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ABSTRACT
This study investigates the influence of several bound constraint
handling methods (BCHMs) on the search process specific to Dif-
ferential Evolution (DE), with a focus on identifying similarities
between BCHMs and grouping patterns with respect to the number
of cases when a BCHM is activated. The empirical analysis is con-
ducted on the SBOX-COST benchmarking test suite, where bound
constraints are enforced on the problem domain. This analysis
provides some insights that might be useful in designing adaptive
strategies for handling such constraints.

CCS CONCEPTS
• Computing methodologies → Continuous space search; •
Theory of computation → Continuous optimization.
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1 INTRODUCTION
For most real-world optimisation problems, the optimum should
be searched in a region limited by a boundary because outside this
region the objective function might not be evaluable. Ensuring that
the search is conducted within the bounds requires strategies for
dealing with the candidate solutions which are outside the bounds,
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strategies which are commonly called bound constraint handling
methods (BCHM)1. The influence of a BCHM on the performance
of different population-based metaheuristics has been studied in
several works (Covariance Matrix Adaptation Evolutionary Stra-
tegy [3, 28], Particle Swarm Optimisation [12, 14, 20], Differential
Evolution [2, 4, 5, 16, 17, 21]). The importance of considering BCHM
as a specific algorithmic component that could interfere with the
behaviour of the metaheuristic algorithm has recently been ac-
knowledged in [16, 18] where the specification of the used BCHM
is considered critical for the unambiguous reproducibility of the
results.

Despite the rather large number of BCHMs analysed in the pa-
pers mentioned above, the current knowledge on the role of a
BCHM is rather limited, and it is not yet clear to which extent
a BCHM has also a guidance role in the search process, beyond
just bringing back the candidate solutions to the feasible region.
The influence of a BCHM on the optimisation process depends, at
least, on how frequently it is applied and on how its way of action
interferes with the variation operators of the search algorithm. The
frequency of applying a BCHM depends on the number of infeasible
candidate solutions, which is related, in its turn, to several factors:
fitness landscape, location of the optima, problem dimensionality
and size of the search neighbourhood defined by the variation op-
erators. On the other hand, some BCHM mechanisms preserve the
current population distribution and/or the search direction induced
by the variation operators, while other BCHM mechanisms gener-
ate elements that, otherwise, could not be easily generated by the
variation operators [18].

Due to all these entangled factors, it is not easy to decipher the
reasons why a BCHM is effective or not in conjunction with some
search algorithms for some optimisation problems. With some ex-
ceptions [1, 13], most studies are empirical, based on public bench-
marking suites such as CEC [23] and BBOB [11]. Most analyses
use CEC test functions, e.g. CEC2006 [15], CEC2017 [4, 16, 19],
CEC2020 [16] and only a couple of them use BBOB [5, 18]. This
might be explained by the fact that in the original BBOB test suite,
for most of the function instances, the optimum is not near the
boundary; thus the BCHM is activated only in the first stages of
the search, thus having only a transient effect. The newly proposed

1BCHM is also referred to as a strategy of dealing with infeasible solutions (SDIS) [18].
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SBOX-COST variant of BBOB2 is characterised by the fact that it al-
lows the generation of function instances with the global optimum
arbitrarily close to the boundary, unlike the original BBOB where
all functions except linear slope (𝐹5) have a wide outside perime-
ter free of optima on all possible instances. However, it should
be mentioned that such modification has not been implemented
for functions 𝐹4, 𝐹5, 𝐹8, 𝐹9, 𝐹19, 𝐹20, 𝐹24 in SBOX-COST - their
optima locations are kept in [−4, 4]𝑛 (as in BBOB). Domain of all
functions in SBOX-COST is identical to BBOB, [−5, 5]𝑛 .

The aim of this paper is to investigate the influence of several
bound constraints handling methods on the search process specific
to Differential Evolution. The empirical analysis is conducted on
the SBOX-COST suite and addresses the following questions:

• Which SBOX-COST functions are characterised by a land-
scape that favours the search near the boundary, i.e. genera-
tion of infeasible solution candidates (Section 4)?

• Is it beneficial to preserve, by the bound constraint han-
dling method, some DE search characteristics, e.g. popula-
tion mean and variance, search direction (Section 5)?

• Is it beneficial to incorporate into the BCHM information
from some feasible reference elements, e.g. best element in
the population, mean of the population (Section 5)?

• How can a pool of BCHMs be constructed in the context of
adaptive selection of the correction (Section 6)?

2 FRAMEWORK OF THE ANALYSIS
The analysis is carried out in the context of minimising a function
𝑓 : 𝐷 ⊂ R𝑛 → R, with 𝐷 = [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × . . . × [𝑎𝑛, 𝑏𝑛],
𝑎𝑖 < ∞, 𝑏𝑖 < ∞, under the assumption that all candidate solutions
should belong to 𝐷 . As the behaviour of a BCHM is correlated with
the search metaheuristic, we will focus on only one metaheuristic,
e.g. Differential Evolution.

2.1 Differential Evolution variants
There is an established jargon when it comes to describing the DE
framework and its variants [22]. As in an evolutionary algorithm, in
DE, a set of𝑁 𝑛-dimensional candidate solutions𝑥 𝑗 ( 𝑗 = 1, 2, . . . , 𝑁 ),
called individuals, form a population. In the generational loop, for
each 𝑗𝑡ℎ individual, called target, a trial individual, y 𝑗 , is con-
structed by mutation and crossover. Once all trial individuals are
constructed, each of them will replace the corresponding target
individual if it has a smaller value of the objective function than that
of the target individual. Mutation consists in linearly combining
existing individuals. Many implementations exist for this operator;
see [8] for details. All established mutation operators require a
scale factor 𝐹 ∈ [0, 2] and are characterised by the notation A/B.
Here, A can be the target individual (or current), the best so far
solution, a randomly chosen individual from the population (i.e.,
rand), or a computed vector of the kind current-to-best, etc. To
move A within the search space, a number B of ‘difference vectors’
(usually 𝐵 = 1 or 𝐵 = 2) is computed as the (𝐹 -) scaled difference
between different randomly chosen individuals and added to A. Sub-
sequently, a crossover operator C is fed with the target and mutant
individuals to generate a trial. Note that the mutant might con-
tain infeasible components (the mutation in DE is the only operator
2accessible through IOHProfiler [10]

that can generate infeasible solutions). As some of these can be
transferred to trial during the crossover/recombination process, a
BCHM is needed. Therefore, a complete DE variant can be indicated
with the notation DE/A/B/C-BCHM. The most widely used crossover
operators for DE are referred to as bin and exp strategies, which
stand for binomial and exponential, respectively. Note that a pre-
fixed value for the ‘crossover rate’ parameter 𝐶𝑅 ∈ [0, 1) is needed
in both crossover strategies. However, 𝐶𝑅 assumes a significantly
different meaning when C=bin, where it determines the probabil-
ity of exchanging each component and when C=exp, where 𝑛 and
𝐶𝑅 decide the length of a burst of consecutive components to be
exchanged [7]. In the latter case, the probability of exchanging the
next component follows a geometrical progression, thus decaying
exponentially. We refer to [8, 22] for more details on crossover
strategies.

The DE/rand/1/bin-★ (with★ indicating a generic BCHM) con-
figuration represents the original DE framework. Advances in DE
have produced modern variants that feature new variation oper-
ators, additional operators, hybrid algorithmic components, and,
most importantly, various self-adaptation mechanisms for the con-
trol parameters 𝐹 and 𝐶𝑅, as well as for adjusting the population
size 𝑁 . Achieving the optimal self-adaptive algorithm is still an
open question in heuristic optimisation, and it is key in DE, given
its sensitivity to the parameter setting (despite having a reasonably
small number of parameters with respect to other heuristics).

The current state-of-the-art is represented by self-adaptive DE
frameworks such as the Success-History based Adaptive DE (SHADE)
[24], and its successor L-SHADE [25], which builds on the success
of SHADE by adding a linear rule to reduce the size of the popula-
tion during the optimisation process. In this light, while the first
algorithm only self-tunes 𝐹 and 𝐶𝑅, the second algorithm dynam-
ically changes 𝑁 during the optimisation process from an initial
suggested value of 𝑁 = 18 · 𝑛. Apart from this difference, these
two advanced DE algorithms use the same ‘current-to-pbest/1’
mutation strategy proposed in [29] for the popular JADE algorithm
(where the pbest vector is selected from the 𝑝% best individuals
in the population), as well as a memory-based system to adapt the
control parameters. The latter consists of storing both the weighted
Lehmer average of successful 𝐹 values and the weighted arithmetic
average of successful 𝐶𝑅 values from previous generations. When
needed, such values are randomly selected from the memory. Note
that the value of p is not prefixed as in JADE, but is generated
randomly. This mutation operator is usually followed by the bino-
mial crossover. Therefore, the structure of these algorithms can be
seen as a DE/current-to-pbest/1/bin algorithm with a memory-
based adaptation system for control parameters and, in the case of
L-SHADE, a population size reduction mechanism (which is shown
to be beneficial in previous DE variants such as [6]). Despite these
simple ideas, SHADE and L-SHADE have shown great performances
in several benchmark problems compared to other DE algorithms.

2.2 Bound constraint handling methods
An infeasible trial individual, 𝑦, contains at least one out-of-bounds
component (i.e. ∃𝑖 ∈ {1, . . . , 𝑛} : 𝑦𝑖 ∉ [𝑎𝑖 , 𝑏𝑖 ]). A bound constraint
handling method transforms all out-of-bounds components (in the
case of component-wise methods) or all components, including the
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Table 1: Bound constraint handling methods (𝑐𝐿 denotes correction for components violating the lower bound; 𝑐𝑈 denotes
correction for components violating the upper bound; 𝑐 denotes a correction which does not depend on the violated bound).

Method Corrected Application Type Characteristicscomponent/element level

Saturation
𝑐𝐿 (𝑦𝑖 ) = 𝑎𝑖 component deterministic set on the violated bound
𝑐𝑈 (𝑦𝑖 ) = 𝑏𝑖

Mirror
𝑐𝐿 (𝑦𝑖 ) = 2𝑎𝑖 − 𝑦𝑖 component deterministic a larger violation leads to a larger correction
𝑐𝑈 (𝑦𝑖 ) = 2𝑏𝑖 − 𝑦𝑖

Uniform 𝑐 (𝑦𝑖 ) ∼ U(𝑎𝑖 , 𝑏𝑖 ) component stochastic 𝑐 (𝑦𝑖 ) is independent of the position of 𝑦𝑖
Beta 𝑐 (𝑦𝑖 ) ∼ 𝑎𝑖 + 𝐵𝑒𝑡𝑎(𝛼𝑖 , 𝛽𝑖 ) (𝑏𝑖 − 𝑎𝑖 ) component stochastic aims to preserve population mean and variance
ExpC Eq.(2) component stochastic it uses a reference point

Vector
𝑐 (𝑦) = 𝛼𝑦 + (1 − 𝛼)𝑅 vector deterministic it uses a reference point
𝛼 ∈ (0, 1) as in Eq.(4) (when 𝑅 = 𝑥 it preserves the search direction)

feasible ones (in the case of vector-wisemethods) in such a way that
the resulting individual becomes a feasible one.

There are various ways of transforming an infeasible individual
into a feasible one. These are different with respect to what infor-
mation about the infeasible individual they use (e.g. which bound is
violated, how large is the violation of the bound) and with respect to
the nature of the strategy of generating values inside the bounding
box (e.g. deterministic or stochastic). There are more than fifteen
BCHMs that have been included in various empirical studies. Unfor-
tunately, the terminology is not standardized, thus the same BCHM
is referred to by using different names (e.g. the BCHM replacing
the infeasible component with the closest bound is mentioned as
projection [4, 15, 19], clipping [16], saturation [17]).

The BCHMs included in the current analysis are summarized in
Table 1, where besides some of the popular strategies (saturation/
projection/ clipping, mirror/ reflection, uniform/ reini-
tialization) a stochastic method is included which is designed
based on the particularities of DE population distribution (Beta)
and variants of some previously proposed methods: exponentially
confined [21] and a vector-wise ‘scaled mutant’ [19]. These new
variants are described more in detail in the following.

2.2.1 Correction based on Beta distribution. Starting from the result
presented in [1] which states that the distribution of the population
of feasible DE trial elements (obtained by using DE/rand/1 muta-
tion) can be approximated using a Beta distribution (with values
in [0, 1]), one can design a BCHM that generates feasible elements
following this distribution. The main idea behind the Beta correc-
tion is to generate feasible components having the same mean and
variance as the current population. To satisfy this condition, the
parameters 𝛼𝑖 and 𝛽𝑖 (𝑖 ∈ {1, . . . , 𝑛}) of the Beta distribution are cal-
culated based on the mean (Mean(𝑋𝑖 )) and the variance (Var(𝑋𝑖 ))
of the current population (computed along the infeasible compo-
nent), as described in Eq. 1, where𝑚𝑖 = (Mean(𝑋𝑖 ) − 𝑎𝑖 )/(𝑏𝑖 − 𝑎𝑖 )
and 𝑣𝑖 = Var(𝑋𝑖 )/(𝑏𝑖 − 𝑎𝑖 )2. In the case where𝑚𝑖 = 0 or𝑚𝑖 = 1
(which could happen if the optimum is at the boundary), then𝑚𝑖

is replaced with 𝜖 or 1 − 𝜖 , respectively (𝜖 > 0 is a small value, for
example, 𝜖 = 0.1).

𝛼𝑖 =𝑚𝑖

(
𝑚𝑖 (1 −𝑚𝑖 )

𝑣𝑖
− 1

)
, 𝛽𝑖 = 𝛼𝑖

1 −𝑚𝑖

𝑚𝑖
(1)

2.2.2 Exponentially confined correction. This BCHM was proposed
in [21] as a stochastic correction for which the deviation with
respect to the violated bound is computed using an exponential
distribution. The calculation details are described in Eq. 2 where 𝑦𝑖
denotes the infeasible component, 𝑟 ∼ U[0, 1], 𝑟𝐿

𝑖
∼ U[exp(𝑎𝑖 −

𝑅𝑖 ), 1], 𝑟𝑈𝑖 ∼ U[exp(𝑅𝑖 − 𝑏𝑖 ), 1], and 𝑅𝑖 is the 𝑖𝑡ℎ component of a
feasible reference vector 𝑅.

𝑐 (𝑦𝑖 ) =


𝑎𝑖 − ln
(
1 + 𝑟 (𝑒𝑎𝑖−𝑅𝑖 − 1)

)
= 𝑎𝑖 − ln 𝑟𝐿

𝑖
𝑦𝑖 < 𝑎𝑖

𝑏𝑖 + ln
(
1 + (1 − 𝑟 ) (𝑒𝑅𝑖−𝑏𝑖 − 1)

)
= 𝑏𝑖 + ln 𝑟𝑈

𝑖
𝑦𝑖 > 𝑏𝑖 ,

(2)
The variant proposed in [21] corresponds to the case where 𝑅 is the
target individual. In this paper, we also consider variants when
the reference vector is the pbest element (as defined in the SHADE
algorithm) or is the midpoint of the current population (mean of
the population elements). These three variants are referred to as
ExpTarget, ExpBest, and ExpMidpoint, respectively.

2.2.3 Vector-wise corrections. In the context of DE, a correction
acting on all components (including feasible ones) as illustrated in
Eq.3 has been proposed in [19] under the assumption that 𝑅 = 0
and this null vector belongs to the feasible region.

𝑐 (𝑦) = 𝛼𝑦 + (1 − 𝛼)𝑅 (3)

In Eq.3, 𝑦 is the infeasible trial individual (corresponding to the
target individual, 𝑥), 𝑅 is a reference element from the feasible
domain, and 𝛼 = min𝑛

𝑖=1 𝛼𝑖 ∈ [0, 1] with 𝛼𝑖 defined in Eq. 4.

𝛼𝑖 =


(𝑅𝑖 − 𝑎𝑖 )/(𝑅𝑖 − 𝑦𝑖 ) if 𝑦𝑖 < 𝑎𝑖
(𝑏𝑖 − 𝑅𝑖 )/(𝑦𝑖 − 𝑅𝑖 ) if 𝑦𝑖 > 𝑏𝑖
1 if 𝑎𝑖 ≤ 𝑦𝑖 ≤ 𝑏𝑖

(4)

In the analysis presented in [4] a variant is used in which 𝑅 is the
middle point of the bounding box, i.e. 𝑅 = (𝑎 + 𝑏)/2. However, the
reference vector 𝑅 can be anywhere in the feasible domain, as the
corrected individual is on the point where the line that joins the
infeasible mutant 𝑦 and the reference point intersects the bounding
box [𝑎1, 𝑏1] × . . . × [𝑎𝑛, 𝑏𝑛]. Once again, the reference vector can
be the target individual (VectorTarget), the best (or pbest) indi-
vidual (VectorBest), the population mean (VectorMidpoint), or
an arbitrary individual in the population (not considered in this
study). It should be remarked that if 𝑅 is the target individual, 𝑥 ,
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then the search direction is preserved through correction, since
cos(𝑦 − 𝑥, 𝑐 (𝑦) − 𝑥) = cos(𝑦 − 𝑥, 𝛼 (𝑦 − 𝑥)) = 1.

3 RELATEDWORK
Several authors analyzed the behaviour of different sets of BCHMs
in conjunction with various DE variants leading to various conclu-
sions. Some of these studies are shortly reviewed in the following.
Arabas et al [2] compared the performance of several strategies,
including saturation, toroidal, uniform, and mirroring, and
found that the choice of the BCHM could affect the DE perfor-
mance depending on the characteristics of the problem, such as the
position of the optimum and the size of the problem. They observed
that saturation and mirroring worked well when the optimum
was close to the bounds. They also remarked that for small size
problems, the DE performance was not significantly influenced by
the used BCHM while for larger size problems, saturation and
mirroring were more effective than uniform.

Padhye et al [21] investigated the effects of two groups of BCHMs,
depending on whether the correction is performed vector-wise
or component-wise, further divided into deterministic and non-
deterministic methods on particle swarm optimisation, genetic
algorithms, and differential evolution. They argue that determin-
istic methods such as saturation tend to reduce population di-
versity, while non-deterministic methods such as uniform may
discard valuable information contained in the current population.
On the other hand, when the optimum is located near the center
of the feasible domain, no significant differences between different
BCHMs were reported, while when it is located close to the bound-
ary of the feasible domain, a vector-wise strategy, referred to as
inverse-parabolic, performs the best.

The currently most extensive study on the influence of BCHMs
on DE performance was presented in [4]. Biedrzycki et al analysed
the impact of different correction methods on the dynamics of the
population, convergence speed, and global optimisation efficiency.
They found that the choice of the method could significantly influ-
ence the mean and variance of the mutant population distribution,
especially for high-dimensional problems. They also observed that
adaptive DE variants were less sensitive to the choice of strategy
than non-adaptive ones. The best behaviour was induced by strate-
gies midpoint (the corrected component is in the range defined
by the corresponding component of the target/base vector and the
violated limit) and mirroring. This motivated us to include in the
analysis BCHM variants based on a reference vector identical to
the target individual.

In [19], Kreischer et al recommend mirroring and projection
to an interior point of the feasible region, followed by midpoint
target as strategies which perform well when coupled with DE, in
terms of the number of successful runs and the quality of the solu-
tions obtained, in the case of CEC 2017 benchmark. Martinez et al
[9] present results on nine different strategies (including midpoint
target, mirroring, and projection) applied in the case of four
real-world constrained optimisation problems. The main finding is
that the effectiveness of the BCHMs depends on the problem, but,
in general, projection on the bounds was the most effective.

In [5], Boks et al. investigated the effect of BCHMs on the perfor-
mance of DE with a wide range of mutation operators and crossover

methods using the BBOB benchmark. They found that no single
BCHM was optimal for all configurations and function groups, but
recommended reinitialization at least in the case of binomial
crossover. Resampling was found to be successful in the majority
of the cases considered. This remark motivated us to include in the
analysis a method which preserves characteristics of the population
distribution, i.e. the proposed Beta correction (see Section 2.2.1).

Addressing the problem that none of the investigated BCHMs is
able to deal with particularities of various landscapes and search
strategies, in [15], Castillo et al proposed an interesting adaptive
scheme for selecting the BCHM that is appropriate for a specific
search landscape and search stage.

Unlike most of the previous works, which focus on the competi-
tion between the analysed methods, the current paper aims to also
identify similarities between BCHMs as well as grouping patterns
with respect to search behaviour.

4 BOUND CONSTRAINT VIOLATION
PATTERNS

The aim of this section is to present an analysis of the similarities
between functions belonging to the benchmarking test suites SBOX-
COST and BBOBwith respect to the number of cases where a BCHM
is activated.

4.1 Quantification of bound constraint
violation

The number of cases where a BCHM is activated and interferes
with the search process is related to: (i) the ratio of infeasible trial
individuals, i.e. the number of individuals obtained by DE mutation
and crossover that contain at least one component which is outside
the bounding box, divided by the total number of trial individuals;
(ii) the ratio of mutated components (included in trial individuals)
that are generated out of the bounding box; this ratio is consid-
ered in the following as an approximation of the bound violation
probability. In the case of component-wise methods, the amount
of BCHM activation depends on the bound violation probability,
while in the case of vector-wise methods, it is related to the ratio
of infeasible elements.

4.2 Experimental setup
To identify bound violation patterns and groups of test functions
with similar characteristics, we used the following setup:
• Test functions: all 24 functions (𝑛 = 20) from instances 1-5 and
101-110 of the SBOX-COST and BBOB test suites;
• Methods: DE/rand/1/bin-none (𝑁 = 50, 𝐹 = 0.5, 𝐶𝑅 = 0.5);
L-SHADE-none (𝑁𝑖𝑛𝑖𝑡 = 18𝑛, 𝑝 ∈ [2/𝑁𝑐𝑟𝑡 , 0.2] - pbest is selected
between the first 𝑝% top-ranked individuals, archive size of 6 [25]);
• Stopping condition: 𝑛𝑓 𝑒 = 10000𝑛.

The information collected during the experiments3 is the ratio
of infeasible components (estimation of bound violation probability,
obtained as average on five independent runs). Since the purpose of
the experiment is to analyse the characteristics of the test functions
and not of the BCHMs, all infeasible elements have been discarded,
i.e. similar to the death penalty method and the dismiss strategy

3The experimental data are available at https://doi.org/10.5281/zenodo.7836831
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Figure 1: Dendrograms corresponding to agglomerative clustering with complete linkage on cosine similarities between the
bound violation probabilities corresponding to all test functions of the suite. Methods: DE/rand/1/bin (left column) and L-
SHADE (right column) on SBOX-COST (top row) and BBOB (bottom row) benchmark suites. Instances: 1-5.

in [7]. In the case of SBOX-COST this is implicitly ensured by the
DE selection, as fitness value of infeasible elements is infinite.

4.3 Results
Figure 1 illustrates how the functions of the first 5 instances of
the SBOX-COST and BBOB suites can be grouped with respect to
the evolution of the probability of bound violation. The grouping
is based on the application of agglomerative clustering on the co-
sine similarities between the vectors obtained by concatenating the
bound violation probability values collected during the number of
generations corresponding to the allocated 𝑛𝑓 𝑒 budget. Functions
that are typically clustered together, based on the L-SHADE be-
haviour (see Fig. 2), are: (i) {𝐹5, 𝐹16, 𝐹23} - the ratio of infeasible
components has a nonmonotonous evolution, being around 0.1 af-
ter 1000 generations; this would mean that around 10% of the trial
components are transformed by a BCHM; (ii) {𝐹19, 𝐹20, 𝐹24} - for
these functions, the bound violation probability decreases quickly
to values smaller than 10−2, then, during the remaining generations,
an infeasible individual is occasionally generated; (iii) {𝐹3, 𝐹4} -
after a quick decrease, the bound violation probability increases,
reaches a maximum in the range 0.03 − 0.06, then decreases to 0
by 500-th generation; (iv) {𝐹12, 𝐹13, 𝐹14},{𝐹17, 𝐹18} - the bound
violation probability is non-zero in the first 100-150 generations
and after that no infeasible individuals are generated.

The grouping patterns identified for the bound violation prob-
abilities can also be observed for the performance values (see the
error values for all functions and all analysed BCHMs in Fig. 3).

5 CONVERGENCE BEHAVIOUR PATTERNS
A desirable behaviour of DE is when the population convergence
is synchronised with the convergence to the optimum, e.g. the pop-
ulation concentrates on the optimum. This means that when the
population diversity becomes small enough, the best element in
the population is close enough to the optimum. The case when the
population lost all diversity before reaching the optimum corre-
sponds to premature convergence, while the case when the solution
is not localised even if the population is still diverse is caused by
the inability of the search process to progress toward the solution
(one of these behaviours corresponds to stagnation).

5.1 Experimental setup
To identify the type of behaviour induced by BCHMs when com-
bined with L-SHADE (with the configuration specified in Section
4.2) on SBOX-COST functions, we collected results correspond-
ing to the following cases (all reported results are averages over 5
independent runs):
• Good behaviour (GB). The difference between the best element
value in the population and the optimal value is smaller than 10−6

and the population variance calculated per component is smaller
than 10−8. This means that the population converged and the solu-
tion was localised.
• Solution found (SF). The error is smaller than 10−6, but the
population is not convergent (variance greater than 10−8).
• Premature convergence (PC). The variance is smaller than 10−8

but the error is larger than 10−6.
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Figure 2: Empirical estimation of bound violation probabilities averaged over 30 runs of L-SHADE (with infeasible individuals
discarded) in the case of SBOX-COST functions (instances 1-5).

• Bad behaviour (BB). Both the variance of the population and
the error are greater than the thresholds.

5.2 Results
Figure 4 illustrates the behavioural differences between the BCHMs
analysed together with the test functions. One remark is that the
vector-wise BCHMs using the population mean or that using a
pbest element are more prone to premature convergence. On the
other hand, for the first 14 functions (F1-F14), at least one BCHM
leads to the solution, while for the last ten, except for F17, none of
the cases is successful.

6 TOWARDS ADAPTIVE BCHM
The variability in the behaviour of BCHMs for different fitness land-
scapes makes their choice in the general setting rather difficult. As
in the case of other algorithmic components or control parameters,
the idea of adaptive selection seems natural. A first approach in this
direction was proposed in [15] where for each infeasible individual,
a method is selected from a pool of four BCHMs. The selection is
stochastic, being based on a probability distribution adjusted every
25 generation by using the success ratio of each of the BCHMs in
the pool. The design of an adaptive BCHM requires: (i) a diverse
enough pool of methods; (ii) an adaptive selection strategy. Figure

5 illustrates the cosine similarities between different BCHMs com-
puted using various characteristics (ratio of infeasible components,
the evolution of the best-so-far values and the population variance).
It can be seen that the results are in line with the particularities of
the BCHMs. For example, with respect to the probability of bound
violation, Sat is in the same group as vector-wise methods (all of
which lead to corrected elements on the boundary). On the other
hand Beta correction is in the same group as Dismiss both with
respect to the bound violation probability and with respect to popu-
lation variance (since both aim to preserve the current distribution
of the population). As a first step toward the design of an adaptive
BCHM, we selected from the groups generated using the best-so-
far values (middle dendrogram in Fig. 5) the following methods:
VectorBest (because of its atypical behaviour and the best per-
formance for 𝐹8, 𝐹22, and 𝐹23), ExpBest (best performance for
𝐹4, 𝐹7, 𝐹9, 𝐹10, 𝐹14, and 𝐹24), Sat (best performance for 𝐹5, 𝐹12,
𝐹15), VectorTarget (best performance for 𝐹11, 𝐹17, 𝐹18), Beta
(best performance for 𝐹19, 𝐹20, 𝐹21). The performance is assessed
by ranking, for each test function, all BCHMs using Glicko2 rating
[26] from the IOHAnalyzer platform [27] with 50 games. The adap-
tation of the probability distribution used for selection is based on
that proposed in [15]. Preliminary results revealed an average per-
formance of the adaptive variant (see Figure 4, last column in each
subfigure), suggesting that more analysis is necessary to design an
effective adaptive variant.
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Figure 3: L-SHADE error values (log scale, averaged over 30 runs,n𝑓 𝑒=5000n). SBOX-COST functions F1-F24, instance 1.
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Figure 4: Comparison of BCHMs with respect to the convergence behaviour of L-SHADE on instances 1-4 (left to right): GB
(in yellow) means solution localized and convergent population; SF (in green) means solution localized and non-convergent
population; PC (in blue) means convergent population but solution not localized, i.e. premature convergence; BB (in violet)
means solution not localized and still diverse population.

Figure 5: Dendrograms corresponding to agglomerative clustering with complete linkage on cosine similarities between the
vectors corresponding to the evolution of (i) estimated bound violation probability (ratio of infeasible components) (ii) best-
so-far values; (iii) population variance. Method: L-SHADE; test suite: SBOX-COST (first 5 instances).

7 CONCLUSIONS
The conducted analysis revealed the following remarks: (i) for
most of the SBOX-COST functions, infeasible individuals are gene-
rated only in the first generations, leading to a negligible impact
of BCHMs (e.g. 𝐹9); (ii) there are functions (e.g. 𝐹16, 𝐹23) with
non-zero bound violation probability even after 1000 generations;
(iii) the guiding role of the BCHM, ensured by using a reference

vector, is important (ExpBest, ExpTarget, VectBest, VectTarget
led to best results in half of the SBOX-COST functions); (iv) preser-
vation of the DE population or search characteristics (specific to
Beta and VectTarget) proved to be useful for some functions (𝐹21;
𝐹11, 𝐹17, 𝐹18). Finally, when considering BCHMs as algorithmic
components of search metaheuristics, we believe that identifying
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guidelines for the design of adaptive correction methods is a path
to follow.

REFERENCES
[1] M. M. Ali and L. P. Fatti. 2006. A Differential Free Point Generation Scheme

in the Differential Evolution Algorithm. J. Glob. Optim. 35, 4 (2006), 551–572.
https://doi.org/10.1007/s10898-005-3767-y

[2] Jaroslaw Arabas, Adam Szczepankiewicz, and Tomasz Wroniak. 2010. Experimen-
tal Comparison of Methods to Handle Boundary Constraints in Differential Evolu-
tion. 6239 (2010), 411–420. https://doi.org/doi.org/10.1007/978-3-642-15871-1_42

[3] Rafał Biedrzycki. 2020. Handling bound constraints in CMA-ES: An experimental
study. Swarm and Evolutionary Computation 52 (2020), 100627. https://doi.org/
10.1016/j.swevo.2019.100627

[4] Rafal Biedrzycki, Jaroslaw Arabas, and Dariusz Jagodzinski. 2019. Bound con-
straints handling in Differential Evolution: An experimental study. Swarm Evol.
Comput. 50 (2019). https://doi.org/10.1016/j.swevo.2018.10.004

[5] Rick Boks, Anna V. Kononova, and Hao Wang. 2021. Quantifying the impact
of boundary constraint handling methods on differential evolution. In GECCO
’21: Genetic and Evolutionary Computation Conference, Companion Volume, Lille,
France, July 10-14, 2021, Krzysztof Krawiec (Ed.). ACM, 1199–1207. https://doi.
org/10.1145/3449726.3463214

[6] Janez Brest and Mirjam Sepesy Maučec. 2008. Population size reduction for the
differential evolution algorithm. Applied Intelligence 29, 3 (2008), 228–247.

[7] Fabio Caraffini, Anna V. Kononova, and David Corne. 2019. Infeasibility and
structural bias in differential evolution. Information Sciences 496 (2019), 161–179.
https://doi.org/10.1016/j.ins.2019.05.019

[8] S. Das, Sankha Subhra Mullick, and P.N. Suganthan. 2016. Recent advances in
differential evolution – An updated survey. Swarm and Evolutionary Computation
27 (2016), 1 – 30. https://doi.org/10.1016/j.swevo.2016.01.004

[9] Sebastián-José de-la-Cruz-Martínez and Efrén Mezura-Montes. 2020. Boundary
Constraint-Handling Methods in Differential Evolution for Mechanical Design
Optimization. In IEEE Congress on Evolutionary Computation (CEC). IEEE, 1–8.
https://doi.org/10.1109/CEC48606.2020.9185495

[10] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck.
2018. IOHprofiler: A Benchmarking and Profiling Tool for Iterative Opti-
mization Heuristics. arXiv e-prints:1810.05281 (oct 2018). arXiv:1810.05281
https://arxiv.org/abs/1810.05281

[11] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar,
and Dimo Brockhoff. 2021. COCO: a platform for comparing continu-
ous optimizers in a black-box setting. Optimization Methods and Soft-
ware 36, 1 (2021), 114–144. https://doi.org/10.1080/10556788.2020.1808977
arXiv:https://doi.org/10.1080/10556788.2020.1808977

[12] Sabine Helwig, Jürgen Branke, and Sanaz Mostaghim. 2013. Experimental Analy-
sis of Bound Handling Techniques in Particle Swarm Optimization. IEEE Trans-
actions on Evolutionary Computation 17, 2 (2013), 259–271. https://doi.org/10.
1109/TEVC.2012.2189404

[13] Sabine Helwig and Rolf Wanka. 2008. Theoretical Analysis of Initial Particle
Swarm Behavior. In Parallel Problem Solving from Nature – PPSN X, Günter
Rudolph, Thomas Jansen, Nicola Beume, Simon Lucas, and Carlo Poloni (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 889–898.

[14] Efrén Juárez-Castillo, Héctor-Gabriel Acosta-Mesa, and Efrén Mezura-Montes.
2017. Empirical study of bound constraint-handling methods in Particle Swarm
Optimization for constrained search spaces. In 2017 IEEE Congress on Evolutionary

Computation. IEEE, 604–611. https://doi.org/10.1109/CEC.2017.7969366
[15] Efrén Juárez-Castillo, Héctor-Gabriel Acosta-Mesa, and Efrén Mezura-Montes.

2019. Adaptive boundary constraint-handling scheme for constrained optimiza-
tion. Soft Comput. 23, 17 (2019), 8247–8280. https://doi.org/10.1007/s00500-018-
3459-4

[16] Tomas Kadavy, Adam Viktorin, Anezka Kazikova, Michal Pluhacek, and Roman
Senkerik. 2022. Impact of Boundary Control Methods on Bound-Constrained
Optimization Benchmarking. IEEE Transactions on Evolutionary Computation 26,
6 (2022), 1271–1280. https://doi.org/10.1109/TEVC.2022.3204412

[17] Anna V. Kononova, Fabio Caraffini, and Thomas Bäck. 2021. Differential evolution
outside the box. Information Sciences 581 (2021), 587–604. https://doi.org/10.
1016/j.ins.2021.09.058

[18] Anna V. Kononova, Diederick Vermetten, Fabio Caraffini, Madalina-A. Mitran,
and Daniela Zaharie. 2022. The importance of being constrained: dealing with
infeasible solutions in Differential Evolution and beyond. arXiv:cs.NE/2203.03512

[19] Vinicius Kreischer, Thiago Tavares Magalhaes, HJ Barbosa, and Eduardo
Krempser. 2017. Evaluation of bound constraints handling methods in differ-
ential evolution using the cec2017 benchmark. In XIII Brazilian Congress on
Computational Intelligence.

[20] Elre T. Oldewage, Andries P. Engelbrecht, and ChristopherWesley Cleghorn. 2018.
Boundary Constraint Handling Techniques for Particle Swarm Optimization in
High Dimensional Problem Spaces. In Swarm Intelligence - 11th International
Conference (Lecture Notes in Computer Science), Vol. 11172. 333–341. https:
//doi.org/10.1007/978-3-030-00533-7_27

[21] Nikhil Padhye, Pulkit Mittal, and Kalyanmoy Deb. 2015. Feasibility preserv-
ing constraint-handling strategies for real parameter evolutionary optimiza-
tion. Computational Optimization and Applications 62 (2015), 851–890. https:
//doi.org/doi.org/10.1007/s10589-015-9752-6

[22] Kenneth V. Price, Rainer Storn, and Jouni Lampinen. 2005. Differential Evolution:
A Practical Approach to Global Optimization. Springer, Berlin, Heidelberg. https:
//doi.org/10.1007/3-540-31306-0

[23] Ponnuthurai Nagaratnam Suganthan. [n. d.]. Benchmarks for Evaluation of
Evolutionary Algorithms. https://www3.ntu.edu.sg/home/epnsugan/index_files/
cec-benchmarking.htm. Accessed: 2023-04-10.

[24] Ryoji Tanabe and Alex Fukunaga. 2013. Success-history based parameter adapta-
tion for Differential Evolution. In 2013 IEEE Congress on Evolutionary Computation.
71–78. https://doi.org/10.1109/CEC.2013.6557555

[25] Ryoji Tanabe and Alex S Fukunaga. 2014. Improving the search performance
of SHADE using linear population size reduction. In 2014 IEEE Congress on
Evolutionary Computation (CEC). IEEE, IEEE, 1658–1665.

[26] Niki Vecek, Marjan Mernik, and Matej Crepinsek. 2014. A chess rating system
for evolutionary algorithms: A new method for the comparison and ranking of
evolutionary algorithms. Inf. Sci. 277 (2014), 656–679. https://doi.org/10.1016/j.
ins.2014.02.154

[27] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck.
2022. IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
Heuristics. ACM Trans. Evol. Learn. Optim. 2, 1, Article 3 (apr 2022), 29 pages.
https://doi.org/10.1145/3510426

[28] Simon Wessing. 2013. Repair Methods for Box Constraints Revisited. Lecture
Notes in Computer Science, Vol. 7835. Springer, Berlin, Heidelberg, 469–478.
https://doi.org/10.1007/978-3-642-37192-9_47

[29] Jingqiao Zhang and Arthur C. Sanderson. 2009. JADE: Adaptive Differential
Evolution With Optional External Archive. IEEE Transactions on Evolutionary
Computation 13, 5 (2009), 945–958. https://doi.org/10.1109/TEVC.2009.2014613

https://doi.org/10.1007/s10898-005-3767-y
https://doi.org/doi.org/10.1007/978-3-642-15871-1_42
https://doi.org/10.1016/j.swevo.2019.100627
https://doi.org/10.1016/j.swevo.2019.100627
https://doi.org/10.1016/j.swevo.2018.10.004
https://doi.org/10.1145/3449726.3463214
https://doi.org/10.1145/3449726.3463214
https://doi.org/10.1016/j.ins.2019.05.019
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1109/CEC48606.2020.9185495
https://arxiv.org/abs/1810.05281
https://arxiv.org/abs/1810.05281
https://doi.org/10.1080/10556788.2020.1808977
https://arxiv.org/abs/https://doi.org/10.1080/10556788.2020.1808977
https://doi.org/10.1109/TEVC.2012.2189404
https://doi.org/10.1109/TEVC.2012.2189404
https://doi.org/10.1109/CEC.2017.7969366
https://doi.org/10.1007/s00500-018-3459-4
https://doi.org/10.1007/s00500-018-3459-4
https://doi.org/10.1109/TEVC.2022.3204412
https://doi.org/10.1016/j.ins.2021.09.058
https://doi.org/10.1016/j.ins.2021.09.058
https://arxiv.org/abs/cs.NE/2203.03512
https://doi.org/10.1007/978-3-030-00533-7_27
https://doi.org/10.1007/978-3-030-00533-7_27
https://doi.org/doi.org/10.1007/s10589-015-9752-6
https://doi.org/doi.org/10.1007/s10589-015-9752-6
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
https://www3.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm
https://www3.ntu.edu.sg/home/epnsugan/index_files/cec-benchmarking.htm
https://doi.org/10.1109/CEC.2013.6557555
https://doi.org/10.1016/j.ins.2014.02.154
https://doi.org/10.1016/j.ins.2014.02.154
https://doi.org/10.1145/3510426
https://doi.org/10.1007/978-3-642-37192-9_47
https://doi.org/10.1109/TEVC.2009.2014613

	Abstract
	1 Introduction
	2 Framework of the analysis
	2.1 Differential Evolution variants
	2.2 Bound constraint handling methods

	3 Related work
	4 Bound constraint violation patterns
	4.1 Quantification of bound constraint violation
	4.2 Experimental setup 
	4.3 Results

	5 Convergence behaviour patterns
	5.1 Experimental setup
	5.2 Results

	6 Towards adaptive BCHM
	7 Conclusions
	References

