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Abstract

In many applications of evolutionary algorithms the computational

cost of applying operators and storing populations is comparable to

the cost of fitness evaluation. Furthermore, by knowing what exactly

has changed in an individual by an operator, it is possible to recompute

fitness value much more efficiently than from scratch. The associated

time and memory improvements have been available for simple evolu-

tionary algorithms, few specific genetic algorithms and in the context

of gray-box optimization, but not for all algorithms, and the main rea-

son is that it is difficult to achieve in algorithms using large arbitrarily

structured populations.

This paper makes a first step towards improving this situation. We

show that storing the population as a minimum spanning tree, where

vertices correspond to individuals but only contain meta-information

about them, and edges store structural differences, or patches, between

the individuals, is a viable alternative to the straightforward imple-

mentation. Our experiments suggest that significant, even asymptotic,

improvements — including execution of crossover operators! — can be

achieved in terms of both memory usage and computational costs.

This is a slightly revised and extended author’s version of the GECCO’23
paper accepted to the EvoSoft workshop. That paper is available at DOI
10.1145/3583133.3596388.
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1 Introduction

In evolutionary computation, the standard ways to measure the performance
of an evolutionary algorithm are either to count the number of fitness function
evaluations until a solution of a certain quality is found (the fixed-target
perspective), or to measure the quality of the best found solution once the
given number of evaluations is used (the fixed-budget perspective). Both
implicitly assume that fitness evaluation dominates the computational costs
of running an evolutionary algorithm.

While this assumption often comes true, the opposite also happens quite
often. For example, many multiobjective algorithms, such as NSGA-II [18],
and advanced continuous evolutionary algorithms, such as CMA-ES [26],
have internal state update routines that dominate the computational costs
asymptotically, so for large enough population size fitness evaluation will be-
come dominated by other parts of these algorithms. However, there are also
important cases where computational costs need to be considered accurately
even for simple algorithms.

Auxiliary computational costs become especially noticeable if fitness eval-
uation takes time proportional to the individual size and hence is cheap. This
often happens in benchmarking of evolutionary algorithms on problems with
easy definitions: in discrete optimization, examples are OneMax (the num-
ber of bits set to 1), LeadingOnes (the length of the maximum prefix that
has all bits set to 1), and many continuous functions, starting from Sphere

(the sum of squares for each variable), are also computationally cheap. This
holds true for many practical fitness functions, such as those used for satisfi-
ability problems [31, 48], knapsack problems [14, 49] and many other integer
linear programming problems [45]. In this case, allocation of space for a new
individual, as well as näıve implementation of mutation operators, require
asymptotically the same number of operations as fitness evaluation, and,
depending on the hidden constants, they may even take more time.

Significant decrease in computational costs is possible whenever the fit-
ness function can be incrementally recomputed when the exact positions of
changes are known. This is known as partial evaluation or incremental eval-

uation. One prominent example is gray-box optimization [48], which ben-
efits from incremental fitness evaluation especially with large-scale problem
sizes [17]. Improvements can often be applied to mutation operators [11,12],
but fast specialized crossovers are also possible [43]. Even outside of gray-
box optimization, many fitness functions, including the ones listed in the
previous paragraph, still enjoy large asymptotic runtime improvements. To
benefit from this, one should be really careful with operations happening in-
side evolutionary algorithms, as even allocation of space for a new individiual
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becomes prohibitively time- and memory-consuming.
As a result, efficient implementations are known for mutation-only algo-

rithms, few genetic algorithms with very specific crossover operators, and in
the gray-box optimization contexts. In the same time, most genetic algo-
rithms having non-trivial populations and employing crossover operators so
far had no other choice than implementing most operators straightforwardly,
lacking the ability to save computational resources and in particular enjoy
incremental fitness evaluation. Most of this comes from the fact that there
is no way to perform any kind of crossover on individuals, that could have
diverged long time ago, faster than by full evaluation in an absence of an
appropriate data structure. In this work, we show that it is, in fact, possible.

We propose to store the population as a graph where each individual cor-
responds to a vertex, and edges store the differences, or patches, between the
individuals they connect. At any time, there is only one individual that is
stored as a whole, whereas for all other individuals vertices store only the
meta-information, such as the fitness value. To simplify the data structure,
and also to save as much space as possible, we use as the graph the minimum
spanning tree, such that the total size of all the patches is minimum possible
to preserve connectivity. Should an individual be used to produce an off-
spring, we promote the only complete individual to the corresponding vertex
by applying all the patches on the way that leads to that vertex. Similarly,
we may compute the difference between individuals by combining the patches
on the way that connect their vertices, which typically takes way less time
than by scanning the entire individuals. Then we can use this difference to
apply the crossover operator to them, which is, again, typically faster than
doing it in a näıve way.

As we only begin our explorations of this topic, we consider only bit
strings as the search space, and limit ourselves with a few simple algorithms,
including, however, an algorithm with a non-trivial population that is able
to maintain some diversity in it. We consider two problems: the benchmark
problemOneMax and the knapsack problem, which both benefit from incre-
mental fitness evaluation. Our experiments show a remarkable improvement
in both time and memory over the näıve implementation: in most favorable
conditions, the cost of one fitness evaluation becomes O(1) versus O(n) for
problem size n, but even in the presence of population diversity, the average
cost still appears to grow sublinearly.

Structure of the paper. Section 2 introduces the employed definitions,
algorithms and problems, and also covers the related work on adjacent topics.
Section 3 explains the proposed approach, the minimum spanning tree of
patches. Section 4 presents the results of experiments and their discussion.
Finally, Section 5 concludes and indicates numerous directions for future
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work.
Availability of code and data. To adhere to reproducibility standards

discussed in [33], our code is available on GitHub1.

2 Preliminaries and Related Work

In this work, we consider only algorithms working on bit strings, and prob-
lems defined on bit strings. Though most of our ideas are applicable to more
general classes of search spaces, and so are most of considered evolutionary
algorithms, we define them on bit strings for brevity.

We denote as n the length of the bit string. The Greek letter µ typically
defines the parent population size, whereas λ typically defines the number
of offspring in one iteration. The term “u.a.r.” stands for “uniformly at
random”. All optimizers are defined to run infinitely, whereas termination
conditions are considered external to optimizer definitions.

Simple problems. We consider a benchmark problem called OneMax,
whose (simplified) definition is as follows:

OneMax : {0, 1}n → R, x 7→ |{i ∈ [1..n] | xi = 1}|.

This problem obviously benefits from incremental fitness evaluation: if
one knows the old fitness value, the new one can be determined by examining
the changed positions only.

We also consider the knapsack problem [37], one of the famous NP-hard
problems. Given n items, the i-th of them has the weight wi and the value
vi, and the knapsack capacity W , one has to find a selection of these items
with the maximum total value, such that their total weight does not exceed
the capacity. Denoting w = (wi)

n
i=1

, v = (vi)
n
i=1

, for the purpose of this paper
we define the genotype-to-phenotype mapping as follows:

KP
w,v,W : {0, 1}n → (R,R), x 7→

(

∑n

i=1

xiwi,
∑n

i=1

xivi

)

,

and the phenotype-to-fitness mapping as follows:

KF
w,v,W : (R,R)→ R, (Wx, Vx) 7→

{

Vx, if Wx ≤W ;

−Wx, otherwise.

In other words, the bit string of length n defines which items are selected:
bit value 1 in the i-th position selects the i-th item. The fitness function

1https://github.com/mbuzdalov/patch-based-ga. This version of the paper is ac-

companied by the release v0.2.
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Algorithm 1: Randomized local search

Input: problem size n, maximized function f : {0, 1}n → R

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Let y be a copy of x with one random bit flipped;
4 Evaluate f(y);
5 if f(y) ≥ f(x) then y ← x;

favors increasing the total value as long as all items fit the knapsack, and
decreasing the total weight if they do not.

This two-level mapping is essential to incremental fitness evaluation, as
the phenotypic pair consisting of sums of weights and values can be easily
recomputed on small changes, and the fitness value can follow suit, whereas
with the more direct approach one would have to recompute the fitness from
scratch. For simplicity, we consider the pair of sums as the fitness value,
redefine the comparison operation, and avoid the explicit concept of a phe-
notype.

Randomized local search. Perhaps the simplest algorithm to benefit
both from efficient implementation of operators and from incremental fit-
ness evaluation is Randomized local search, or RLS, whose pseudocode is
presented in Algorithm 1.

Obviously, instead of creating the entire individual y from scratch, one
can just flip the i-th bit in the parent, where i is chosen u.a.r. randomly,
then evaluate the changed individual, and if it is worse, then “unflip” that
bit back. This way, the internal work for a single fitness evaluation, other
than the first one, is limited to O(1) operations.

If incremental fitness evaluation is possible, we can definitely apply it.
For instance, for the knapsack problem the sum of weights is either increased
or decreased by the weight of the i-th item, depending on whether it was
selected or not. In this case, the total work for the single fitness evaluation
needs only O(1) operations.

Standard bit mutation and the (1 + 1) evolutionary algorithm.
For a minimalist evolutionary algorithm capable of global search, the (1+1)
evolutionary algorithm, or the (1+1) EA, is often considered (Algorithm 2).
It is very similar to RLS, except that for the mutation operator it uses stan-
dard bit mutation which, with probability p, flips each bit independently.

The general recommendation for a new problem, unless more knowledge
is obtained, is to use p = 1/n such that np = 1 bit is flipped on average.
The number of flipped bits follows the well-known binomial distribution with
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Algorithm 2: The (1 + 1) evolutionary algorithm

Input: problem size n, mutation rate p,
maximized function f : {0, 1}n → R

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Let y be a copy of x with each bit flipped independently of others

with probability p;
4 Evaluate f(y);
5 if f(y) ≥ f(x) then y ← x;

parameters n and p, which is reasonably well concentrated around the value
np. Under these conditions it is obvious that the (1 + 1) EA also benefits a
lot from incremental fitness evaluation.

But is the mutation operator capable of delivering the matching perfor-
mance? Most people, including even many developers of well-known and
widely-used software systems for evolutionary computation, implement sam-
pling from binomial distributions using the straightforward näıve scheme,
such as the BitFlipMutation2 class in jMetal [35] or the mutFlipBit3 func-
tion in DEAP [24]. However, the properties of a binomial distribution allow
sampling schemes of complexity O(np), which matches the number of changes
made to the individual. This fact has been known in the evolutionary com-
putation domain for a long time, see [3, p. 238, Eq. 32.2] and, apparently
independently, [29]. In fact, with some preprocessing, such sampling can be
performed faster [25,28,30,34,46,47], but since the number of changes to an
individual is still Θ(np), in this domain we do not benefit much from faster
sampling anyway.

As a result, it is possible to run the (1 + 1) EA with as few as O(1)
operations per fitness evaluation, assuming the fitness function cooperates,
but it requires some care from software developers.

The (1 + (λ, λ)) genetic algorithm. Proposed a decade ago by the
theoretic community, this genetic algorithm has some unique properties with
regards to certain function classes [19].

Many of these properties come not just from using crossover, but from
the very specific kind of crossover. It takes a parent individual x and an
individual y that has been generated by flipping ℓ bits chosen u.a.r. in x.
Then it generates an offspring by taking each bit from y with probability
pc and from x otherwise, treating each bit independently. In the default

2Last revision at the submission time: BitFlipMutation.java
3Last revision at the submission time: mutation.py
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configuration, ℓ and pc are tied in such a way that ℓ · pc = Θ(1) with large
probability.

This particular crossover, as well as the overall structure of the algorithm,
allows implementing it efficiently much in the same manner as the algorithms
above. As the number of bits ℓ is usually much smaller than the problem size
n, one can not just generate y, but also store the list of bits that makes it
different from the parent x. Then, crossover can be executed by just sampling
ℓ·pc bits from that list and flipping them in x. Although not always explicitly
mentioned in the corresponding papers, this was the mechanism to enable
experiments with problem sizes n of order up to 106 to 107 in realistic times
(few minutes per run) not just on problems like OneMax, but on MAX-SAT
problems as well [8], sometimes even allowing sampling rather large values
of ℓ from heavy-tailed distributions [1].

Such crossover can be interpreted as mutation subsampling. While not
making large difference on bit strings, this consideration actually enabled
porting this algorithm to other search spaces, such as permutations [4],
with similar performance improvements compared to näıve implementations.
However, the techniques employed to achieve these improvements cannot be
readily used with other algorithms.

General form of “good” mutation and crossover operators. Evo-
lutionary algorithms capable of optimizing arbitrary problems over certain
search spaces shall possess certain invariance properties in order to avoid
preferring some (otherwise equivalent) problem instances over other. For ex-
ample, in continuous optimization, the obvious requirements are translation
invariance and scaling invariance, whereas many algorithms, such as CMA-
ES, also have rotational invariance (and hence invariance over general affine
transformations). Having such properties generally improves reliability of
black-box optimization algorithms [27], whereas algorithms pretending to be
black-box but lacking many of these properties are often used in fraudulent
publications [2].

For the search space consisting of bit strings of a fixed length, there
are two such properties: invariance over flipping a bit (which is a rough
equivalent of translation invariance) and invariance over shuffling positions
of bits. Algorithms that satisfy these properties are called unbiased black-box

optimization algorithms [32], a similar concept exists for arbitrary discrete
search spaces [39]. This concept can be extended to variation operators, such
as mutation and crossover operators. For mutation operators over bit strings,
any unbiased mutation operator can be represented as follows [32]:

• sample a number ℓ ∈ [0..n];

• when applied to an individual x, copy it and flip in the copy ℓ bits
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without replacement at positions sampled u.a.r.

For instance, the standard bit mutation with mutation rate p samples ℓ from
a binomial distribution with parameters n and p. Similarly, any crossover
operator can be represented as follows [7, 10, 21, 22]:

• sample a function f from d ∈ [0..n] to a pair of numbers ℓd ∈ [0..d], ℓs ∈
[0..n− d];

• when applied to two individuals x1 and x2, compute the number of
differing bits d and then compute ℓd and ℓs using the function f ;

• copy x1 and flip in the copy ℓd bits at positions where x1 and x2 differ,
and also flip ℓs bits at positions where x1 and x2 are same, both without
replacement and sampled u.a.r.

Similar definitions exist for operators of higher arities, as well as for oper-
ators returning multiple offspring [7]. This view enables a unified framework
and a single-entry implementation for support of arbitrary operators of a
given arity.

The (µ+ 1) genetic algorithm. As an example of a genetic algorithm
with a non-trivial population that cannot be easily adapted to the use of high-
performance variation operators we consider the (µ + 1) genetic algorithm,
presented in Algorithm 3. This is essentially a steady-state algorithm, where
on each iteration a new individual is generated either by only mutation, or
by crossover followed by mutation, and then the worst individual is removed
from the population.

Note that uniform crossover, followed by standard bit mutation, can be
expressed in the above-mentioned framework as follows: if the distance be-
tween the parents is d, then sample the number of differing bits to flip ℓd
from the binomial distribution Bin(d, 1/2), and the number of same bits to
flip ℓs from the binomial distribution Bin(n− d, pm).

Despite its simplicity, the (µ + 1) GA can be shown to be provably
better than mutation-only algorithms even on simple problems [9], further-
more proofs exist that increasing the population size improves the perfor-
mance [15]. With only a simple additional diversity-preserving mechanism
it becomes capable of efficiently jumping over large valleys [16], and even in
its original form it is capable of preserving enough diversity to do essentially
the same [20].

Potential diversity of the population makes it a problem to perform
crossovers efficiently, as in the absence of any extra information the dis-
tance between the individuals is essentially unknown and can change a lot
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Algorithm 3: The (µ+ 1) genetic algorithm

Input: problem size n, mutation rate pm, crossover probability pc,
maximized function f : {0, 1}n → R

1 Initialization: Let the population X = ∅;
2 for i = 1, 2, . . . , µ do

3 Sample xi ∈ {0, 1}
n u.a.r. and evaluate f(xi);

4 Add xi to the population: X ← X ∪ {xi};

5 Optimization: for t = 1, 2, 3, . . . do
6 Sample random number c;
7 if c < pc then
8 Sample x from X u.a.r., let y be a copy of x with each bit

flipped independently of others with probability pm;

9 else

10 Sample x1, x2 from X u.a.r. with replacement;
11 Apply uniform crossover to x1 and x2, obtain x′: on each

position, x′ takes a value from either x1 or x2 with
probability 1/2;

12 Let y be a copy of x′ with each bit flipped independently of
others with probability pm;

13 Evaluate f(y);
14 Add y to the population: X ← X ∪ {y};
15 Remove the individual with the smallest fitness from X , breaking

ties u.a.r.;

over the run. To the best of our knowledge, this paper is the first to present
a mechanism that is capable of performing crossovers in sublinear time in
practice.

Gray-box optimization. This is the prominent area of research where,
based on a deeper understanding of the problem, efficient operators are pos-
sible to design with significant improvement in in computational time, search
efficiency, or both. A large number of works essentially belonging to gray-box
optimization implement mutation operators by essentially synthesizing the
difference vectors and storing only a few complete individuals [5,6,17]. These
works either use only mutation operators or invoke crossover operators only
infrequently to amortize their cost.

With more understanding of the structure of the problem, fast deter-
mininstic mutation operators and linear-time deterministic recombination
that synthesizes the best out of 2q individuals from two individuals whose
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difference is partitioned into q independent regions, is possible [11,43,44,48],
which leads to state-of-the-art solutions in the particular problem domains.
However, these advanced techniques cannot be used when the problem ad-
mits incremental fitness evaluation, but the degree of linkage between vari-
ables is too high, of which the knapsack problem and its variations are good
examples.

Individuals as immutable balanced trees. An approach that targets
essentially the same problem, but in a significantly different way, was recently
proposed in [38]. For a class of problems where it is not only possible to per-
form incremental fitness evaluation, but also to store the partial evaluation
results for parts of individuals, optimization can benefit by representing indi-
viduals as immutable balanced trees that store evaluation results for subtrees.
Note that both OneMax and the knapsack problem, which we consider in
this paper, belong to this class, but, for instance, most satisfiability problems
do not.

In the case of bit strings, a mutation of O(1) bits corresponds to O(logn)
time and memory to construct a new individual and compute its fitness.
What is more, the single-point crossover (and any similar crossover with
a constant number of exchange points) can also be performed in time and
memory of O(logn). Note that such crossover operators are not unbiased,
and direct implementation of, say, uniform crossover using this approach does
not result in any performance improvements. However, further development
of this approach, such as aggressive subtree caching, can probably make it
more similar to our approach in many aspects.

3 Minimum Spanning Tree of Patches

Our data structure to work with the population consists of two parts: the per-
sistent lightweight graph and the mutable memory-heavy part of size Θ(n).

The graph. We maintain the entire population as a graph that describes
the structure of the population.

• Vertices of this graph represent individuals. Only a limited amount of
information about an individual is permanently stored in the vertex.
Currently, this information consists of the fitness value of the individ-
ual, and a Boolean value which indicates whether an individual is still
in the population (that is, it has not been discarded).

• Edges represent differences between individuals, or patches. An edge
from vertex A to vertex B contains an immutable piece of information
that tells how to convert individual A to individual B. In the general
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case, the graph is directed, and an edge from B to A shall produce an
opposite effect to an edge from A to B. However, for bit strings, these
effects coincide: the edges contain a list of bit indices to flip.

This graph is maintained in such a way that it is a minimum spanning
tree, where the weight of an edge is the size of the patch (that is, the number
of indices to flip). As even in the general case it is reasonable to expect that
the size of the patch is equal to the size of its negation, for the purpose of
building the tree we can safely use the characteristic size of a patch for a
weight.

The memory-heavy part. Apart from this graph, there are two more
values which use Θ(n) memory. The first of these values is what we call
the complete individual, which is a bit string of size n containing one of the
individuals currently in the population. We also maintain a pointer to the
vertex that corresponds to this individual. The second value is what we call
the mutable patch: as opposed to immutable patches stored at the edges,
the mutable patch has the size of Θ(n) words. Its purpose is to store a set
of (zero-based) indices, which is a subset of [0..n − 1], with the following
supported operations:

1. Clear the set.

2. Add or remove a given element.

3. Test whether a given element is contained in the set.

4. Report the number of elements currently in the set.

5. Add a random element which is not yet in the set.

6. Add a given number of random elements not yet in the set while simul-

taneously removing another given number of random elements which
are already in the set.

7. Create an immutable set containing the same elements.

The mutable patch can be implemented with some minimal care atop of
one permutation π of the set [0..n− 1], its inverse, and the size of the patch
s, such that elements {π(0), . . . , π(s− 1)} are the elements constituting the
patch. For further details, please refer to the class MutableIntSet in the
repository.

Using operations (2)–(4), we can combine in-place the mutable patch
and one of the immutable patches. This allows, in particular, to traverse the
entire graph using depth-first search (in time proportional to the sum of sizes
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of all patches) and to find out which vertex results in the smallest cardinality
of the set. When adding a new individual to the population, this is used to
find the existing individual with which this new individual will be connected
by an edge to ensure that the graph is the minimum spanning tree. Similarly,
by starting a depth-first search from the first parent and terminating it when
the second parent is encountered allows to compute the difference between
the parents, which will be used later in the crossover operator.

Operation (5) is used to implement mutation: given the number of bits to
flip, we first clear the set, then add the necessary number of not yet existing
elements. Similarly, operation (6) is used to implement crossover: assuming
the set contains the bit indices in which the parents differ, we “flip” the
given number of randomly chosen bits at positions where the parents differ
and where they are the same, and after that the set will contain exactly
those bit indices which have to be flipped in the first parent. For both
operators, operation (7) is used to create a new immutable patch from the
result of applying the operator, that will then be used either to generate a
new individual or to create a permanent link from that individual to the
existing population.

The operations. The following operations are supported.

• Create a random individual. The first such call creates the memory-
heavy part, initializes the complete individual randomly, and creates
the first vertex in the graph. All subsequent calls effectively perform
mutation with ℓ ∼ Bin(n, 1/2), such that the offspring is statistically
identical to a randomly generated individual.

• Mutate ℓ bits in the given individual x. First, the complete individual is
promoted to match the individual x, which is performed by the depth-
first search from x until the vertex matching the complete individual is
found, then by returning back and applying patches from the reverse
edges. Then, the mutable patch is initialized by adding ℓ random
elements that are not yet added. Next, starting from this state of
the mutable patch, the entire graph is traversed completely in order
to update it to reflect the new minimum spanning tree. When an
edge is traversed, the patch written on that edge is prepended to the
mutable patch, and the edge length between the current vertex and the
new individual is the size of the mutable patch. The graph is rebuilt
to become the new minimum spanning tree by an adaptation of an
algorithm from [13], which works in linear time. When this algorithm
ends, the shortest edge from an existing individual to the newly created
individual is used to compute the fitness of the latter incrementally. An
example application of the mutation operator is given in Fig. 1.
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{0, 3} {1}
{2}

{1, 3}
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(a) Initial state

4 5 3
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0

{0, 3} {1}
{2}

{1, 3}

0 1 0 0 0 0 1 1 0 1 1

(b) The complete individual is promoted to vertex with fitness 5

4 5 3

1

0

6

{0, 3} {1}
{2}

{1, 3}{2,
9}

0 1 1 0 0 0 1 1 0 0 1

(c) A new offspring is created

4 5 3

1

0

6

{0, 3} {1}
{2}

{1, 3}{9}

0 1 1 0 0 0 1 1 0 0 1

(d) A patch of the minimum size is found for the new offspring

Figure 1: Minimum spanning tree of patches. Vertices contain fitness values,
edges are labeled with patches: the sets of bit indices to flip. An example of
performing a mutation operator on an individual with fitness 5 is shown
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• Apply crossover to the given parents x1 and x2 using a function f
to obtain the numbers of bits to flip in the “same” and “differing”
bit groups. First, the complete individual is promoted to match x1,
and then the mutable patch is set to the difference between x1 and
x2 using depth-first search started from x1 until x2 is encountered.
Then, the distance between the parents is obtained from the mutable
patch, the function f is called, and the simultaneous flip is called on
the mutable patch. Finally, the procedure similar to the one in the
mutation operator is followed to create the new vertex and connect it
to the rest of the graph.

• Discard an individual. The individual is marked as discarded, and if it
has degree 1 in the graph, it is removed from the graph. Then, if the
former neighbor has also been marked as discarded, the same procedure
is called recursively. In the operations above, when computing the
shortest distance and finding an individual with that distance, only
vertices not marked as discarded are used.

All these operations traverse the entire graph at least once (for discarding
an individual, this is only the worst-case bound), which takes time propor-
tional to the sum of sizes of all the patches in the graph (each individual
creation also adds Θ(n) time and memory). This total size is small for all
the algorithms which are known to benefit from working with patches and
from incremental fitness evaluation, and can potentially be large for large
diverse populations. However, when an optimizer has worked for some time,
even if it maintains diversity, it may happen that a large portion of bit indices
has converged to the same values for the entire population, just because all
other values are strictly worse. The proposed data structure will automati-
cally benefit from such conditions, as the largest patch sizes, and hence the
average distances between the individuals, will get smaller over time.

To measure the potential speed-ups from using the minimal spanning tree
of patches, we conducted a series of experiments, which we report in the next
section.

4 Experiments

In our experiments, we use the algorithms mentioned in Section 2 with the
following notation used:

• RLS: Randomized local search;
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• (1+1): the (1+1) evolutionary algorithm using standard bit mutation
with flip probability 1/n;

• (2 + 1): the (µ + 1) genetic algorithm with µ = 2 using standard bit
mutation with flip probability 1.2/n as suggested in [36] and crossover
probability 0.9;

• (10 + 1): the (µ+ 1) genetic algorithm with µ = 10 using standard bit
mutation with flip probability 1.4/n as suggested in [15] and crossover
probability 0.9.

For the (µ + 1) genetic algorithm, we use different population sizes to
see how they affect the performance of the proposed data structure. All
these algorithms are evaluated using both the näıve approach of handling
populations and the proposed data structure. In all cases, mutation operators
using binomial distributions are implemented using efficient approaches.

As the project is implemented in Scala 3, which uses a Java virtual ma-
chine, to measure the running times we need to warm up the virtual machine,
which we do by observing the reported running times over periods of one sec-
ond (or more if the optimizer runs longer) and normalizing them over the
number of fitness evaluations. The obtained values, with a semantic of av-
erage operation time, are remarkably stable, so we report their means and
standard deviations over 10 such one-second attempts.

To perform the experiments, we use a dedicated Linux server with kernel
6.1.19, OpenJDK Java virtual machine version 11.0.18, Scala version 3.2.2,
running on an Intel Core i7-8700 CPU clocked at 3.2GHz.

4.1 OneMax

The first series of our experiments uses the OneMax problem with different
values for the problem size n to see how the proposed data structure works
in favorable conditions. We consider problem sizes n = 2k for k ∈ [5..13].
We run each algorithm until the optimum is found, then report the operation
times as specified above. The results are presented in Fig. 2.

This figure shows that the time of a single operation scales linearly with
the problem size in all algorithms using the näıve population handling ap-
proach, but in all algorithms using the proposed data structure it stays
constant as the problem size grows. It can be seen, however, that as the
population size µ grows in the (µ + 1) genetic algorithm, the cost of an op-
eration seems to scale linearly with the population size. This is expected,
as each operation traverses the entire population to determine the nearest
neighbor. The slow increase of the running times as the problem size reaches
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Figure 2: Operation times for OneMax. The last letter of the algorithm’s
name means “n” for “näıve” and “i” for “incremental”. Means and standard
deviations are shown, the latter almost always invisible.

106 can be explained by the data structure no longer fitting the L2 cache of
the processor, which results in performance degradation by a factor of up to
three.

4.2 Knapsack Problem, Fixed Budget

A similar experiment was conducted for the knapsack problem, where for
each problem size n = 2k for k ∈ [5..13] a random uncorrelated instance
was generated with weights and values in the range [10000..20000] and the
capacity equal to half the sum of weights. It is known that such instances
are generally easy [37]. However, we did not aim at obtaining the optimum,
instead, we set a computational budget of 25000 fitness evaluations. Fig. 3
shows the plots of the operation times for the considered algorithms.

In this experiment, the operation times of all the algorithms using the
näıve population handling approach still scale linearly with the problem size,
which is not surprising. With the proposed data structure, the runtimes seem
to be constant for the algorithms with small population sizes, but only until
the problem size of few thousands. After that size, the runtimes seem to get
worse until the transition around the size of 105, after which they also become
linear. This, however, is easily explained by the domination of the initial
fitness evaluation: as this experiment operates with a fixed computational
budget for evaluations, for very large problem sizes computation of the first
few fitness values takes more time than the rest of the optimization.

Even despite the deficiency of the experimental setup, we can see that
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Figure 3: Operation times for the knapsack problem with budget of 25000
fitness evaluations. The last letter of the algorithm’s name means “n” for
“näıve” and “i” for “incremental”. Means and standard deviations are shown,
the latter almost always invisible.

the (10 + 1) GA shows an increasing trend even for the small problem size,
which, however, is significantly slower than the one of the näıve approach.
This can be an indication that the (10 + 1) GA manages to maintain some
diversity in the population, which is immediately reflected in the operation
times, however, the proposed data structure still is quite efficient even in
these conditions.

4.3 Knapsack Problem, Varying Budget

One of the possible measures of diversity in the population, which is available
almost for free in the proposed data structure, is the sum of sizes of all the
patches: the larger the sum, the bigger the diversity. Additionally, this sum
may serve as an approximation of the work each variation operator has to
do, but it is unclear how good this approximation is.

We performed an additional experiment with the knapsack problem. In
this experiment, we use the (10 + 1) GA exclusively. We use one particular
knapsack problem instance with n = 104, which was randomly generated
using the procedure from the previous experiment. However, this time we
record the average operation time, as well as the average patch size, every
10 evaluations until the computational budget of 105 is reached.

The plot of average patch sizes against the number of evaluations is pre-
sented in Fig. 4, and the plot of average operation times is presented in
Fig. 5. Both plots are somewhat similar: in the beginning, both quantities
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Figure 4: Average patch sizes for the (10 + 1) GA on the knapsack problem
with n = 104 as a function of the number of fitness evaluations. Means,
minima and maxima are shown.
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Figure 5: Average operation times for the (10 + 1) GA on the knapsack
problem with n = 104 as a function of the number of fitness evaluations.
Means, minima and maxima are shown.

quickly reach the maximum value, then they drop to the small values, and
starting from roughly 600 fitness evaluations they decrease very slowly. The
initial growth phase seems somewhat unexpected, but it can be explained
by a number of individuals which did not survive, but have not yet been
deleted from the tree. The quick decrease corresponds to the gradual loss of
diversity, which is not unexpected.

What is interesting, however, is that the patch size does not drop to values
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Figure 6: Average operation times for the (10 + 1) GA on the knapsack
problem with n = 104 as a function of the average patch size. Means, minima
and maxima are shown.

of 0 or 1 for a long time, which indicates that a noticeable amount of diversity
is still present in the population. For up to 104 evaluations, the average total
patch size is greater than 30 for a population of 10, which cannot happen if
the individuals are set aside by single bit flips. It can happen though that
there are just two different individuals located at a large distance, with the
rest of the population being their copies. However, this can still result in
different population dynamics compared to the population-less algorithms.

Since Fig. 4 and 5 look very similar, one may expect that the total
patch size and the average operation time are strongly correlated, which also
matches the employed algorithms well. Fig. 6 plots the average operation
time as a function of the average total patch size. While the correlation is
indeed high (the Pearson correlation coefficient was 0.9327), Fig. 6 suggests
that the dependency might be more complicated. Though the sublinear parts
of the employed algorithms can affect the linearity for very small patch sizes,
the explanation of the abrupt change of the trends around the patch size of
200 may require additional investigations.

5 Conclusion and Future Work

We proposed a data structure for storing populations, the minimum spanning
tree of patches, that has a good potential of improving time and memory
complexity of population-based genetic algorithms in a similar way that is
already possible for mutation-only algorithms and gray-box optimizers.
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Different search spaces. Most if not all of the proposed ideas can be
implemented in discrete search spaces other than bit strings. Care should
be taken, however, of how exactly the patches are combined, and especially
reversed. Permutations already present a challenge there, as a related paper
shows [4].

Hash functions for non-revisiting algorithms. Polynomial hash
functions can be incrementally computed in a way similar to fitness func-
tions. This can be used to maintain a hash table of all individuals in the
population and prevent sampling the same individual more than once. Note
that a patch of size zero will otherwise be created for such a duplicate, how-
ever, filtering these out based on hash tables is more efficient.

Not only trees to make paths shorter. The minimality of the mini-
mum spanning tree can be, to some extent, sacrificed for making the average
paths between individuals shorter. It is not clear what is the most efficient
design of such a graph, but most likely the number of edges should still be
linear in the number of vertices.

More than one complete individual. If the population size is large
enough, or if there is significant diversity in the population, the total size
of all the patches may be of the same order, or more, as the size of an
individual. The data structure may then benefit from using more than one
complete individual: a request to perform an operator on an individual may
be fulfilled by, for instance, the closest complete individual. The proper
management of the positioning of the complete individuals may be tricky
and should be a subject of further investigation.

Large populations. It is undesirable to traverse the entire population in
the case it becomes large. Advanced balanced trees and path handling data
structures, such as splay trees [41] and link-cut trees [40], have a potential to
improve the performance further. They may also help in a better, non-lazy,
handling of discarding individuals by treating the minimum spanning tree as
a dynamic structure. With more effort, it is probably possible to implement
specialized queries on large populations, such as searching for individuals at
a certain distance faster than by complete enumeration. With an efficient im-
plementation, this may go as far as remembering all the individuals sampled
througout the search process.

Higher arities. Similarly to supporting crossovers, it is possible to sup-
port higher-arity operators, for instance ternary operators common to differ-
ential evolution [23, 42]. This requires only a moderate modification of the
data structure behind the mutable patch, which would still occupy the linear
amount of memory.

Näıve bootstrapping. Finally, the proposed data structure can be used
not from the very start of the algorithm, but once the diversity decreases
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somewhat, which would alleviate the problem of large overheads during the
first iterations of the algorithms found in the experiments.
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