑥2 with 𝛼 ∈ R), inserting a suitable quadrati-
zation step is obligatory for the QUBO version. Typically this step is
done before translating into the spin configuration domain {−1, 1}
by adding ancillary bits to the input space and a penalty term to

the function 𝑓 , as exemplified in equation 2. For details on this
quadratization step, we reference to the python package qubovert,
which we used for this step in our implementation3. Notably, find-
ing the optimal quadratization in terms of minimizing the number
of needed ancillary qubits is NP-hard, as pointed out in [Boros and
Hammer 2002].

𝑓 (𝑥0, 𝑥1, 𝑥2) = 𝛼𝑥0𝑥1𝑥2

↦→ 𝑓 (𝑥0, 𝑥1, 𝑥2, 𝑧) = 𝛼𝑧𝑥2 + 2𝛼 (𝑥0𝑥1 − 2 (𝑥0 + 𝑥1) 𝑧 + 3𝑧) (2)

In order to translate the resulting function of spin configurations
𝑓 ′ : {−1, 1}𝑛 → R into a quantum mechanical Hamiltonian, we can
simply substitute all spins 𝑠𝑖 with Pauli operators using the trivial
map 𝑠𝑖 ↦→ 𝜎𝑧

𝑖
. [Farhi et al. 2014]

3.3 Implementing the Hamiltonian using
quantum gates

To implement the quantum circuit of the QAOA, we have to conduct
Hamiltonian simulation of 𝐻̂𝑀 and 𝐻̂𝐶 . While 𝐻̂𝑀 can easily be
simulated using parameterized 𝑋 gates, 𝐻̂𝐶 involves higher order
terms (as e.g., 𝛼𝜎𝑧

𝑖
𝜎𝑧
𝑗
𝜎𝑧
𝑘
where 𝛼 ∈ R) for the PUBO variant. As

pointed out in [Glos et al. 2022], Hamiltonians of this form can be
simulated using the generic architecture shown in figure 2, naturally
expanding from the well-know quadratic case 𝛼𝜎𝑧

𝑖
𝜎𝑧
𝑗
. When having

access to a suitable multi-qubit gate such as the (global) Mølmer-
Sørenson gate, combining the information presented in figure 4.19
in [Nielsen and Chuang 2010] and figure 5 from [Maslov and Nam
2018], we can simulate arbitrary degrees of Pauli matrices using
one extra ancillary qubit with an overhead of merely two extra
circuit operations. As all terms in 𝐻̂𝐶 commute, the Hamiltonian
simulation simplifies into a concatenation of the gates used to
implement all terms in the sum notation of 𝐻̂𝐶 as exemplified in
figure 3, concluding this section.

3.4 Example
We now demonstrate how all described steps of transforming the
objective function into the corresponding QAOA circuit can be
done in practice using the following example:

𝑓 :
]
−22, 22

[
→ R (3)

𝑥 ↦→ 𝑥2 + 2𝑥 (4)

Choosing a zero bit resolution𝑚 = 0 for simplicity, the bit encoding
is displayed in the following map:

𝑥 ↦→ (2𝑥0 − 1)
(
21𝑥1 + 20𝑥2

)
. (5)

Therefore, 𝑓 can now be written in discretized form as follows:

𝑓 (𝑥0, 𝑥1, 𝑥2) =
(
(2𝑥0 − 1)

(
21𝑥1 + 20𝑥2

))2
+ 2 (2𝑥0 − 1)

(
21𝑥1 + 20𝑥2

)
=4 (4𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥1𝑥2) (6)

3https://github.com/jtiosue/qubovert

https://github.com/jtiosue/qubovert

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Stein et al.

. . .|0⟩⊗𝑛 𝐻 ⊗𝑛
𝑒

−𝑖
𝑝

(
𝛾1 (1−𝑡1)𝐻𝑀+𝛽1𝑡1𝐻̂𝐶

)
𝑒

−𝑖
𝑝

(
𝛾𝑝 (1−𝑡𝑝)𝐻𝑀+𝛽𝑝𝑡𝑝𝐻̂𝐶

)
|𝜓 (𝛽,𝛾)⟩

Figure 1: The general form of the QAOA circuit.

𝑅𝑧 (𝜃)

(a) Hamiltonian simulation of
𝜃

2
𝜎𝑧
0 𝜎

𝑧
1 .

𝑅𝑧 (𝜃)

(b) Hamiltonian simulation of
𝜃

2
𝜎𝑧
0 𝜎

𝑧
1 .

𝑅𝑧 (𝜃)

(c) Hamiltonian simulation of
𝜃

2
𝜎𝑧
0 𝜎

𝑧
1 𝜎

𝑧
2 .

Figure 2: Hamiltonian simulation of the components in the cost Hamlitonian 𝐻̂𝐶 .

This then translates to the spin configuration function 𝑓 ′ as de-
scribed in equation 7 below.

𝑓 ′ (𝑠0, 𝑠1, 𝑠2) =4
(
4
𝑠0 + 1
2

𝑠1 + 1
2

+ 𝑠0 + 1
2

𝑠2 + 1
2

+ 𝑠1 + 1
2

𝑠2 + 1
2

)
=4 (𝑠0𝑠1 + 𝑠0𝑠2 + 𝑠1𝑠2 + 2𝑠0 + 2𝑠1 + 2𝑠2 + 3) (7)

Using the mapping from a spin configuration function to a quantum
Hamiltonian as described in section 3.2, we get:

𝐻̂𝐶 = 4
(
𝜎𝑧0𝜎

𝑧
1 + 𝜎𝑧0𝜎

𝑧
2 + 𝜎𝑧1𝜎

𝑧
2 + 2𝜎𝑧0 + 2𝜎𝑧1 + 2𝜎𝑧2 + 3𝐼 ⊗3

)
(8)

Subsequently, we can use the combination of CNOT gates wrapping
a parameterized rotation gate 𝑅𝑧 (𝜃) applied on the target qubit to
construct the circuit simulating the Hamiltonian 𝐻̂𝐶 , as indicated
figure 3.

4 EVALUATION
To compare the performance of the QAOA for PUBO and QUBO
formulations of higher order continuous optimization functions, we
run experiments on two established benchmark functions (see fig-
ures 4a and 4b): The 1-Dimensional Styblinski-Tang function 𝑠 (𝑥) =
(𝑥4−16𝑥2+5𝑥)/2 (denoted as 1D-ST) [Styblinski and Tang 1990], and
the 2-Dimensional Rosenbrock function 𝑟 (𝑥,𝑦) = 100

(
𝑦 − 𝑥2

)2 +
(𝑥 − 1)2 (denoted as 2D-Rb) [Rosenbrock 1960]. These functions
where chosen for their different requirements in terms of the num-
ber of needed qubits to model them (for details see figure 8) and
their hardness4. Having to specify input domain spaces in which
the search for the optimal value is to be conducted, we choose the
interval]−4, 4[for the 1D-ST function and]−4, 4[2 for the 2D-Rb
function. These domain spaces allow us to find the global optimum
of each function and enable us to investigate many different bit
resolutions while staying within reasonable simulation times of
a couple of hours. More specifically, these input domains allow
exploring bit resolutions of 0 to 3 for the 1D-ST function and 0 to 1
for the 2D-Rb function.

In the following, we explore the performance differences between
the PUBO and QUBO approaches in terms of three criteria:

4According to the results fromGlobal Optimization Benchmarks and AMPGO by Andrea
Gavana, see http://infinity77.net/global_optimization/index.html

(1) The solution quality
(2) The parameter training
(3) The circuit width and depth

For all of the following experiments, we used Qiskit’s qasm sim-
ulator, the COBYLA optimizer because of its short runtime, and
1024 shots as a standard for all circuit runs. In addition to that,
we initialized all parameters using ramp initialization, as it con-
sistently showed the best results in our experiments. Notably, the
ramp initialization simply corresponds to the choosing equidis-
tantly spaced intervals for the discretized Hamiltonian simulation
described in section 2. Furthermore, we conducted our studies for
a very high number of QAOA iterations compared to related work,
i.e., 1 ≤ 𝑃 ≤ 40, as this allows for a better performance estimation
in terms of scaling.

4.1 Solution quality
To evaluate the solution quality of both approaches (PUBO and
QUBO), we now examine their performance at different bit reso-
lutions and varying QAOA iterations 𝑃 as exemplified in figure
5.

For figure 5a, we chose to display a baseline result, i.e., the 1D-ST
function at zero bit resolution, as this function is a QUBO problem
by nature. With both plots showing very similar behavior, it be-
comes apparent that PUBO performs completely analogously to
the QUBO for quadratic functions.

Examining figures 5b and 5c, we can see that the PUBO approach
consistently outperforms the QUBO approach for higher order func-
tions, as the expected value, the median and the overall variance are
significantly lower for PUBO. This becomes increasingly apparent
for the harder 2D-Rb function displayed in figure 5c, as we can see
that the QUBO approach essentially plateaus for increasing 𝑃 , while
the PUBO performance clearly benefits from higher 𝑃 . These results
are especially promising if this trend does continue for higher 𝑃 ,
which is to be explored in future work.

While these plots merely display exemplified results, our full
evaluation results clearly substantiate the trends visible in the se-
lected plots.

http://infinity77.net/global_optimization/index.html

Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA GECCO ’23, July 15–19, 2023, Lisbon, Portugal

State prep.

Parameterized Hamiltonian simulation of 𝐻̂𝐶

Parameterized Hamiltonian simulation of 𝐻̂𝑀

. . .

. . .

. . .

|0⟩ 𝐻 𝑅𝑧 (16𝛾1) 𝑅𝑥 (2𝛽1)

|0⟩ 𝐻 𝑅𝑧 (16𝛾1) 𝑅𝑧 (8𝛾1) 𝑅𝑥 (2𝛽1)

|0⟩ 𝐻 𝑅𝑧 (16𝛾1) 𝑅𝑧 (8𝛾1) 𝑅𝑧 (8𝛾1) 𝑅𝑥 (2𝛽1)

Figure 3: QAOA circuit implementation using single-qubit and CNOT-gates for the example in section 3.4 showing 𝑃 = 1
iterations.

<111
1>

<111
0>

<101
1>

<101
0>

<110
1>

<110
0>

<100
1>

<100
0>

<100
0>

<000
1>

<010
0>

<010
1>

<001
0>

<001
1>

<011
0>

<011
1>

-3.
5

-3.
0

-2.
5

-2.
0

-1.
5

-1.
0

-0.
5 0.00.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

x

40

35

30

25

20

15

10

5

0

f(x
)

(a) The 1D Styblinski-Tang function for a bit resolution of one.

x

3
2

1
0

1
2

3

y

3
2

1
0

1
2

3

f(x
,y)

0

2000

4000

6000

8000

10000

12000

14000

(b) The 2D Rosenbrock function for a bit resolution of zero.

Figure 4: Visualizations of benchmark functions used for the evaluation.

4.2 Parameter Training
Following the recommendation of [Team 2022], we select the CO-
BYLA optimizer to train the QAOA parameters. This optimizer has
a built in stopping criterion, terminating the learning process when
the last couple optimization iterations did not increase the objective
value above a specific threshold (in our case 1𝑒 − 4). To prevent this
procedure from exceeding a reasonable execution time, the user can
also specify a number of maximum possible iterations. We use this
functionality by capping the number of optimization steps at 1000,
relying on results from preliminary experiments that showed, that
almost no problem instances exceeded this number of optimization
iterations. This allows us to compare the number of optimization
steps between the PUBO and QUBO approaches unimpaired of
this hyperparameter, as almost all parameter trainings run until
completion.

Examining the number of optimization steps for different 𝑃
shown in figure 6, it becomes clear that both approaches need

roughly the same number of optimization steps. In general, we
can also observe that the number of optimization steps for the
Styblinski-Tang function is generally higher compared to the Rosen-
brock function. We suspect this being caused by the flatter land-
scape of the Rosenbrock function leading to below-threshold train-
ing improvements sooner. In addition to that, we can observe that
the QUBO approach has a tendency to decrease its ascend in train-
ing time earlier when the solution quality is worse than the PUBO
(which is the case for the 1D-ST function at a bit resolution of three,
as this function has a very similar plot to the one displayed in figure
6b).

When simulating quantum circuits using classical hardware,
execution times play an important role, as they limit what can
be learned about their properties such as scaling behavior using
non-quantum hardware. As displayed in figure 7, the training time
does not differ significantly if the function only has a small amount
of higher order terms involved (see figure 7a), while execution

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Stein et al.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
QAOA Ansatz Depth, P

40

35

30

25

20

15

10

5
Fu

nc
tio

n
Va

lu
e

Expectation Value (Mean)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
QAOA Ansatz Depth, P

Fu
nc

tio
n

Va
lu

e

Expectation Value (Mean)

(a) Results for the 1D-ST function with a bit resolution of zero.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
QAOA Ansatz Depth, P

40

35

30

25

20

15

10

5

0

Fu
nc

tio
n

Va
lu

e

Expectation Value (Mean)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
QAOA Ansatz Depth, P

Fu
nc

tio
n

Va
lu

e

Expectation Value (Mean)

(b) Results for the 1D-ST function with a bit resolution of one.

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
QAOA Ansatz Depth, P

0

1000

2000

3000

4000

5000

6000

7000

8000

Fu
nc

tio
n

Va
lu

e

Expectation Value (Mean)

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
QAOA Ansatz Depth, P

Fu
nc

tio
n

Va
lu

e

Expectation Value (Mean)

(c) Results for the 2D-Rb with a bit resolution of zero.

Figure 5: Box plots showing the quality of the solutions found using the QAOA for the QUBO (blue) and PUBO (red) approaches
for different numbers of QAOA iterations 𝑃 . The seeked global minimum for the Rosenbrock function is 0 and −39.16599 for
the Styblinksi-Tang.

Evidence that PUBO outperforms QUBO when solving continuous optimization problems with the QAOA GECCO ’23, July 15–19, 2023, Lisbon, Portugal

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
QAOA Ansatz Depth, P

0

200

400

600

800

1000

Nu
m

 o
f O

pt
im

ize
r I

ter
ati

on
s

['QUBO', 'ramp']
['PUBO', 'ramp']

(a) 1D-ST function at a bit resolution of zero.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
QAOA Ansatz Depth, P

0

200

400

600

800

1000

Nu
m

 o
f O

pt
im

ize
r I

ter
ati

on
s

['QUBO', 'ramp']
['PUBO', 'ramp']

(b) 1D-ST function at a bit resolution of three.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
QAOA Ansatz Depth, P

0

100

200

300

400

500

600

Nu
m

 o
f O

pt
im

ize
r I

ter
ati

on
s

['QUBO', 'ramp']
['PUBO', 'ramp']

(c) 2D-Rb function at a bit resolution of one.

Figure 6: Number of parameter training iterations for different numbers of QAOA iterations 𝑃 .

time increases massively for the QUBO approach the more qubits
are needed and the more higher order terms appear. Notably, that
difference is mostly dominated by the number of qubits involved
(13 for the QUBO formulation of 1D-ST at a bit resolution of three
versus the 17 qubits needed for the QUBO formulation of the 2D-Rb
function at a bit resolution of 1). This clearly demonstrates the
performance of PUBO for simulation on classical hardware, also
allowing for a deeper scaling analyses, which are very valuable in
practice.

4.3 Circuit width and depth
For the execution of the proposed approaches on real hardware,
two criteria are essential: the circuit width (i.e., the number of
qubits) and the circuit depth (i.e., the number of subsequent gate
operations). Figure 8 exemplifies the both using the 1D-ST function,
as it allows for a bigger scaling analysis in terms of bit resolution.

Before comparing the number of needed qubits for both ap-
proaches, we recall that the number of required qubits is entirely
determined by the bit depth and the dimensions of the input domain,
according to our chosen discretization. For PUBO, we can easily
calculate the number of required qubits by adding up the number
of bits used to represent each dimension of the input domain. For
QUBO we can calculate this number by determining the number
of required ancillary qubits and adding it to the number of qubits
required for the PUBO formulation as a result of the quadratiza-
tion. The number of ancillary qubits however relies heavily on the
exact function and the techniques used for quadratization. We used
a combination of different techniques based on the python pack-
age qubovert5 and boolean algebra simplifications. The resulting
number of qubits for the 1D-ST function are displayed in figure
8. Comparing the PUBO and QUBO approaches, we can clearly
see a higher number of needed qubits in the QUBO variant, which
gradually increases with bit resolution, as the number of qubic and
quartic terms accumulate according to the chosen discretization, as
described in section 3.1.

Continuing with the circuit depth (also displayed in figure 8),
we can observe a clear disadvantage of the PUBO approach when
executed on a device that doesn’t inherit a suitable gate set: While
the QUBO’s overall circuit depth at the highest complexities caps

5https://github.com/jtiosue/qubovert

at less than 1400, the PUBO’s overall depth reaches around 4000.
The substantially higher circuit depth for current hardware raises
an important potential drawback when deciding on whether to
incorporate PUBO on current NISQ devices, where gate-fidelity is a
significant constraint. For future quantum computers implementing
suitable multi-qubit gates however, the scaling in terms of circuit
depth would roughly equal that of the QUBO approach. Possibly,
even less gates might be needed, as no interactions with ancillary
qubits are needed. Another promising observation is the easier
use of classical circuit simulators in PUBO, as they can generally
provide arbitrary gate sets and thus allow for even shorter circuits
while also needing fewer qubits.

5 CONCLUSION
The conducted experiments clearly indicate that PUBO formula-
tions achieve superior result quality over their quadratized QUBO
analogues for continuous polynomial objective functions of a higher
order. Until suitable multi-qubit gates become available, this mani-
fests in a trade-off between the number of needed qubits (linearly
higher for QUBO) and the circuit depth (linearly higher for PUBO).
In terms of parameter training steps, both approaches performed
equally. When using a quantum circuit simulator however, the wall-
clock times for the PUBO formulations showed much better results,
most probably because of the lower number of qubits that need to
be simulated. For NISQ hardware, the performance difference is
still mostly unclear and should be investigated in future work. We
expect a strong dependence on the objective function, the input
domain and bit resolution as well as their interplay with the error
rates to be decisive. Finally, in the future we plan on exploring the
combination of our findings with the existing positive results on
using PUBO for combinatorial optimization problems to investigate
the performance of PUBO formulations for NP-hard mixed integer
problems.

ACKNOWLEDGMENTS
This work was partially funded by the German BMWK project
QCHALLenge (01MQ22008A). The authors want to thank Johannes
Kolb for his contributions to this research.

https://github.com/jtiosue/qubovert

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Stein et al.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
QAOA Ansatz Depth, P

0

200

400

600

800

1000

Op
tim

iza
tio

n
(p

ro
c)

 T
im

e [
se

co
nd

s]

['QUBO', 'ramp']
['PUBO', 'ramp']

(a) 2D-Rb function at a bit resolution of zero.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
QAOA Ansatz Depth, P

0

500

1000

1500

2000

2500

Op
tim

iza
tio

n
(p

ro
c)

 T
im

e [
se

co
nd

s]

['QUBO', 'ramp']
['PUBO', 'ramp']

(b) 1D-ST, at a bit resolution of three.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
QAOA Ansatz Depth, P

0

2000

4000

6000

8000

10000

12000

14000

Op
tim

iza
tio

n
(p

ro
c)

 T
im

e [
se

co
nd

s]

['QUBO', 'ramp']
['PUBO', 'ramp']

(c) 2D-Rb, at a bit resolution of one.

Figure 7: Wall-clock training time of the QAOA parameters for different numbers of QAOA iterations 𝑃 .

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
QAOA Ansatz Depth, P

0
1
2
3
4
5
6
7
8
9

10
11
12
13

[-
]

Nu
m

 o
f Q

ub
its

0

200

400

600

800

1000

1200

1400

[
]

Ci
rc

ui
t D

ep
th

 (P
os

t-T
ra

ns
pi

le)

Bit Resolution: 0
Bit Resolution: 1
Bit Resolution: 2
Bit Resolution: 3

(a) 1D-ST, QUBO

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
QAOA Ansatz Depth, P

0

1

2

3

4

5

6

[-
]

Nu
m

 o
f Q

ub
its

0

500

1000

1500

2000

2500

3000

3500

4000

[
]

Ci
rc

ui
t D

ep
th

 (P
os

t-T
ra

ns
pi

le)

Bit Resolution: 0
Bit Resolution: 1
Bit Resolution: 2
Bit Resolution: 3

(b) 1D-ST, PUBO

Figure 8: Number of required qubits and circuit depth for different numbers of QAOA iterations 𝑃 and bit resolutions. The
circuit depth is calculated after a transpilation targeted towards a gate set without multi-qubit gates beyond CNOTs.

REFERENCES
Tameem Albash and Daniel A. Lidar. 2018. Demonstration of a Scaling Advantage for

a Quantum Annealer over Simulated Annealing. Phys. Rev. X 8 (Jul 2018), 031016.
Issue 3. https://doi.org/10.1103/PhysRevX.8.031016

M Born and V Fock. 1928. Beweis des Adiabatensatzes. Zeitschrift für Phys. 51, 3 (1928),
165–180. https://doi.org/10.1007/BF01343193

Endre Boros and Peter L. Hammer. 2002. Pseudo-Boolean optimization. Discrete Applied
Mathematics 123, 1 (2002), 155–225. https://doi.org/10.1016/S0166-218X(01)00341-9

Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim
Smelyanskiy, John Martinis, and Hartmut Neven. 2016. What is the Computational
Value of Finite-Range Tunneling? Phys. Rev. X 6 (Aug 2016), 031015. Issue 3.
https://doi.org/10.1103/PhysRevX.6.031015

S. Ebadi, A. Keesling, M. Cain, T. T. Wang, H. Levine, D. Bluvstein, G. Semeghini, A.
Omran, J.-G. Liu, R. Samajdar, X.-Z. Luo, B. Nash, X. Gao, B. Barak, E. Farhi, S.
Sachdev, N. Gemelke, L. Zhou, S. Choi, H. Pichler, S.-T. Wang, M. Greiner, V. Vuletić,
and M. D. Lukin. 2022. Quantum optimization of maximum independent set using
Rydberg atom arrays. Science 376, 6598 (2022), 1209–1215. https://doi.org/10.1126/
science.abo6587 arXiv:https://www.science.org/doi/pdf/10.1126/science.abo6587

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A Quantum Approximate
Optimization Algorithm. arXiv:1411.4028 [quant-ph]

Christodoulos A Floudas and Xiaoxia Lin. 2005. Mixed Integer Linear Programming in
Process Scheduling: Modeling, Algorithms, and Applications. Ann. Oper. Res. 139, 1
(2005), 131–162. https://doi.org/10.1007/s10479-005-3446-x

Adam Glos, Aleksandra Krawiec, and Zoltán Zimborás. 2022. Space-efficient binary
optimization for variational quantum computing. npj Quantum Inf. 8, 1 (2022), 39.
https://doi.org/10.1038/s41534-022-00546-y

Dmitri Maslov and Yunseong Nam. 2018. Use of global interactions in efficient quantum
circuit constructions. New Journal of Physics 20, 3 (mar 2018), 033018. https:
//doi.org/10.1088/1367-2630/aaa398

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. 2018. Quantum circuit learning.
Physical Review A 98, 3 (sep 2018). https://doi.org/10.1103/physreva.98.032309

Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press. https://doi.
org/10.1017/CBO9780511976667

M. J. D. Powell. 1994. A Direct Search Optimization Method That Models the Objective
and Constraint Functions by Linear Interpolation. Springer Netherlands, Dordrecht,
51–67. https://doi.org/10.1007/978-94-015-8330-5_4

H. H. Rosenbrock. 1960. An Automatic Method for Finding the Greatest or Least Value
of a Function. Comput. J. 3, 3 (01 1960), 175–184. https://doi.org/10.1093/comjnl/3.3.
175 arXiv:https://academic.oup.com/comjnl/article-pdf/3/3/175/988633/030175.pdf

Özlem Salehi, Adam Glos, and Jarosław Adam Miszczak. 2022. Unconstrained Binary
Models of the Travelling Salesman Problem Variants for Quantum Optimization.
Quantum Information Processing 21, 2 (feb 2022), 30 pages. https://doi.org/10.1007/
s11128-021-03405-5

M.A. Styblinski and T.-S. Tang. 1990. Experiments in nonconvex optimization: Sto-
chastic approximation with function smoothing and simulated annealing. Neural
Networks 3, 4 (1990), 467–483. https://doi.org/10.1016/0893-6080(90)90029-K

Zsolt Tabi, Kareem H. El-Safty, Zsófia Kallus, Péter Hága, Tamás Kozsik, Adam Glos,
and Zoltán Zimborás. 2020. Quantum Optimization for the Graph Coloring Problem
with Space-Efficient Embedding. In 2020 IEEE International Conference on Quantum
Computing and Engineering (QCE). 56–62. https://doi.org/10.1109/QCE49297.2020.
00018

The Qiskit Team. 2022. Simulating molecules using VQE. https://qiskit.org/textbook/
ch-applications/vqe-molecules.html

https://doi.org/10.1103/PhysRevX.8.031016
https://doi.org/10.1007/BF01343193
https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1126/science.abo6587
https://doi.org/10.1126/science.abo6587
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abo6587
https://arxiv.org/abs/1411.4028
https://doi.org/10.1007/s10479-005-3446-x
https://doi.org/10.1038/s41534-022-00546-y
https://doi.org/10.1088/1367-2630/aaa398
https://doi.org/10.1088/1367-2630/aaa398
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/3/3/175/988633/030175.pdf
https://doi.org/10.1007/s11128-021-03405-5
https://doi.org/10.1007/s11128-021-03405-5
https://doi.org/10.1016/0893-6080(90)90029-K
https://doi.org/10.1109/QCE49297.2020.00018
https://doi.org/10.1109/QCE49297.2020.00018
https://qiskit.org/textbook/ch-applications/vqe-molecules.html
https://qiskit.org/textbook/ch-applications/vqe-molecules.html

	Abstract
	1 Introduction
	2 Background
	3 Concept
	3.1 Discretization of the objective function
	3.2 Translating the objective function into a Hamiltonian
	3.3 Implementing the Hamiltonian using quantum gates
	3.4 Example

	4 Evaluation
	4.1 Solution quality
	4.2 Parameter Training
	4.3 Circuit width and depth

	5 Conclusion
	Acknowledgments
	References

