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ABSTRACT
We consider and discuss the ways in which search landscapes might
contribute to the future of explainable artificial intelligence (XAI),
and vice versa. Landscapes are typically used to gain insight into
algorithm search dynamics on optimisation problems; as such, it
could be said that they explain algorithms and that they are a natural
bridge between XAI and evolutionary computation. Despite this,
there is very little existing literature which utilises landscapes for
XAI, or which applies XAI techniques to landscape analysis. This
position paper reviews the existing works, discusses possible future
avenues, and advocates for increased research effort in this area.
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1 INTRODUCTION
Size matters, and the maturation of artificial intelligence (AI) in
recent years is arguably due to the rapid increase in processing and
storage size, alongside increasing quantity and quality of available
data. With the spectacular ascent of AI through the ranks of human
labour came discussion surrounding explainable AI — pertaining to
intuitive and accessible interpretations, mostly formachine learning
(ML) models [3, 11, 12], but simultaneously triggering a paradigm
shift within evolutionary computation (EC) circles [2, 25] and other
AI communities. As an example: when a model analyses a patient’s
medical data and diagnoses a case of lung cancer, we want to know
how — for both humanitarian and legal reasons — before acciden-
tally administrating chemotherapy to treat a common cold.
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Fitness landscapes in EC are both a mathematical model and a vi-
sual metaphor used to analyze and indeed, explain, the interplay be-
tween an algorithm and an optimization problem instance [30, 41].
Providing insights into algorithmic decision-making, landscapes
can serve as a ‘bridge’ between XAI and evolutionary computing
[2, 45] but there have been very few studies which explicitly do so.

From here, we take the position that there are two directions in
which landscapes and XAI can be combined: landscapes for improv-
ing or implementing XAI, or XAI for improving or understanding
landscape analysis. We will elaborate in both directions, alongside
some discussion of earlier work insofar as available.

2 LANDSCAPES & XAI
We begin with key definitions and context. A fitness landscape
[40] is composed of three parts: (𝑆, 𝑁 , 𝑓 ) : S is the full set of possible
solutions; 𝑁 is the neighbourhood function, which assigns a set of
adjacent solutions 𝑁 (𝑠) to every 𝑠 ∈ 𝑆 and 𝑓 : 𝑆 −→ R is a fitness
function that provides a mapping from each solution to exactly one
numerical fitness value (see Figure 1). There are many methods for
XAI, and we do not discuss all of them here (and refer the interested
reader to a recent survey [15]). Instead, we now focus on a subset:
a few popular approaches which seem particularly relevant viewed
through the lens of landscape analysis.

Shapley Additive Explanations (usually referred to as SHAP)
[22] are a prevalent XAI method [1, 16, 48] which estimate the
contribution of features to a prediction. SHAP works by training

Figure 1: A typical fitness landscape; the two optimization
variables are in the plane and the landscape’s height denotes
the fitness value. Adapted from [28]
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models using different sets of features. Themarginal contribution of
a feature — for a particular observation — is obtained by subtracting
the prediction of a model which excludes that feature from the
prediction of the same model which includes the feature. Marginal
contributions of the feature across all models which contain it
are added together — resulting in a SHAP value for the feature-
observation pair. The higher the absolute SHAP value, the more
important the associated feature is taken to be in the model under
study. While SHAP values constitute local explanations (that is,
for a single prediction only), these can be aggregated for a set of
observations to provide a global model explanation.

Local interpretable model-agnostic explanations (LIME)
[33] is a common method for XAI with black-box models [9, 19, 23].
Given a single data observation, LIME samples slightly perturbed
versions of that and uses the original model to predict the response
for them; after that, LIME fits a separate linear model using this
data. The associated coefficients are taken to be feature importances
for the original model; these serve as explanations.

Counterfactual analysis [18] is a further XAI approach which
could be used to better understand fitness landscapes and the
problem-algorithm mechanics they capture. Counter-factual ex-
planations take the form "if X had not occurred, then Y would not
have occurred either." Returning to the lung cancer scenario: the
system could indicate "You do not have lung cancer, because 19
patients with data very similar to yours that did have cancer all
had platelet counts of over 456, 784 × 106/𝐿, while yours is only
276, 004 × 106/𝐿, meaning your probability of having lung cancer
is 0.09%."1

3 LANDSCAPES FOR XAI
The notion of a loss landscape [20] is used to describe the topology
of the parameter space which a neural network is learning to min-
imise the loss function. In this way, they can be used to understand
the relationship between learned parameters and the quality of
the model. Rather than gaining insight into an already-constructed
single model, the landscape is in this case being used to explain the
machine learning process itself. In this sense, loss landscapes are
good at providing some explanation to practitioners of the learning
process, and how to navigate it [6, 20]. In the literature, the notion
of a loss landscape seems to have been applied exclusively in the
context of neural networks. There is probably untapped potential
in modeling other learning algorithms in this manner (constructing
a landscape from mappings between parameters and loss). One
example is logistic regression, where stochastic gradient descent
can be used to minimise error. Although logistic regression has
fewer parameters to learn than a neural network does, the fact that
its parameters are weights (coefficients) for individual features may
open the door for insight about the machine learning model and
about the features in the dataset itself.

Fitness landscapes have been deployed previously to analyse
neural architecture search spaces [29, 31]. The landscapes were
found to be straightforward and well-suited to iterated local search.
This research closely neighbours landscapes for XAI: it provides
an understanding of the connection between a neural network
architecture and the subsequent model quality for a given dataset.

1Numbers are fictional

Instead of providing human-readable explanations for a particular
model (as is the case in typical XAI), this type of analysis can provide
numerical and visual explanations for what constitutes a good
network topology for a dataset. One particularly poignant example
is the work onweight-agnostic neural networks where evolutionary
algorithms produce highly irregular networks of variable size [10].
The authors had intended to find as-small-as-possible and highly
functional networks for simulated tasks such as controlling the
movement of a bipedal walker (Figure 2). It is unclear how network
size relates to the movement of the robot, and fitness landscape
analysis could play a critical role in understanding this.

Another variation on the neural network themewas witnessed in
the development of neuroevolution trajectory networks (NTNs)
[37]. NTNs have recently been applied to uncover and explain the
process of transfer learning in deep neural networks [36]. In this
work, the authors used neuroevolution to train and refine a model
on a series of MNIST datasets of increasing complexity; using NTNs,
they were able to provide visual representations of which of the
final model’s hyper-parameters were derived from each dataset.

A machine learning pipeline is the sequence of processes
which are carried out in order to perform modelling with a dataset.
Machine learning pipelines have been formulated as optimization
problems and subsequently been analysed with fitness landscape
analysis in the literature [42, 43]. This facilitates the possibility of
explanations for what the pipeline is doing. As one example: what
if a the performance of a pipeline is rugged in its hyperparameters?
It would explain why very similar pipelines have very different
behaviour.

A powerful combination of landscape analysis and XAI is us-
ing landscapes to understand feature selection and feature set
composition; that is, modelling binary-encoded feature sets as
solutions in an optimisation problem, with model quality as fitness.
One study has already made steps in this direction, finding high
amounts of neutrality in the landscape — indicating that many
possible model configurations contain redundant features for the
studied datasets [26]. Another direction along these lines is the es-
timation of distribution algorithms (EDAs), which maintain explicit
probabilistic models of estimates for good components of solutions
[13]. In one study, an EDA was used as a means for feature selec-
tion [27]; in another, fitness landscape analysis has been conducted
for EDAs [24]. As far as we know, landscape analysis has not yet
been conducted for EDAs with the feature selection problem. This
approach could bring enhanced understanding of which (combina-
tions of) features are associated with high machine learning model
quality. For example, the landscape analysis might find that there
are mostly gentle gradients on the evolutionary trajectory. From an
XAI perspective, this could imply that similar good-quality feature
sets are associated with similar model quality. The joint distribution
over the features represented by the probabilistic model which the
EDA keeps could also provide valuable data about which features
interact well together. As an example, in the feature selection prob-
lem for a model predicting someone’s lifetime breast cancer risk, an
EDA might capture the fact that the interaction between "feature
𝑣𝑎𝑟1 = smoker" and "feature 𝑣𝑎𝑟23 = family history" is important for
model accuracy.

One study on evolving rule sets for predictive models [38]
opens up the path towards modelling the rule set landscape. This
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Figure 2: Neural architecture search for the problem of ‘teach-
ing’ a bipedal entity to walk can be donewith an evolutionary
algorithm. Image by Mostafa Doroodian, adapted from work
by Gaier & Ha [10]

could bring insight into important components, hierarchical in-
ferencing, or domination in good rule sets. The results could be
considered XAI, although the explanatory analysis pertains to the
model construction process instead of the final model. Furthermore,
pitfalls such as overfitting are often present in these systems, which
could leave their mark on the associated landscapes as well. Another
possible way forward in using landscape analysis for XAI is visual-
izing multi-objective modelling processes as fitness landscapes. For
example, a practitioner might want to balance the possibly conflict-
ing objectives of having a model with maximum accuracy but with
an architecture requiring low computational cost. This could hap-
pen in a healthcare setting, where hardware capacity may be limited
but the accuracy of the model is extremely important. This balance
of objectives could be modelled using multi-objective optimization
and the pareto front of solutions (models) consequently visualised.
This could help both practitioners and stakeholders understand the
modelling process.

During the execution of SHAP, many different model configu-
rations (perturbed versions of the original model) are tried out in
order to establish feature importances. Model configurations (i.e.,
the feature sets) could be taken as candidate solutions and their
quality as fitness. The landscape of model configurations could then
be analysed and visualised in order to understand what SHAP is
uncovering about features more comprehensively.

4 XAI FOR LANDSCAPES
Machine learning models have been employed several times for
exploring relationships between topological landscape features
and optimization performance [7, 21, 46]. Recently, authors have
proposed using XAI to understand this type ofmodel by using SHAP
[44], but LIME and counterfactual explanations could similarly be
applied to this kind of model. Along the same vein, there has also
been work towards deliberately minimizing the number of features
involved in performance prediction with the explicit aim of
building somewhat-interpretable models [32].

An optimization problem search space could be modelled using
a supervised machine learning approach. The input features would
be formed by chromosomes and fitness would serve as response
variable. This process of machine learning the search space is
typically the approach taken to construct surrogate fitness models
[17] and in Bayesian optimization [14]. The probabilistic mechanics
of EDAs might also be said to be such a model — being biased to-
wards generation of high-fitness solutions. Indeed, the general idea
of analysing models to better understand optimization problems
was first suggested in the form of mining the probabilistic models
of EDAs [34, 35]. Such an analysis was then applied in practice via
analysis of coefficients in an interpretable linear probabilistic model
of fitness [5]. More recently, the probing of machine learning sur-
rogate models fitted to population data from an EA similar to LIME
has been used to quantify the sensitivity of the fitness function to
features (variables) [39, 47].

We observe that, in the future, decision trees could be used
to better understand fitness landscapes. Decision trees are widely
agreed to be inherently interpretable because their decision-making
process is simply a set of human-readable rules [4, 8]. A decision
tree could be built using a sample of candidate solutions to an opti-
misation problem as training data, with fitness values serving as
the labels. After that, the rules learned from the data could be used
to gain insight into the landscape; e.g., for the feature selection
problem on a cancer dataset: "feature 𝑣𝑎𝑟4 = tumour diameter" and
"feature 𝑣𝑎𝑟31 = tumour fractal dimension" must be present for a
feature set to be a local optimum. There is no requirement that the
optimisation problem is feature selection, however; it could also
be a Travelling Salesperson or Quadratic Assignment instance (or,
indeed, any arbitrary optimisation problem). There could poten-
tially be a feature which often presents as the root node in decision
trees of the search space, thus emphasising its salience as a compo-
nent. More broadly, feature importances could be extracted from
the decision tree to estimate the effect of different solution compo-
nents. Counterfactual explanations would also be possible using
the "solutions as features, fitness as response variable" model. If
the planning of a chemotherapy drug regimen was modelled as
an optimisation problem, then an example might be: "if ̸ 𝑣𝑎𝑟11 ≥
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= 5.1413", the fitness would not have reached the level of global
optima."

5 POSITION
While fitness landscape analysis is becoming common practice in
areas such as combinatorial optimisation and evolutionary com-
puting, there is little existing work which applies its powers to
XAI. One can assist the other here: landscape analysis could help
with XAI, and XAI methods could be deployed to better under-
stand landscapes. Although not all discussed avenues are XAI in
the ‘traditional’ sense of the word, we call upon the community
to question, discuss, challenge or oppose this position to further
the exploration of fitness landscapes in XAI, and vice versa. We
advocate for increased research effort in this area and look forward
to your initiatives.
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