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ABSTRACT
Exploiting knowledge about the structure of a problem can greatly
benefit the efficiency and scalability of an Evolutionary Algorithm
(EA). Model-Based EAs (MBEAs) are capable of doing this by ex-
plicitly modeling the problem structure. The Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) is among the state-of-
the-art of MBEAs due to its use of a linkage model and the optimal
mixing variation operator. Especially in a Gray-Box Optimization
(GBO) setting that allows for partial evaluations, i.e., the relatively
efficient evaluation of a partial modification of a solution, GOMEA
is known to excel. Such GBO settings are known to exist in var-
ious real-world applications to which GOMEA has successfully
been applied. In this work, we introduce the GOMEA library, making
existing GOMEA code in C++ accessible through Python, which
serves as a centralized way of maintaining and distributing code
of GOMEA for various optimization domains. Moreover, it allows
for the straightforward definition of BBO as well as GBO fitness
functions within Python, which are called from the C++ optimiza-
tion code for each required (partial) evaluation. We describe the
structure of the GOMEA library and how it can be used, and we show
its performance in both GBO and Black-Box Optimization (BBO).
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1 INTRODUCTION
For many difficult optimization problems it is known that exploiting
the problem structure is essential for an Evolutionary Algorithm
(EA) to achieve good performance and scalability. A class of EAs
that is known to be capable of capturing and exploiting problem
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structure is that of Model-Based Evolutionary Algorithms (MBEAs)
[8, 10]. An algorithm that is among the state of the art among
MBEAs, and in the field of Evolutionary Computation (EC) in gen-
eral, is the Gene-pool Optimal Mixing Evolutionary Algorithm
(GOMEA) [4, 13, 22], which explicitly models the problem structure
of a problem using a linkage model, and exploits this model when
applying variation using the Gene-pool Optimal Mixing (GOM)
variation operator.

In general, GOMEA is capable of learning the structure of the
optimization problem during optimization. However, formany prob-
lems it is known a priori what the rough problem structure is. In
such cases, it has been shown that this knowledge can greatly bene-
fit the efficiency of EAs, both for benchmarks problems [4, 9, 23] as
well as various real-world applications within the medical field [5],
engineering [12], and vehicle routing [27]. Such a setting where a
limited amount of domain knowledge is available and can be used
by the optimization algorithm is called a Gray-Box Optimization
(GBO) setting, in contrast to a Black-BoxOptimization (BBO) setting
where no domain knowledge is available. In particular, we consider
the GBO setting where it is known how the fitness function is con-
structed from a number of subfunctions, and partial evaluations are
possible. Such partial evaluations are relatively efficient function
evaluations that are used to update the fitness of a solution after
a (small) subset of its variables have been modified. Especially for
the GBO setting that allows for partial evaluations, GOMEA has
shown to achieve excellent performance and scalability [4].

In this work, we introduce the GOMEA library, which is a Python
library that wraps optimization code of GOMEA written in C++.
This C++ code is based on the original code provided by the authors
of the most recent relevant publications of GOMEA within the re-
spective domains [4, 13]. The GOMEA library serves the purpose of
being a centralized way of distributing and maintaining the code of
GOMEA, and it makes it easier to install and run GOMEA on user-
specific problems. This is firstly the case because this library can
be used within Python, one of the currently most commonly used
programming languages, and secondly because it can be straight-
forwardly installed through the Python package installer pip, i.e.,
by running pip install gomea.

Furthermore, the GOMEA library supports the user to implement
both BBO and GBO problems within Python, which are called from
the C++ optimization code whenever a (partial) evaluation is re-
quired. The implementation of a GBO function within the GOMEA
library is more straightforward than before, as it only requires the
user to define the input and output of each subfunction, rather
than knowing the inner workings of the GOMEA code. Further
customization is possible for the implementation of more advanced
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GBO functions, but can be omitted for relatively simple GBO prob-
lems. For the integration between Python and C++ code, Cython
[1] is used, which is also used in many commonly used Python
packages, including NumPy [16], SciPy [25], and Pandas [26].

Note that this paper describes the state of the GOMEA library
version 1.0, and details are subject to change. The source code of
the GOMEA library is publicly available on GitHub1.

In the remainder of this paper, essential background work, in-
cluding that required to understand and implement a GBO problem
within the GOMEA library, is discussed in Section 2. In Section 3,
the architecture and its implementation are described. The main
features of the GOMEA library, and how they are used, are then de-
scribed in Section 4. To show the general performance of the GOMEA
library in both a BBO and a GBO setting, experimental results are
shown in Section 5. Finally, future work is outlined and conclusions
are drawn in Sections 6 and 7, respectively.

2 BACKGROUND
We consider optimization problems where the variables to optimize
are denoted 𝑿 = [𝑋0, 𝑋1, . . . , 𝑋ℓ−1]. The problem variables are in-
dexed through I = [0, 1, . . . , ℓ − 1], and a realization of the problem
variables is denoted 𝒙 = {𝑥0, 𝑥1, . . . , 𝑥ℓ−1}. Note that zero-based
indexing is used here to be consistent with implementation details
to be discussed later.

We consider both the domains of discrete optimization (𝒙 ∈ Zℓ )
and real-valued optimization (𝒙 ∈ Rℓ ). The objective, or fitness,
function 𝑓 is either subject to minimization in real-valued optimiza-
tion, or maximization in discrete optimization, corresponding to
the respective conventions in these fields.

In this work, we only consider the GBO setting that allows for
partial evaluations. Such a setting is formally defined in Section 2.1.

2.1 Gray-Box Optimization
As previously defined in [3], an objective function in a GBO setting
can be written as:

𝑓 (𝒙) = 𝑔

(
𝑓0 (𝒙𝕀0 ) ⊕ 𝑓1 (𝒙𝕀1 ) ⊕ · · · ⊕ 𝑓𝑞−1 (𝒙𝕀𝑞−1 )

)
, (1)

= 𝑔

(
𝑞−1⊕
𝑖=0

(
𝑓𝑖 (𝒙𝕀𝑖 )

))
(2)

where each 𝑓𝑖 (𝒙𝕀𝑖 ) a subfunction that depends on a subset of vari-
ables of 𝒙 , namely those for which the index𝑢 is included in 𝕀𝑖 ⊆ I.
The set 𝕀 = {𝕀0, 𝕀1, . . . , 𝕀𝑞−1} defines the complete set of dependen-
cies of each subfunction. Furthermore, ⊕ is a commutative binary
operator with a known inverse ⊖ (e.g., addition or multiplication),
and 𝑔 : R→ R is any (potentially non-linear) function.

A partial evaluation is a relatively efficient evaluation follow-
ing the modification of a (small) number of variables of a solution.
Consider a solution 𝒙 in a certain state 𝑔, denoted 𝒙𝑔 , for which
the fitness 𝑓 (𝒙𝑔) is known. After the modification of some variable
𝑥𝑢 , we denote that this solution is in the state 𝒙𝑔+1. Performing the
partial evaluation following the modification of these variables first
requires finding all 𝕀𝑗 that contain 𝑢, as these indicate the subfunc-
tions dependent on variables 𝑥𝑢 or 𝑥𝑣 . For each of these dependent
subfunctions, the value given state 𝒙𝑔 should be subtracted from
1https://github.com/abouter/gomea/

the fitness, and the value given state 𝒙𝑔+1 should be added. As such,
the fitness of 𝒙𝑔+1 is computed as follows:

𝑓

(
𝒙𝑔+1

)
= 𝑔

©«
𝑞−1⊕
𝑖=0

𝑓𝑖 (𝒙𝑔𝕀𝑖 ) ⊕
⊕
𝕀𝑖 ∋𝑢

𝑓𝑖 (𝒙𝑔+1𝕀𝑖
) ⊖

⊕
𝕀𝑖 ∋𝑢

𝑓𝑖 (𝒙𝑔𝕀𝑖 )
ª®¬ , (3)

where 𝕀𝑖 ∋ 𝑢 is shorthand for the set {𝕀𝑖 ∈ 𝕀 | 𝑢 ∈ 𝕀𝑖 }. However,
because all subfunctions for state 𝒙𝑔 have previously already been
computed, this computation can be substantially accelerated by
storing their sum inmemory. Here, this sum is named a fitness buffer
and denoted 𝛽 . This fitness buffer is computed after initialization
for each solution in the population, and continuously updated after
any modification to the population.

Consider the fitness buffer 𝛽 of solution 𝒙 . For the initial state
of the solution, i.e., 𝒙0, the initial state of the buffer, i.e., 𝛽0, is
computed as the sum of all subfunctions as follows:

𝛽0 =
𝑞−1⊕
𝑖=0

𝑓𝑖 (𝒙0𝕀𝑖 ) . (4)

Then, following a modification to variable 𝑥𝑢 , all current values of
dependent subfunctions are subtracted from the fitness buffer, and
new values are computed and added to the fitness buffer:

𝛽𝑔+1 = 𝛽𝑔 ⊖
⊕
𝕀𝑖 ∋𝑢

𝑓𝑖 (𝒙𝑔𝕀𝑖 ) ⊕
⊕
𝕀𝑖 ∋𝑢

𝑓𝑖 (𝒙𝑔+1𝕀𝑖
) (5)

The update of the fitness buffer is similar when more than one
variable is updated. In this case, the update considers the union of
subfunctions dependent on any of the modified variables.

Note the similarities between Equations 3 and 5. Therefore, fol-
lowing an update to the fitness buffer 𝛽𝑔+1, the fitness of solution
𝒙𝑔+1 can be computed in constant time (with respect to the problem
size ℓ) as follows:

𝑓 (𝒙𝑔+1) = 𝑔(𝛽𝑔+1) (6)

A GBO function is not required to use only one fitness buffer,
but can potentially use an arbitrary number of fitness buffers. As
such, it is possible to define GBO functions similar to any of the
following signatures:

𝑓Example1 (𝒙) = 𝑔(𝛽0, 𝛽1, 𝛽2, . . . ) (7)
𝑓Example2 (𝒙) = 𝑔0 (𝛽0) + 𝑔1 (𝛽1) + 𝑔2 (𝛽2) + . . . (8)
𝑓Example3 (𝒙) = ℎ(𝑔0 (𝛽0, 𝛽1) + 𝑔1 (𝛽2)) (9)

Note that none of these functions directly use problem variables,
but only fitness buffers, because their complexity should not scale
with the number of problem variables in order to maintain the
relative efficiency of the GBO setting.

Due to saving the fitness buffer(s) in memory, the complexity of
a partial evaluation scales with the number of dependent subfunc-
tions. Therefore, a partial evaluation that requires the computation
of 𝑘 subfunction is considered to be the fraction 𝑘/𝑞 of an evalu-
ation. It is assumed that all subfunctions have approximately the
same computational complexity.

2.2 GOMEA
The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)
[22] is a Model-Based Evolutionary Algorithm (MBEA) that ex-
cels at using domain knowledge of the optimization problem to

https://github.com/abouter/gomea/
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improve the performance and scalability of the optimization. This
domain knowledge can be learned based on the population during
optimization, or, when the problem allows it, be supplied a priori.

The dependency structure of a problem is modeled with what
is called a linkage model, described in more detail in Section 2.3.
This linkage model is then used to guide the Gene-pool Optimal
Mixing (GOM) variation operator, which applies variation to only a
small number of variables of a parent solution. Furthermore, such a
variation step is only accepted when it does not degrade the fitness
of the parent. Due to the fact that variation is applied to a small
number of variables, it is possible to exploit partial evaluations to
greatly improve the efficiency of fitness evaluations.

GOMEAwas first introduced for the domain of discrete optimiza-
tion [22], but has since been extended to the domains of real-valued
optimization [4] and genetic programming [24].

2.3 Linkage Models
Linkage models are used by GOMEA to model the dependency
structure of the optimization problem. Such linkage models are
described by a Family Of Subsets (FOS) F = {F0, F1, . . . , F𝑘−𝑞},
which is a subset of the powerset of I. Therefore, it follows that
F𝑖 ⊆ I for each F𝑖 ∈ F . Each element F𝑖 , named a linkage set, is
a set containing a number of indices of problem variables that are
considered to be jointly dependent.

Each variation step with the GOM variation operator considers
one parent individual and one linkage set. Variation is then applied
to all variables for which the index is included in the respective
linkage set. Depending on the domain of the optimization, this
variation step can consist of either crossover with a donor solution,
or the sampling from a probability distribution.

2.3.1 Marginal Products. A Marginal Product (MP) linkage model
consists of any number of non-overlapping linkage sets that to-
gether cover all problem indices 1 to ℓ . The simplest such link-
age model is the univariate model F Uni = {{0}, {1}, . . . , {ℓ − 1}},
which models a completely separable problem. The full linkage
model F Full = {{0, 1, . . . , ℓ − 1}} contains one linkage set with
all problem indices, and models a problem with complete depen-
dency between each pair of variables. Note that this linkage model
can only be used in real-valued optimization, due to the nature of
variation (i.e., crossover) in the discrete domain.

2.3.2 Linkage Tree. The Linkage Tree (LT) [21] is a hierarchical
linkage model describing different levels of dependencies ranging
from the single-variable level up to very high-level dependencies.
A linkage tree is constructed using the Unweighted Pair Group
Method with Arithmetic mean (UPGMA) clustering method [14].
This method is initialized with all single-variable linkage sets, and
continuously merges the two (unmerged) linkage sets with the
highest similarity until all linkage sets have been merged and it is
left with only one linkage set containing all problem variables. Any
such merged set is added to the linkage tree, alongside all initial
(univariate) linkage sets. Therefore, the linkage tree contains all
linkage sets encountered during the UPGMA process, ranging from
univariate to the full linkage set. Note that the full linkage set is
removed from the linkage model in discrete optimization.

An LT may be learned during optimization based on the popula-
tion, or learned a priori based on a known similarity metric. When
it is learned during optimization, possible similarity metrics include
mutual information [22] or hamming distance [19]. When the LT
is learned based on a known distance metric, it remains constant
and is therefore named a static (or fixed) linkage tree.

2.3.3 Conditional. For real-valued optimization, conditional link-
age models were previously introduced [7]. These linkage models
allow for the application of variation to a certain subset of variables
while conditioning on the values of remaining variables of the par-
ent individual. This mainly benefits the optimization on problems
with overlapping strong dependencies. The use of a conditional
linkage model requires knowing the Variable Interaction Graph
(VIG) of the optimization problem, which is only known in a GBO
setting. Furthermore, the definition of a conditional linkage model
may include a Bayesian factorization to specify which variables are
sampled jointly dependent, in which case it is deemed a ’Multivari-
ate Conditional’ (MCond) model. Otherwise, the linkage model is
deemed a ’Univariate Conditional’ (UCond) model.

When variation is done with a specific linkage set, the variables
to be sampled are conditioned on all variables connected in the VIG
that are not in the respective linkage set. Also sampling from the full
probability distribution is done using the conditional factorization
modeled by the VIG, using forward sampling [20].

As with non-conditional linkage models, the variables to which
variation is applied during GOM is determined by a linkage set.
Therefore, when the FOS of the conditional linkage model has only
one element consisting of all variables, GOM is only done once
per generation. Hence, this model performs ’Generational GOM’
(GG). When the FOS consists of each separate element as specified
by the factorization, it is deemed to perform ’Factorized GOM’
(FG). Finally, both can be combined to what is called ’Hybrid GOM’
(HG), where GG and FG are both applied every generation. As such,
a number of previously used conditional linkage models are the
UCondFG, UCondGG, UCondHG, and MCondHG models [7].

2.4 Population-sizing scheme
By default, the GOMEA library uses an InterleavedMulti-start Scheme
(IMS) [15] to avoid tuning the population size, as correctly setting
this can have a large impact on the performance of an EA. Using
the IMS, multiple populations of different sizes are independently
subject to optimization, and run generations in an interleaved fash-
ion. After each 𝑐IMS generations of a population with size 𝑛, one
generation of a population with size 2𝑛 is performed. This applies
to each of the interleaved populations, i.e., once the population with
size 2𝑛 has performed 𝑐IMS generations, the population with size 4𝑛
will run one generation. The initial population in IMS is initialized
with the base population size 𝑛base, which is generally set to the
smallest reasonable population size for the respective domain.

3 IMPLEMENTATION
The GOMEA library is mostly written in C++, with code required to
interface with Python written in Cython. Cython allows for the
relatively straightforward interfacing between Python and C++.
In particular, for optimization in a GBO setting, this enables a
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user to write a custom GBO function in Python without a deeper
understanding of the C++ optimization code.

The root package name is gomea, and can simply be imported
into Python through import gomea. This package has a number of
subpackages that are structured as follows:

• gomea
– discrete
– real_valued
– fitness
– linkage
– output

The discrete and real_valued subpackages contain code for
optimization with the discrete and real-valued variants of GOMEA,
respectively. These subpackages also each contain a Config class
within which all input parameters for the optimization are stored,
and which is passed to the C++ optimization code.

The fitness subpackage contains Cython classes that can be
extended by a user-defined Python class for the implementation of
a custom fitness function, with the following hierarchy:

• FitnessFunction
– GBOFitnessFunction

∗ GBOFitnessFunctionDiscrete
∗ GBOFitnessFunctionRealValued

– BBOFitnessFunction
∗ BBOFitnessFunctionDiscrete
∗ BBOFitnessFunctionRealValued

Each of these Cython classes has a member variable that is a
pointer to a C++ class which mirrors the Cython class. This C++
class is instantiated during the initialization of the Cython class.
A pointer to the Cython class is passed to the constructor of the
C++ class (with type PyObject*), and stored as a member variable.
When a (partial) evaluation is required during the optimization, a
public Cython function (implemented in EmbeddedFitness.pxi)
is called from the C++ class, and the pointer to the Cython class
is passed as an argument. Other arguments may include, e.g., a
vector of problem variables and the index of a subfunction that is
to be evaluated. Within the public Cython function, the PyObject*
pointer is typecast to one of the aforementioned Cython classes,
such that its user-defined methods (overloading the default of the
Cython class), e.g., the evaluation of a subfunction, can be called.

To pass the problem variables, they must be converted from
a C++-type vector to a type that is interpretable by Python, for
which we use the ndarray type included in NumPy. This ndarray
is initialized by creating an array wrapper around the given pointer
without copying the data pointed to, which is essential to maintain
the performance and scalability of GOMEA in a GBO setting, as
the complexity of a partial evaluation would otherwise no longer
be constant, but scale in the same way as a full evaluation.

The linkage subpackage includes Cython classes that can be
instantiated by the user (in Python), and passed as a parameter to
a GOMEA optimization class, indicating what type of linkage model
is to be used. Each Cython class in the linkage subpackage wraps
a pointer to an instance of the C++ class linkage_config_t, to
which all necessary parameters are passed during its instantiation.
During the construction of a linkage_config_t instance, no link-
age model is yet built, but all necessary parameters are contained

in this class such that a linkage model can be constructed when
required by the optimization.

Finally, the output subpackage contains a Python class responsi-
ble for wrapping output statistics, named OutputStatistics, and
a Cython wrapper for this class. This Cython class wraps a pointer
to an instance of a C++ class that is used to store all output statistics,
and is returned by the C++ code at the end of an optimization run.
All data within this instance is copied to a member variable of the
Python class OutputStatistics, as there is no guarantee of the
lifetime of the pointer within the C++ class. In fact, all this data is
erased when the instance of the EA is used to perform another run,
in which case it is undesired to lose previous output.

4 FEATURES
At the time of publication, the GOMEA library supports optimization
with the single-objective versions of the discrete GOMEA [13, 22],
and the Real-Valued GOMEA (RV-GOMEA) [4]. The (C++) source
code used for these algorithms was supplied by the original au-
thors and adapted for unification purposes and integration with
the Python API.

One of the primary features of the GOMEA library is its compatibil-
ity with user-defined GBO functions written in Python. This feature
is elaborated on in Section 4.1. This section includes guidelines on
how to implement such functions, and gives examples of how to
implement well-known optimization functions as a GBO function.

Most linkage models, as discussed in Section 2.3, previously used
in literature are available in the GOMEA library. This includes the
filtered linkage tree [2] for discrete optimization, and conditional
linkage models for real-valued optimization [7]. The use of different
linkage models in the GOMEA library is discussed in Section 4.3. Re-
maining input parameters of both versions of GOMEA are specified
in Section 4.4, and the output is discussed in Section 4.5.

4.1 Custom Gray-Box Optimization Function
The implementation of a custom GBO function according to the def-
inition in Equation 1 requires the user to define a Python class that
extends one of the following classes included in the gomea.fitness
subpackage:

• GBOFitnessFunctionDiscrete
• GBOFitnessFunctionRealValued

depending on whether the domain of the optimization problem
is discrete or real-valued, respectively. Each of these classes ex-
tends base class FitnessFunction, which is also present in the
gomea.fitness subpackage. Note that discrete optimization func-
tions are subject to maximization and real-valued optimization
functions are subject to minimization, corresponding to the con-
ventions within these respective fields.

Such a Python class requires the user to override at least the
following methods:
def number_of_subfunctions(self) -> int

def inputs_to_subfunction(self, subfunction_index) -> np.ndarray

def subfunction(self, subfunction_index, variables) -> float

The method number_of_subfunctions returns the total num-
ber of subfunctions, corresponding to 𝑞 in Equation 1. The method
inputs_to_subfunction returns an array indicating which vari-
ables are input for the subfunction with index subfunction_index.
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This corresponds to 𝕀𝑖 in Equation 1 when subfunction_index
is equal to 𝑖 . Finally, the method subfunction returns the output
of the subfunction with index subfunction_index, corresponding
to 𝑓𝑖 (𝒙𝕀𝑖 ) in Equation 1 when subfunction_index is equal to 𝑖 .
Note that variables is an array containing all problem variables
𝑥1 through 𝑥ℓ and should be indexed as such. However, only vari-
ables contained in 𝕀𝑖 should be actively used for the calculation
of 𝑓𝑖 . If any variable 𝑥𝑢 is used for the calculation of 𝑓𝑖 when 𝑥𝑢
is not contained in 𝕀𝑖 , any modification of 𝑥𝑢 will not trigger the
calculation of 𝑓𝑖 , leading to inconsistency in the objective value.

An example of the implementation of the concatenated trap
function is shown in Code Block 1. Here, the __new__ method is
overridden to assign the trap size k as a member variable of the
class, and to assert that the number of variables is a multiple of
the trap size. Furthermore, the method inputs_to_subfunction
is defined such that it returns the range [𝑘𝑖, . . . , 𝑘 + 𝑘𝑖] given the
subfunction index 𝑖 as input, as this range defines the indices of the
problem variables used by subfunction 𝑓𝑖 , i.e., the 𝑖th trap function.
Within the method subfunction, these variables are then retrieved
and stored into trap_vars, after which they are summed using
numpy. Finally, the fitness contribution of the subfunction 𝑓𝑖 is
then calculated given the calculated unitation, and returned.

Code block 1 Concatenated trap function
1 import gomea
2 import numpy as np
3 class ConcatTrapGBO(gomea.fitness.GBOFitnessFunctionDiscrete):
4 def __new__(self, number_of_variables, k):
5 assert( number_of_variables % k == 0 )
6 self.k = k # Trap size
7 return super().__new__(self,number_of_variables)
8
9 def number_of_subfunctions(self) -> int:
10 return self.number_of_variables // self.k
11
12 def inputs_to_subfunction(self, subf_index) -> np.ndarray:
13 return range(self.k*subf_index,self.k*subf_index+self.k)
14
15 def subfunction(self, subf_index, variables) -> float:
16 trap_vars =

variables[self.inputs_to_subfunction(subf_index)]↩→
17 unitation = np.sum(trap_vars)
18 if unitation == self.k:
19 return unitation
20 else:
21 return self.k - unitation - 1

In the concatenated trap function, the function 𝑔 as defined
in Equation 1 is simply the identity function. To implement an
optimization function forwhich𝑔 is not simply the identity function,
this must be implemented by overriding the method:
def objective_function(self, obj_index, fitness_buffers) -> float

This is the method corresponding to 𝑔 in Equation 1 which
computes the fitness of an individual given an array of fitness buffer
values. By default, fitness_buffers is an array containing the sum
of all subfunctions at index 0. Note that the parameter obj_index is
present for future compatibility with multi-objective optimization,
but can remain unused in single-objective optimization.

By overriding the method objective_function, it can be de-
fined as any function of the fitness buffers of an individual. This
function does not have access to the variables of the respective

solution, because this is required to be done within the implemen-
tation of subfunction. Excessive access of the variables within the
objective_function can negate all benefits of a GBO setting and
have a substantial negative impact on performance.

In order to use multiple fitness buffers, similar to the functions
shown in Equation 7, it is necessary also override the following
methods, in addition to those listed at the start of Section 4.1:
def number_of_fitness_buffers(self) -> int

def fitness_buffer_index_for_subfunction(self, subf_index) -> int

The method number_of_fitness_buffers specifies the total
number of fitness buffers. The index of the fitness buffer to which
the result of a subfunction (with index subf_index) needs to be
added is specified by fitness_buffer_index_for_subfunction.

The definition of a constraint function is possible in a similar
way to that of an objective function, by overloading the method:

def constraint_function(self, fitness_buffers) -> float

When this method is not overloaded, it returns 0 by default,
meaning that every possible solution is feasible.

Though the most straightforward way of implementing a GBO
function is in Python, it is possible to implement it in C++ for better
performance. For this, it is currently recommended to implement
the customGBO function into the class YourFitnessFunction (the
Discrete or RealValued variant) and compiling from source.

4.2 Custom Black-Box Optimization Function
Similar to the definition of a GBO fitness function as discussed in
Section 4.1, also for the definition of a BBO function a class needs
to be defined by the user, which in this case is required to extend
one of the following classes in the gomea.fitness subpackage:

• BBOFitnessFunctionDiscrete
• BBOFitnessFunctionRealValued

The choice among these classes depends on whether the domain
of the optimization problem is discrete or real-valued, respectively.
Each of these classes extends base class FitnessFunction, which
is also present in the gomea.fitness subpackage.

This user defined class is then only required to implement the
following method, which returns the objective value of the solution
defined by the input variables:
def objective_function(self, objective_index, variables) -> float

Note that objective_index is unused for single-objective op-
timization, but is required for future compatibility with multi-
objective optimization.

4.3 Linkage Models
All linkage models are implemented in the gomea.linkage sub-
package. The linkage models available for both real-valued and
discrete optimization are the following:

• Univariate()
• BlockMarginalProduct(block_size)
• LinkageTree(sim_measure,filtered,max_set_size)
• StaticLinkageTree(max_set_size)
• Custom(file)
• Custom(fos)

Additionally, the following linkage models are only available for
real-valued optimization:
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• Full()
• Conditional(max_clique_size,inc_cliques,inc_full)
– UCondGG()
– UCondFG()
– UCondHG()
– MCondHG(max_clique_size)

Each of these linkage models extend the base class LinkageModel.
The above linkage models and their parameters are discussed in
this section. The details of these linkage models are discussed in
the following sections.

4.3.1 Univariate. This linkage model uses a FOS with ℓ univariate
elements, and requires no input parameters.

4.3.2 BlockMarginal Product. This linkagemodel uses a FOSwhere
each element consists of block_size consecutive variables start-
ing from 0 up to ℓ − 1. To use a marginal product FOS that does
not adhere to this structure, it is advised to use the Custom linkage
model.

4.3.3 Linkage Tree. The linkage tree model expects the parame-
ters sim_measure filtered, and max_set_size. The parameter
sim_measure is a string from one of the possible options ’MI’ or
’NMI’, indicating whether Mutual Information (MI) or Normalized
Mutual Information (NMI) should be used as similarity metric. If
filtered is set to true, superfluous linkage sets are filtered [2].
Finally, if max_set_size is set to any number larger than 0, no
linkage sets larger than this number are formed during the linkage
tree construction.

The StaticLinkageTree(max_set_size) is a linkage tree that
is constant throughout optimization, and accepts only the parameter
max_set_size, identical to the non-static linkage tree. By default,
this linkage tree uses connectivity within the VIG as a similarity
measure. Therefore, it cannot be used in a BBO setting. With this
linkage model, variables between which no path (of any length)
exists in the VIG will never occur in the same linkage set.

A custom similarity measure can be used instead by overriding
the following method of the custom fitness function that overrides
a GBOFitnessFunction class, as discussed in Section 4.1:

def similarity_measure(self,var_a,var_b) -> float

This method requires as input the indices of two variables, var_a
and var_b, and returns a similarity measure of these variables, with
higher values indicating that these variables will be merged sooner
in the construction process of the linkage tree. Note that this method
is expected to be symmetric, i.e., the same output is expected when
the values for var_a and var_b are swapped.

4.3.4 Custom. A custom FOS requires exactly one named param-
eter: either file as a string, or fos as a vector of integer vectors.
The input file will have one linkage set per line, with each of its
elements separated by commas or spaces. Each element is required
to be within the range [0, ℓ − 1].

4.3.5 Full. The full linkage model contains one linkage set contain-
ing all problem variables, and requires no parameters. This linkage
model can only be used for real-valued optimization.

4.3.6 Conditional. Conditional linkage models are implemented in
Conditional(max_clique_size,inc_cliques,inc_full), where

max_clique_size determines the maximum size of factors within
the Bayesian factorization, as specified in Section 2.3. These factors
are constructed by finding all maximal cliques up to the specified
max_clique_size. A max_clique_size equal to 1 is used by each
UCond linkage model. The boolean parameter inc_cliques speci-
fies whether each of these cliques should be included in the FOS,
and the boolean parameter inc_full specifies whether the full FOS
element should be included. As such, setting only the former to
true means using FG, while only setting the latter to true means
using GG. Setting both to true means using HG.

4.4 Optimization
The subpackages for discrete and real-valued optimization with
GOMEA are named discrete and real_valued, respectively. An
instance of either one of these algorithms can be instantiated by
calling gomea.DiscreteGOMEA or gomea.RealValuedGOMEA. These
algorithms have some domain-specific input parameters that are
discussed in Sections 4.4.1 and 4.4.2. The input parameters they
have in common, with potentially different default values for the
Discrete (D) and Real-Valued (RV) domains, are as follows:

• fitness (required)
– Any class with base class FitnessFunction from sub-
package gomea.fitness.

• linkage_model (default: StaticLinkageTree())
– Any class with base class LinkageModel from subpackage
gomea.linkage.

• max_number_of_populations (default: 25)
– Maximum number of interleaved populations within IMS.
Set to 1 to disable IMS.

• base_population_size (default: 2 (D) / 10 (RV))
– Population size of the initial population in IMS. Acts as
the population size when IMS is disabled.

• IMS_subgeneration_factor (default: 4 (D) / 8 (RV))
– Number of generations that each interleaved population
performs per generation of the next largest population
(with double the population size).

• max_number_of_generations (default: -1 (No limit))
– Maximum number of generations that each interleaved
population will perform before terminating.

• max_number_of_evaluations (default: -1 (No limit))
• max_number_of_seconds (default: -1 (No limit))
• random_seed (default: -1 (Randomly generated))

After instantiation of any such algorithm class (i.e., either the
DiscreteGOMEA or RealValuedGOMEA class), optimization can be
started by calling the run method, which requires no input pa-
rameters, and returns an instance of the OutputStatistics class.
The details of this class, containing the results of the optimization
throughout each generation, are discussed in Section 4.5.

4.4.1 Discrete. The discrete GOMEA currently has no domain-
specific input parameters.

4.4.2 Real-Valued. The real-valued GOMEA has the following two
domain-specific input parameters:

• lower_init_range (default: 0)
• upper_init_range (default: 1)
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These two input parameters define range between which each
variable is initialized uniformly at random.

4.5 Output
The output of any run with an instance of GOMEA returns an
instance of the OutputStatistics class, which is included in the
gomea.output subpackage. This class has a dictionary as member
variable, named metrics_dict, which is accessible using the []
operator, and contains lists of statistics for various metrics, where
the key of the dictionary is the name of the metric, and the value is
the list of data points for the metric. When IMS is enabled, for each
metric, a data point is appended at the end of every 10 generations of
each (sub)population, as to not give an abundance of output. When
IMS is not enabled, for each metric, a data point is appended at the
end of each generation of the EA. As such, data points with the
same index (of different metrics) correspond to the same state/point
in time of the EA By default, the following metrics are recorded,
including the key used to retrieve the data from the dictionary:

• Number of generations (key: generation)
• Number of evaluations (key: evaluations)
• Elapsed time (seconds) (key: time)
• Elapsed evaluation time (seconds) (key: eval_time)
• Population index (key: population_index)
• Population size (key: population_size)
• Best objective value (key: best_obj_val)
• Best constraint value (key: best_cons_val)

The full list of metrics is accessible as the property metrics of the
OutputStatistics class.

In Code block 2 example Python code is shown of how an arbi-
trary convergence plot can be made given the output of a run with
RealValuedGOMEA.

Code block 2 Example of plotting the output of a run.
1 import gomea
2 import matplotlib.pyplot as plt
3 frv = gomea.fitness.RosenbrockFunction(20,value_to_reach=1e-10)
4 lm = gomea.linkage.Univariate()
5 rvgom = gomea.RealValuedGOMEA(fitness=frv, linkage_model=lm)
6 result = rvgom.run()
7 plt.plot(result['evaluations'],result['best_obj_val'])

5 EXPERIMENTS
This section describes the performance and scalability of the GOMEA
library on a number of typical benchmark problems. Furthermore, it
is shown what the benefit is of implementing an objective function
in a GBO setting compared to a BBO setting. For reproducability,
code to repeat all experiments described in this section is provided
in the repository of the GOMEA library.

5.1 Set-up
All experiments are performed on a server running Fedora 36 with
20 Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 126 GB RAM.
Each run of an EA used only a single core. Default parameters of
the GOMEA library are used unless specified otherwise. All plotted
data points show the median and interdecile range of 30 indepen-
dent successful runs. A run is considered successful if, for discrete

problems, the optimum was found, or, for real-valued problems, the
value to reach of 10−10 was found. A time limit of one hour was
used, and the budget of function evaluations was set to 107 for dis-
crete problems and 108 for the real-valued problem. No experiments
were performed beyond the displayed range of dimensionality.

5.2 Benchmark functions
We use a number of well-known benchmark functions from the
domains of discrete and real-valued optimization. This includes the
concatenated deceptive trap function [11], the MaxCut problem
[17], and the Rosenbrock function.

These benchmark problems are selected as they are from different
optimization domains and/or exhibit different dependency struc-
tures. The concatenated deceptive trap function is a well-known
discrete optimization problem with strong dependencies within
small disjoint subsets of variables. We use a trap size of 5 for all
experiments. The MaxCut problem is also a discrete optimization
problem, where each vertex of a given graph is assigned to a set
or its complement, and the weight of edges between vertices in
opposing sets is to be maximized. We specifically use unweighted
graphs with the structure of a square grid with wrap-around, i.e., a
torus, leading to a non-separable optimization problem and each
variable having a constant number of dependent variables. Finally,
the Rosenbrock function is a real-valued non-separable problem
with overlapping dependencies.

5.3 Results
Figure 1 shows the scalability of the GOMEA library on the respec-
tive benchmark problems in terms of the number of evaluations.
Though the scalability of GOMEA on benchmark functions was
previously already shown to be excellent in a GBO setting [4], we
here confirm these findings for the GOMEA library. These results are
mainly relevant for optimization problems where the overwhelm-
ing majority of computation time is spent on function evaluations.
For these kinds of problems, the reduction of the number of func-
tion evaluations by an order of magnitude would also reduce the
total computation time by approximately one order of magnitude.

In Figure 2, we show the scalability of the GOMEA library in terms
of computation time, for different linkage models in both a BBO
and a GBO setting. All problems shown are implemented in Python.
These results clearly show the benefit of using a GBO setting, mainly
for large-scale optimization problems. Moreover, the use of a GBO
settings enables the use of an SLT rather than a (dynamic) LT, pos-
sibly providing additional benefit. Finally, bounding the maximum
size of linkage sets can offer a benefit, but shows no benefit on the
MaxCut problem.

Though the most straightforward way of implementing an opti-
mization function for the GOMEA library is using Python, it is also
possible to implement such a function within the C++ code of the
GOMEA library, as this leads to an increase in performance. In Figure
3 we show the difference in evaluation time between programming
languages for BBO and GBO settings, for one linkage model per
problem, to give an indication of the impact of these different imple-
mentations. Only the time spent within the evaluation function is
shown, as this is the only part of the executed code that is different.
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Figure 1: Scalability plots for the number of function evaluations required for different linkage models in a BBO or GBO
setting. Numbers within parentheses indicate upper bound for the linkage set size.
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Figure 2: Scalability plots for the computation time required for benchmark functions implemented in Python for different
linkage models in a BBO or GBO setting. Numbers within parentheses indicate upper bound for the linkage set size.
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(a) Concatenated Deceptive Trap (LT)
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Figure 3: Computation time spent within the evaluation function for implementations in different languages for BBO or GBO
settings. Used linkage models are indicated in parentheses.

6 FUTUREWORK
One of the major points of future work includes the inclusion of
multi-objective variants of GOMEA, for both discrete [18] and real-
valued [6] optimization, as well as the inclusing of GOMEA for
the domain of genetic programming (GP) [24]. Furthermore, future
work could include further customization of input parameters and
output statistics of the GOMEA library.

7 CONCLUSION
In this paper, we introduced the GOMEA library, a Python library
aroundC++ optimization code of the state-of-the-artMBEAGOMEA.
This library makes it easier for users to run GOMEA on their own
user-specific problems, as the GOMEA library can be easily installed,

and optimization functions for both BBO and GBO can be imple-
mented in Python. In this paper, the initial state of the GOMEA library
was described, its structure, and how it can be used for optimization.
In our experimental results, we have shown the performance of
the GOMEA library on various BBO and GBO benchmark problems
using different linkage models. Furthermore, the difference in per-
formance is shown between optimization functions implemented
in either Python or C++.

With the introduction of the GOMEA library, a large hurdle for
optimization in a GBO setting has been lifted. As such, this opens
the door for users to apply GOMEA to real-world problems of their
interest in a GBO setting with a much smaller time commitment.
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