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ABSTRACT
Grover search is currently one of the main approaches to obtain

quantum speed-ups for combinatorial optimization problems. The

combination of Quantum Minimum Finding (obtained from Grover

search) with dynamic programming has proved particularly ef-

ficient to improve the worst-case complexity of several NP-hard

optimization problems. Specifically, for these problems, the classical

dynamic programming complexity (ignoring the polynomial fac-

tors) in O∗ (𝑐𝑛) can be reduced by a bounded-error hybrid quantum-

classical algorithm to O∗ (𝑐𝑛𝑞𝑢𝑎𝑛𝑡 ) for 𝑐𝑞𝑢𝑎𝑛𝑡 < 𝑐 . In this paper, we

extend the resulting hybrid dynamic programming algorithm to

three examples of single-machine scheduling problems: minimizing

the total weighted completion time with deadlines, minimizing the

total weighted completion time with precedence constraints, and

minimizing the total weighted tardiness. The extension relies on

the inclusion of a pseudo-polynomial term in the state space of the

dynamic programming as well as an additive term in the recurrence.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; •Hardware→ Quantum computation; •Mathematics
of computing → Combinatorial optimization.
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1 INTRODUCTION
The interest in quantum computing to solve combinatorial opti-

mization problems has been growing for several years in the opera-

tional research community. More precisely, two branches are distin-

guished. The first one relates to heuristics, often hybrid quantum-

classical algorithms such as variational quantum algorithms [3, 8]

and in particular QAOA [6]. Essentially, these algorithms require

the optimization problem to be formulated as a QUBO (Quadratic

Unconstrained Binary Optimization) and can be implemented on

current noisy quantum computers because the quantum part can be

made rather small. The second branch relates to exact algorithms.

Unlike the previous algorithms, it is impossible to implement them

today but theoretical speed-ups have been proved for several types

of problems and algorithms [13, 16].

The most emblematic algorithm of this branch is Grover

search [9], which achieves a quadratic speed-up when searching

for a specific element in an unsorted table, where the complexity

is computed as the number of queries of the table and done by an

oracle. The authors of [5] use Grover search as a subroutine for

a hybrid quantum-classical algorithm that finds with high proba-

bility the minimum of an unsorted table, leading to the algorithm

known as Quantum Minimum Finding (QMF). Later, the authors

of [2] combine QMF with dynamic programming to address NP-

hard optimization problems. They apply their algorithm to vertex

ordering problems, the Traveling Salesman Problem (TSP), and the

Minimum Set Cover problem, among others. All these problems

satisfy a specific property which implies that they can be solved by

classical dynamic programming in O∗ (𝑐𝑛), where O∗
is the usual

asymptotic notation that ignores the polynomial factors, and 𝑐 is

usually not smaller than 2. The hybrid algorithm from [2] reduces

the complexity to O∗ (𝑐𝑛
quant

) for 𝑐quant < 𝑐 . For instance, the TSP

is solved by Held and Karp dynamic programming [10] in O∗ (2𝑛),
and by the hybrid algorithm of [2] in O∗ (1.728𝑛). Subsequently to

the work of [2], other NP-hard problems have been tackled with the

idea of combining Grover search (or QMF) and classical dynamic

programming. This has led to quantum speed-ups for the Steiner

Tree problem [11], the graph coloring problem [15], and the subset

sum problem [1].

The purpose of this work is to adapt the seminal idea of [2]

to NP-hard scheduling problems [17] that satisfy the following

property: for a given set of jobs 𝐽 , the optimal solution for 𝐽 is the

https://doi.org/10.1145/3583133.3596415
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best concatenation of optimal solutions for 𝑋 and 𝐽 \ 𝑋 among

all 𝑋 ⊂ 𝐽 such that |𝑋 | = |𝐽 |/2 (modulo an additive term that

arises in the concatenation). This adaptation requires to introduce

a pseudo-polynomial term in the state space of the dynamic pro-

gramming as well as the aforementioned additive term. We thus

obtain an extension of the Dynamic Programming Across the Sub-

sets (DPAS) that many scheduling problems satisfy [17]. Herein,

we focus on single-machine scheduling problems and show that

our bounded-error hybrid quantum-classical algorithm improves

the best-known classical exponential complexities, where in some

cases a pseudo-polynomial factor

∑
𝑝 𝑗 appears. We illustrate it

with three examples: minimizing the total weighted completion

time with deadlines, minimizing the total weighted completion time

with precedence constraints, and minimizing the total weighted

tardiness. We summarize in Table 1 the different complexities.

Problem Quantum-DDPAS Best classical algorithm

1 | ˜𝑑 𝑗 |
∑
𝑤𝑗𝐶 𝑗 O∗ (∑𝑝 𝑗 · 1.728𝑛

)
O∗ (2𝑛 ) (DPAS)

1 | |∑𝑤𝑗𝑇𝑗 O∗ (∑𝑝 𝑗 · 1.728𝑛
)

O∗ (2𝑛 ) (DPAS)
1 |𝑝𝑟𝑒𝑐 |∑𝑤𝑗𝐶 𝑗 O∗ (1.728𝑛 ) O∗ ( (2 − 𝜖 )𝑛 ) , for small 𝜖 [4]

Table 1: Comparison of complexities between our hybrid
algorithm Quantum-DDPAS and the best-known classical
algorithm

The rest of the paper is structured as follows. We detail in Sec-

tion 2 the required property and give examples of single-machine

scheduling problems that satisfy it. Then, we describe in Section 3

the hybrid algorithm that solves the problems of interest, recalling

basic notions of quantum complexity. Appendix A recalls well-

known bounds useful to derive the complexities of the algorithm

while Appendix B provides a detailed proof of the correctness of

our main algorithm.

2 DYNAMIC PROGRAMMING FOR
SCHEDULING

Our problems of interest are scheduling problems where solutions

are described by permutations of jobs in [𝑛] := {1, . . . , 𝑛} for 𝑛 ∈ N,
and that satisfy a certain property discussed below (see Property 3).

This essentially consists of single-machine scheduling problems

with constraints.

Let P be the nominal problem we want to solve. We introduce

next a family of problems related to P that will be instrumental in

deriving the dynamic programming recursion. Let𝑇 be a set of non-

negative integers containing 0. We define the family of problems

indexed by 𝐽 ⊆ [𝑛] and 𝑡 ∈ 𝑇 :

𝑃 (𝐽 , 𝑡) : min

𝜋∈Π ( 𝐽 ,𝑡 )
𝑓 (𝜋, 𝐽 , 𝑡) , (1)

whereΠ(𝐽 , 𝑡) ⊆ 𝔖𝐽 is the set of feasible permutations of 𝐽 according

to potential constraints and 𝑓 (., 𝐽 , 𝑡) is the objective function. We

note OPT[𝐽 , 𝑡] the optimal value of 𝑃 (𝐽 , 𝑡). With these notations,

the nominal problem P can be cast as follows:

P = 𝑃 ( [𝑛], 0) .

2.1 Dynamic Programming Across the Subsets
We suppose in what follows that P can be solved by DPAS (Dy-

namic Programming Across the Subsets). It means that the family

of problems must satisfy the following DPAS property.

Property 1 (DPAS). Let 𝑡0 ∈ 𝑇 . Problem 𝑃 ( [𝑛], 𝑡0) can be solved
by DPAS if there exists a function ℎ : 2

𝑛 × [𝑛] ×𝑇 → R, computable
in polynomial time, such that the following holds:

OPT[𝐽 , 𝑡0] =

min

𝑗∈ 𝐽

{
OPT[𝐽 \ { 𝑗}, 𝑡0] + ℎ(𝐽 , 𝑗, 𝑡0)

}
∀𝐽 ⊆ [𝑛]

OPT[∅, 𝑡0] = 0

(2)

Notice the presence of the additional parameter 𝑡0 in the above

definitions, which is typically absent in the scheduling literature. In

particular, 𝑡0 is a constant throughout the whole recursion (2) and

does not impact the resulting computational complexity. The use

of that extra parameter defined in Equation (1) and in Property 1

shall be necessary later when applying our hybrid algorithm.

Lemma 2 (DPAS complexity). DPAS solves P in O∗ (2𝑛).

Proof. We compute Equation (2) for all 𝐽 such that |𝐽 | = 𝑘 , and

for 𝑡0 = 0, starting from 𝑘 = 1 to 𝑘 = 𝑛. For a given 𝐽 , the values

{OPT[𝐽 \ { 𝑗}, 0] : 𝑗 ∈ 𝐽 } are known, so OPT[𝐽 , 0] is computed

in time 𝑝𝑜𝑙𝑦 (𝑛) · 𝑘 according to Equation (2). Eventually, the total

complexity of computing OPT[[𝑛], 0] is
𝑛∑︁

𝑘=1

𝑝𝑜𝑙𝑦 (𝑛)𝑘
(
𝑛

𝑘

)
= 𝑝𝑜𝑙𝑦 (𝑛) · 𝑛 · 2𝑛−1 = O∗ (2𝑛) .

□

In this paper, we consider a family of problems that not only

satisfy Property 1, but also the Dichotomic DPAS property below.

Property 3 (Dichotomic DPAS). Let 𝑡0 ∈ 𝑇 . Problem 𝑃 ( [𝑛], 𝑡0)
can be solved by Dichotomic DPAS if there exist three functions 𝑡1 :
2
𝑛 × 2

𝑛 ×𝑇 → 𝑇 , 𝑡2 : 2
𝑛 × 2

𝑛 ×𝑇 → 𝑇 and 𝑔 : 2
𝑛 × 2

𝑛 ×𝑇 → R,
computable in polynomial time, such that, for all 𝐽 ⊆ [𝑛] of even
cardinality:

OPT[𝐽 , 𝑡0] =

min

𝑋 ⊆ 𝐽
|𝑋 |= | 𝐽 |

2

{
OPT[𝑋, 𝑡1 (𝐽 , 𝑋, 𝑡0)] + 𝑔(𝐽 , 𝑋, 𝑡0) + OPT[𝐽 \ 𝑋, 𝑡2 (𝐽 , 𝑋, 𝑡0)]

}
(3)

Notice that if OPT[𝑋, 𝑡] for 𝑋 ⊆ [𝑛] and 𝑡 ∈ 𝑇 is infeasible, then

by convention OPT[𝑋, 𝑡] = +∞. Furthermore, differently from the

previous recurrence (2), recurrence (3) now calls OPT[𝑋 ′, 𝑡 ′] for 𝑡 ′
that may be different than 𝑡0. This has an impact when deriving

the computational complexity of the algorithm in the next lemma.

Lemma 4 (Dichotomic DPAS complexity). Dichotomic DPAS
solves P in O∗ ( |𝑇 | ·𝐶 (𝑛)) where 𝐶 (𝑛) = 𝜔 (2𝑛).

Proof. We compute Equation (3) for all 𝐽 such that |𝐽 | = 2
𝑘
,

and for all 𝑡 ∈ 𝑇 , starting from 𝑘 = 1 to 𝑘 = log
2
(𝑛). For a given

𝐽 , the values {OPT[𝑋, 𝑡 ′] : 𝑋 ⊆ 𝐽 s.t. |𝑋 | = |𝐽 |/2 , 𝑡 ′ ∈ 𝑇 } are

known, so OPT[𝐽 , 𝑡] is computed in time 𝑝𝑜𝑙𝑦 (𝑛)
(
2
𝑘

2
𝑘−1

)
according

to Equation (3) (the computation of 𝑡1,𝑡2 and 𝑔 is polynomial). Thus,

computing all OPT[𝐽 , 𝑡] for any 𝐽 of size 2𝑘 and 𝑡 ∈ 𝑇 is done in
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time |𝑇 |𝑝𝑜𝑙𝑦 (𝑛)
(
2
𝑘

2
𝑘−1

) ( 𝑛
2
𝑘

)
. Eventually, the total complexity is equal

to

𝐵(𝑛) = |𝑇 |𝑝𝑜𝑙𝑦 (𝑛)
log

2
(𝑛)∑︁

𝑘=1

(
2
𝑘

2
𝑘−1

) (
𝑛

2
𝑘

)
.

We show that
2
𝑛

𝐵 (𝑛) → 0. Let us first consider the sub-sequence

(𝐵(2𝑖 ))𝑖∈N. For 𝑛 = 2
𝑖
, a lower bound of 𝐵(𝑛) is the sum of

the two last terms: 𝐵(𝑛) > |𝑇 |𝑝𝑜𝑙𝑦 (𝑛) (
( 𝑛
𝑛/2

)
+

( 𝑛
𝑛/2

) (𝑛/2
𝑛/4

)
) ≈

𝐶 |𝑇 |𝑝𝑜𝑙𝑦 (𝑛) 21.5𝑛𝑛 , where 𝐶 is a constant. Moreover, the sequence

(𝐵(𝑛))𝑛∈N is increasing. Thus,𝐶 dominates 𝑛 → 2
𝑛
asymptotically,

namely 𝐶 (𝑛) = 𝜔 (2𝑛). □

Notice that solving P using only Dichotomic DPAS is worse

than using only DPAS. However, we describe in the next section a

hybrid algorithm we call Quantum Dichotomic DPAS (Q-DDPAS)

that improves the complexity of solving P by combining DPAS

and Dichotomic DPAS with Grover search. Before introducing this

algorithm, we give some examples of single-machine scheduling

problems that satisfy the Dichotomic DPAS property and then can

be solved with Q-DDPAS.

2.2 Scheduling Examples
Let us begin with the scheduling problem with deadline constraints

and minimization of the total weighted completion time.

Example 5 (Minimizing the totalweighted completion time

with deadlines). For each job 𝑗 ∈ [𝑛], we are given a weight 𝑤 𝑗 ,
a processing time 𝑝 𝑗 , and a deadline ˜𝑑 𝑗 . We note 𝑝 (𝐽 ) =

∑
𝑗∈ 𝐽 𝑝 𝑗

and 𝑇 = ⟦0, 𝑝 ( [𝑛])⟧. For each 𝐽 ⊆ [𝑛] and 𝑡 ∈ 𝑇 , we consider the
problem 𝑃 (𝐽 , 𝑡) where

Π(𝐽 , 𝑡) = {𝜋 ∈ 𝔖𝐽 |𝐶 𝑗 (𝜋) ≤ ˜𝑑 𝑗 − 𝑡 ,∀𝑗 ∈ 𝐽 } ,

where 𝐶 𝑗 is the completion time of job 𝑗 , and for 𝜋 ∈ Π(𝐽 , 𝑡):

𝑓 (𝜋, 𝐽 , 𝑡) =
∑︁
𝑗∈ 𝐽

𝑤 𝑗 (𝐶 𝑗 (𝜋) + 𝑡) .

𝑃 (𝐽 , 𝑡) represents the problem of finding the best feasible solution for
jobs in 𝐽 supposing that starting time is t, and not 0 as usual. Our prob-
lem of interest is P = 𝑃 ( [𝑛], 0) , often referred to as 1| ˜𝑑 𝑗 |

∑
𝑗 𝑤 𝑗𝐶 𝑗

in the scheduling literature. It can be solved by DPAS. Indeed, Equa-
tion (2) is valid with: ∀𝐽 ⊆ [𝑛],∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇,

ℎ(𝐽 , 𝑗, 𝑡) =
{
𝑤 𝑗 (𝑝 (𝐽 ) + 𝑡) if ˜𝑑 𝑗 ≥ 𝑝 (𝐽 ) + 𝑡

+ ∞ else

where the computation ofℎ is polynomial (linear). This family of prob-
lems also satisfies the Dichotomic DPAS property. Indeed, Equation (3)
is valid for the following functions:

∀𝑋 ⊆ 𝐽 ⊆ [𝑛]s.t.|𝑋 | = |𝐽 |/2,∀𝑡 ∈ 𝑇,

𝑡1 (𝐽 , 𝑋, 𝑡) = 𝑡

𝑡2 (𝐽 , 𝑋, 𝑡) = 𝑡 + 𝑝 (𝑋 )
𝑔(𝐽 , 𝑋, 𝑡) = 0

We present another problem that satisfies the Dichotomic DPAS

property, which is the scheduling problem with minimization of

the total weighted tardiness.

Example 6 (Minimizing the total weighted tardiness). For
each job 𝑗 ∈ [𝑛], we are given a weight𝑤 𝑗 , a processing time 𝑝 𝑗 , and
a duedate 𝑑 𝑗 . We note 𝑝 (𝐽 ) = ∑

𝑗∈ 𝐽 𝑝 𝑗 . Let𝑇 = ⟦0, 𝑝 ( [𝑛])⟧. For each
𝐽 ⊆ [𝑛] and 𝑡 ∈ 𝑇 , we consider the problem 𝑃 (𝐽 , 𝑡) where

Π(𝐽 , 𝑡) = 𝔖𝐽 ,

and for 𝜋 ∈ Π(𝐽 , 𝑡):

𝑓 (𝜋, 𝐽 , 𝑡) =
∑︁
𝑗∈ 𝐽

𝑤 𝑗 max(0,𝐶 𝑗 (𝜋) − 𝑑 𝑗 + 𝑡) ,

where 𝐶 𝑗 is the completion time of job 𝑗 , and max(0,𝐶 𝑗 − 𝑑 𝑗 + 𝑡)
represents the tardiness of job 𝑗 for the effective duedate 𝑑 𝑗 − 𝑡 . Our
problem of interest is P = 𝑃 ( [𝑛], 0) , often referred to as 1| |∑𝑗 𝑤 𝑗𝑇𝑗
in the scheduling literature. This problem can be solved by DPAS.
Indeed, Equation (2) is valid with: ∀𝐽 ⊆ [𝑛],∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇,

ℎ(𝐽 , 𝑗, 𝑡) = 𝑤 𝑗 max(0, 𝑝 (𝐽 ) − 𝑑 𝑗 + 𝑡) ,
where the computation of ℎ is polynomial (linear). This family of
problems also satisfies the Dichotomic DPAS. Indeed, Equation (3) is
valid for the following functions:

∀𝑋 ⊆ 𝐽 ⊆ [𝑛]s.t.|𝑋 | = |𝐽 |/2,∀𝑡 ∈ 𝑇,

𝑡1 (𝐽 , 𝑋, 𝑡) = 𝑡

𝑡2 (𝐽 , 𝑋, 𝑡) = 𝑡 + 𝑝 (𝑋 )
𝑔(𝐽 , 𝑋, 𝑡) = 0

We end with the example of the scheduling problem with prece-

dence constraints and minimization of the total weighted comple-

tion time.

Example 7 (Minimizing the totalweighted completion time

with precedence constraints). We are given, for each job 𝑗 ∈
[𝑛] a processing time 𝑝 𝑗 and a weight 𝑤 𝑗 , and a set of precedence
constraints 𝐸 = {(𝑖, 𝑗) : 𝑖 ≺ 𝑗} that contains all pairs of jobs (𝑖, 𝑗)
such that 𝑖 precedes 𝑗 . We note 𝑝 (𝐽 ) = ∑

𝑗∈ 𝐽 𝑝 𝑗 . Let 𝑇 = {0}. Here,
the family of problems under consideration is indexed only by the
chosen subset of [𝑛]. Thus, for each 𝐽 ⊆ [𝑛], we consider the problem
𝑃 (𝐽 , 0) where

Π(𝐽 , 0) = {𝜋 ∈ 𝔖𝐽 | 𝜋 respects 𝐸} ,
and for 𝜋 ∈ Π(𝐽 , 0):

𝑓 (𝜋, 𝐽 , 0) =
∑︁
𝑗∈ 𝐽

𝑤 𝑗𝐶 𝑗 (𝜋) ,

where 𝐶 𝑗 is the completion time of job 𝑗 . Our problem of interest is
P = 𝑃 ( [𝑛], 0) , often referred to as 1|𝑝𝑟𝑒𝑐 |∑𝑗 𝑤 𝑗𝐶 𝑗 in the scheduling
literature. It can be solved by DPAS. Indeed, Equation (2) is valid for:

∀𝐽 ⊆ [𝑛],∀𝑗 ∈ 𝐽 , ℎ(𝐽 , 𝑗, 0) =
{ + ∞ if ∃( 𝑗, 𝑘) ∈ 𝐸 |𝑘 ∈ 𝐽

𝑤 𝑗𝑝 (𝐽 ) else

where the computation of ℎ is polynomial (quadratic). This family of
problems also satisfies the Dichotomic DPAS. Indeed, Equation (3) is
valid for the following functions :∀𝑋 ⊆ 𝐽 ⊆ [𝑛] such that |𝑋 | = |𝐽 |/2,
𝑡1 (𝐽 , 𝑋, 0) = 0

𝑡2 (𝐽 , 𝑋, 0) = 0

𝑔(𝐽 , 𝑋, 0) =


+ ∞ if ∃( 𝑗, 𝑘) ∈ 𝐸 | 𝑗 ∈ 𝐽 \ 𝑋 and 𝑘 ∈ 𝑋

𝑝 (𝑋 ) ·
∑︁

𝑗∈ 𝐽 \𝑋
𝑤 𝑗 else
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where the computation of 𝑔 is polynomial (quadratic).

3 QUANTUM DICHOTOMIC DPAS
ALGORITHM

In this section, we introduce a hybrid bounded-error algorithm

called Quantum Dichotomic DPAS (Q-DDPAS) that solves schedul-

ing problems satisfying the Dichotomic DPAS property described

in the last section. It is an adaptation of the algorithm in [2]. We

describe the quantum part of our algorithm in the gate-based quan-

tum computing model, namely, as a quantum circuit decomposed

into single and two-qubit quantum gates. The computational time

of such a quantum circuit is quantified by the number of these ele-

mentary quantum operations [12]. Henceforth, we assume to have

random access to quantum memory (QRAM) [7]. Notice that this

is a strong assumption because QRAM is not available on current

universal quantum hardware and is not expected to be so in the

near future.

3.1 Preliminaries
We begin with some notions of complexity for quantum circuits

and some notations for the description of Q-DDPAS.

Definition 8. Let us consider a family of quantum circuits
(Q𝑛)𝑛∈N of complexity O(𝐶 (𝑛)), meaning that Q𝑛 is a circuit that
applies on 𝑛 qubits and contains 𝑓 (𝑛) universal quantum gates, where
𝑓 (𝑛) = O(𝐶 (𝑛)). This family is efficient if 𝐶 (𝑛) = 𝑛𝛼 for 𝛼 > 0.

Observation 9 (Complexity of qantum circuits). Let 𝑈1

and 𝑈2 be two quantum circuits, with complexity O(𝐶1 (𝑛)) and
O(𝐶2 (𝑛)), respectively. The complexity of the composition𝑈1 ·𝑈2 is

O(𝐶1 (𝑛) +𝐶2 (𝑛)) = O(max(𝐶1 (𝑛),𝐶2 (𝑛))) .

The tensor product𝑈1 ⊗ 𝑈2 has the same complexity.

Observation 10 (Classical algorithm into qantum cir-

cuit). Any classical algorithm A can be described as a quantum
circuit𝑈A . The complexity of𝑈A is equal to the complexity of A.

We define two useful sets for the description of our algorithm,

both indexed by a subset and a parameter, (𝐽 , 𝑡). Essentially, the
first set Λ(𝐽 , 𝑡) contains all the possible balanced bi-partitions of

𝐽 and the associated parameter values of 𝑡1 and 𝑡2. The second

set Ω(𝐽 , 𝑡) contains the optimal solutions for each bi-partition in

Λ(𝐽 , 𝑡).

Definition 11 (Sets Ω and Λ). For 𝐽 ⊆ [𝑛] such that |𝐽 | is even
and for 𝑡 ∈ 𝑇 , we define the set

Λ(𝐽 , 𝑡) =
{
(𝑋, 𝑡1 (𝐽 , 𝑋, 𝑡), 𝐽 \ 𝑋, 𝑡2 (𝐽 , 𝑋, 𝑡)) : 𝑋 ⊆ 𝐽 , |𝑋 | = |𝐽 |

2

}
,

and the set

Ω(𝐽 , 𝑡) =
{
(𝑋,OPT[𝑋, 𝑡1 ( 𝐽 , 𝑋, 𝑡 ) ], 𝐽 \𝑋,OPT[ 𝐽 \𝑋, 𝑡2 ( 𝐽 , 𝑋, 𝑡 ) ], 𝑡 ) :

𝑋 ⊆ 𝐽 , |𝑋 | = | 𝐽 |
2

}
.

Let us introduce the quantum circuits that constitute the building

blocks of our algorithm, and let us provide for each of them their

complexity. The two first circuits 𝑈Λ and 𝑈Ω amount to put into

uniform superposition the elements of Λ, respectively Ω.

Definition 12 (Circuit 𝑈Λ). For 𝐽 ⊆ [𝑛] such that |𝐽 | is even,
and for 𝑡 ∈ 𝑇 , we define𝑈Λ as follows:

𝑈Λ |𝐽 ⟩ |𝑡⟩ |0⟩⊗6 =

|𝐽 ⟩ |𝑡⟩
∑︁

(𝜆𝑠
1
,𝜆𝑡

1
,𝜆𝑠

2
,𝜆𝑡

2
) ∈Λ( 𝐽 ,𝑡 )

1√︁
|Λ(𝐽 , 𝑡) |

��𝜆𝑠
1

〉 ��𝜆𝑡
1

〉
|0⟩

��𝜆𝑠
2

〉 ��𝜆𝑡
2

〉
|0⟩ .

Notice that we index the objects that represent sets by 𝑠 , and the objects
that represent parameters in 𝑇 by 𝑡 .

Property 13 (Complexity of𝑈Λ). The complexity of𝑈Λ is poly-
nomial in the size of the input.

Proof. First, let us prove that the construction of the superposi-

tion of subsets of 𝐽 of size |𝐽 |/2 is polynomial. Let 𝐽 ⊆ [𝑛] of size
𝑚 (we suppose𝑚 to be even). Let us prove that the construction of

a quantum superposition of balanced bi-partition (both subsets are

of size
𝑚
2
) of 𝐽 can be done in polynomial time.

We know that there are

( 𝑚
𝑚/2

)
balanced bi-partitions. It is possible

to construct implicitly a bijection

𝜎 :

�
1, . . . ,

(
𝑚

𝑚/2

)�
→

{
(𝑋, 𝐽 \ 𝑋 ) : |𝑋 | = 𝑚

2

}
that enumerates the balanced bi-partitions (it requires making a

bijection between 𝐽 and ⟦1, . . . ,𝑚⟧). Notice that the construction
of this bijection does not depend on the values of 𝐽 . For a given 𝑖 in�
1, . . . ,

( 𝑚
𝑚/2

)�
, the computation of 𝜎 (𝑖) = (𝑋𝑖 , 𝐽 \𝑋𝑖 ) is polynomial.

Thus,

|𝑖⟩ |0⟩ → |𝑖⟩ |𝑋𝑖 ⟩ |𝐽 \ 𝑋𝑖 ⟩

is done with a quantum circuit with a polynomial complexity, for

any 𝐽 . It implies that

( 𝑚
𝑚/2)∑︁
𝑖=1

|𝑖⟩ |0⟩ →
( 𝑚
𝑚/2)∑︁
𝑖=1

|𝑖⟩ |𝑋𝑖 ⟩ |𝐽 \ 𝑋𝑖 ⟩

is also done in polynomial time, resulting from the application of

Hadamard gates.

Eventually, the computation of functions 𝑡1 and 𝑡2 is polyno-

mial (see hypothesis in Dichotomic DPAS Property 3). Thus, the

complexity of𝑈Λ is polynomial. □

Definition 14 (Circuit 𝑈Ω). For 𝐽 ⊆ [𝑛] such that |𝐽 | is even,
and for 𝑡 ∈ 𝑇 , we define𝑈Ω as follows:

𝑈Ω |𝐽 ⟩ |𝑡⟩ |0⟩ = |𝐽 ⟩ |𝑡⟩
∑︁

𝜔∈Ω ( 𝐽 ,𝑡 )

1√︁
|Ω(𝐽 , 𝑡) |

|𝜔⟩ .

Property 15 (Complexity of𝑈Ω). Let 𝐽 be the input set. If we
suppose to have stored in the QRAM the values OPT[𝑋, 𝑡] for all
𝑋 ⊆ 𝐽 such that |𝑋 | = 𝑛/4 and for all 𝑡 ∈ 𝑇 , the complexity of𝑈Ω is
polynomial in the size of the input.

Proof. The proof follows essentially the same lines as the proof

of Property 13. The quantum superposition of subsets is done in

polynomial time, and instead of computing 𝑡1 and 𝑡2, we get values

in the QRAM in constant time. □
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Definition 16 (Circuit𝑈𝑟 ). Let 𝑟 : Ω(𝐽 , 𝑡) → Z be the function:
𝑟 (𝜔𝑠

1
, 𝜔𝑣

1
, 𝜔𝑠

2
, 𝜔𝑣

2
, 𝜔𝑡 ) = 𝜔𝑣

1
+ 𝜔𝑣

2
+ 𝑔(𝜔𝑠

1
∪ 𝜔𝑠

2
, 𝜔𝑠

1
, 𝜔𝑡 ) .

We note𝑈𝑟 the quantum circuit corresponding to 𝑟 , namely:

∀(𝜔𝑠
1
, 𝜔𝑣

1
, 𝜔𝑠

2
, 𝜔𝑣

2
, 𝜔𝑡 ) ∈ Ω(𝐽 , 𝑡), 𝑈𝑟 |𝜔⟩ |0⟩ = |𝜔⟩ |𝑟 (𝜔)⟩ ,

where |𝜔⟩ =
��𝜔𝑠

1

〉 ��𝜔𝑣
1

〉 ��𝜔𝑠
2

〉 ��𝜔𝑣
2

〉 ��𝜔𝑡
〉
is encoded in five registers.

Notice that we index the objects that represent numerical values by 𝑣 .

Property 17 (Complexity of𝑈𝑟 ). The complexity of𝑈𝑟 is poly-
nomial in the size of the input.

Proof. The computation of 𝑔 is polynomial (see hypothesis in

Dichotomic DPAS Property 3). It implies that the computation of

𝑟 is polynomial, and thus that 𝑈𝑟 has a polynomial complexity

(Property 10). □

Definition 18 (Circuit 𝑈
QMF

). Let 𝑓 : [𝑛] → Z be a function
and let𝑈

𝑓
be its corresponding quantum circuit, specifically,

𝑈
𝑓
|𝑖⟩ |0⟩ = |𝑖⟩ |𝑓 (𝑖)⟩ , ∀𝑖 ∈ [𝑛] .

We note𝑈
QMF

[𝑈
𝑓
] the quantum circuit corresponding to the Quan-

tum Minimum Finding algorithm [5] that computes with high proba-
bility the minimum value of 𝑓 and the corresponding minimizer:

𝑈
QMF

[𝑈
𝑓
]

𝑛∑︁
𝑖=1

1

√
𝑛
|𝑖⟩ |0⟩ |0⟩ =

𝑛∑︁
𝑖=1

1

√
𝑛
|𝑖⟩

�����argmin

𝑖∈[𝑛]
{𝑓 (𝑖)}

〉 ����min

𝑖∈[𝑛]
{𝑓 (𝑖)}

〉
.

Property 19 (Complexity of𝑈
QMF

[5]). The complexity of the

Quantum Minimum Finding algorithm is O
(√

𝑛 ·𝐶𝑓 (𝑛)
)
, where 𝑛

is the size of the domain of 𝑓 and O(𝐶𝑓 (𝑛)) is the complexity of the
circuit𝑈

𝑓
. Thus, the complexity of𝑈

QMF
[𝑈

𝑓
] is

O
(√

𝑛 ·𝐶𝑓 (𝑛)
)

according to Observation 10.

In the next section, we use some notations as follows. Let reg =

|𝑞1⟩ . . . |𝑞𝑛⟩ be a register of 𝑛 qubits and 𝑈 be an operator acting

on 𝑘 qubits, with 𝑘 < 𝑛. Let 𝐼 be a 𝑘-tuple of distinct indices in

[𝑛], 𝐼 = (𝑖1, . . . , 𝑖𝑘 ). We denote by 𝑈 𝐼
the operator acting on the

full register reg, that applies𝑈 on

��𝑞𝑖1 〉 . . . ��𝑞𝑖𝑘 〉, and applies 𝐼𝑑 on

the remaining qubits. For instance, if 𝐼 is the tuple of contiguous

indices (3, . . . , 𝑘 + 3) with 𝑘 < 𝑛 − 3, then

𝑈 𝐼
:= 𝐼𝑑⊗2 ⊗ 𝑈 ⊗ 𝐼𝑑⊗𝑛−𝑘−3 .

For 𝐼 = (𝑖1, . . . , 𝑖𝑘 ) and 𝐽 = ( 𝑗1, . . . , 𝑗𝑙 ) two distinct tuples in [𝑛]
(𝑘-tuple and 𝑙-tuple where 𝑖 ≠ 𝑗,∀(𝑖, 𝑗) ∈ 𝐼 × 𝐽 ) , we note 𝐼 ⊕ 𝐽 the

concatenation of 𝐼 and 𝐽 , namely 𝐼 ⊕ 𝐽 = (𝑖1, . . . , 𝑖𝑘 , 𝑗1, . . . , 𝑗𝑙 ).
Let us denote the indexes related to the quantum circuit𝑈

𝑓
as

𝑈
𝑓

|𝑖⟩︸︷︷︸
𝐼

|0⟩︸︷︷︸
𝐽

= |𝑖⟩︸︷︷︸
𝐼

|𝑓 (𝑖)⟩︸︷︷︸
𝐽

.

To clarify the computations detailed next, we index the correspond-

ing QMF operator as 𝑈
QMF

[𝑈 𝐼
𝑓
]. We omit the index 𝐽 because

this is an auxiliary register that does not appear in the output

of𝑈
QMF

[𝑈
𝑓
].

3.2 Description of the Algorithm
We describe the Quantum Dichotomic DPAS (Q-DDPAS) algorithm

as an adaptation of [2] for scheduling problems satisfying the Di-

chotomic DPAS property. Without loss of generality, we assume

that 4 divides 𝑛. The hybrid quantum-classical algorithm Q-DDPAS

consists of two steps:

(1) Classical part: For each 𝑋 of size 𝑛/4 and all 𝑡 ∈ 𝑇 , solve by

classical DPAS the problem 𝑃 (𝑋, 𝑡). Store the results in the

QRAM as tuples (𝑋, 𝑡,OPT[𝑋, 𝑡], 𝜋∗ [𝑋, 𝑡]), where 𝜋∗ [𝑋, 𝑡]
is the optimal permutation corresponding to OPT[𝑋, 𝑡].

(2) Quantum part:

(a) Apply quantum circuit

𝑈𝑄𝐷𝐷𝑃𝐴𝑆 = 𝑈
recur

𝑈
ini

to the initial state

|ini⟩ = | [𝑛]⟩ |0⟩︸   ︷︷   ︸
𝐼 1

|0⟩⊗3︸︷︷︸
𝐼 2

|0⟩⊗3︸︷︷︸
𝐼 3

|0⟩⊗3︸︷︷︸
𝐼 4

|0⟩⊗3︸︷︷︸
𝐼 5

|0⟩⊗3︸︷︷︸
𝐼 6

,

where the tuples indexing the different registers are de-

composed as follows:

𝐼1 = 𝐼1
1
⊕ 𝐼1

2

𝐼2 = 𝐼2
1
⊕ 𝐼2

2
⊕ 𝐼2

3

𝐼3 = 𝐼3
1
⊕ 𝐼3

2

𝐼4 = 𝐼4
1
⊕ 𝐼4

2
⊕ 𝐼4

3

𝐼5 = 𝐼5
1
⊕ 𝐼5

2

𝐼6 = 𝐼6
1
⊕ 𝐼6

2

and where

𝑈
ini

= (𝑈 𝐼 2

Ω ⊗ 𝑈
𝐼 4

Ω ) ·𝑈 𝐼 1⊕𝐼 2⊕𝐼 4
Λ , (4)

and

𝑈
recur

= 𝑈
𝐼 2
1
⊕𝐼 3

3
⊕𝐼 4

1
⊕𝐼 5

3
⊕𝐼 1

2
⊕𝐼 6

QMF
[𝑈

recur1
] , (5)

where

𝑈
recur1

= 𝑈
𝐼 2
1
⊕𝐼 3

2
⊕𝐼 4

1
⊕𝐼 5

2
⊕𝐼 1

2

𝑟 ·
(
𝑈
𝐼 2
3
⊕𝐼 3

QMF
[𝑈 𝐼 2

3

𝑟 ] ⊗ 𝑈
𝐼 4
3
⊕𝐼 5

QMF
[𝑈 𝐼 4

3

𝑟 ]
)
.

(b) Measure register of indexes 𝐼6
2
to find the optimal value

OPT[[𝑛], 0].
The main idea of this algorithm is as follows. First, we compute

classically by DPAS the optimal values of all subproblems sched-

uling with
𝑛
4
jobs. Second, we call recursively two times QMF to

find optimal values of subproblems scheduling with 𝑛/2 jobs and
eventually with 𝑛 jobs (corresponding to the initial problem).

Theorem 20. The bounded-error Q-DDPAS algorithm solves P in
O∗ ( |𝑇 | · 1.754𝑛).

The proof of Theorem 20 relies on the two lemmas introduced

next. However, before stating and proving these lemmas, we ob-

serve that the complexity of Q-DDPAS can be further reduced by

performing a third call to Dichotomic DPAS recurrence (3) as sug-

gested in [2].

Observation 21. A slight modification of Q-DDPAS reduces the
complexity to O∗ ( |𝑇 | · 1.728𝑛).
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For the sake of clarity, we will prove Observation 21 only after

having proved Theorem 20. We now introduce the two lemmas

necessary to prove Theorem 20.

Lemma 22. The optimal value of P is stored in the register of
indexes 𝐼6

2
by Q-DDPAS with high probability.

Proof. We provide next a sketch of the proof, referring to Ap-

pendix B for the details of the computations. The main idea is to

compute the first terms by classical DPAS, and then apply recur-

sively twice Equation (3), which is solved by QMF:

• Classical part: Compute by classical DPAS the values

OPT[𝑋, 𝑡] for all 𝑋 of size 𝑛/4 and for all 𝑡 ∈ 𝑇 . Store the

results in the QRAM.

• Quantum part:
– For each 𝐽 of size 𝑛/2 and 𝑡 ∈ 𝑇 , compute OPT[𝐽 , 𝑡]
through Equation (3) combined with QMF.

– Compute OPT[[𝑛], 0] with Equation (3) combined with

QMF.

We now give some intuition on the effect of the quantum circuit

𝑈
𝑄𝐷𝐷𝑃𝐴𝑆

= 𝑈
recur

𝑈
ini

and start by explaining the effect of 𝑈
ini

defined in (4). First, the application of𝑈Λ superposes all elements of

Λ( [𝑛], 0) in the registers of indexes 𝐼2 (partition 𝐽 ) and 𝐼4 (partition

[𝑛] \ 𝐽 ). This essentially amounts to superpose all the

( 𝑛
𝑛/2

)
bi-

partitions of [𝑛] where each partition is of size 𝑛/2 (parameters

𝑡 included). Then, we apply 𝑈Ω on register of index 𝐼2, resp. 𝐼4.

This superposes all elements of Ω(𝐽 , 𝑡) (for a 𝐽 of size 𝑛/2 and

𝑡 ∈ 𝑇 previously described in registers of indexes 𝐼2, resp. 𝐼4). This

essentially amounts to superpose all the

(𝑛/2
𝑛/4

)
bi-partitions of [𝑛]

where each partition is of size 𝑛/2, parameters 𝑡 included, and the

optimal value associated already stored in the QRAM.

Let us explain the effect of 𝑈
recur

defined in (5). The appli-

cation of 𝑈
QMF

[𝑈𝑟 ] on a register encoding (𝐽 , 𝑡 ) and the super-

position of elements of Ω(𝐽 , 𝑡) stores (with high probability) in

an output register OPT[𝐽 , 𝑡] according to the Dichotomic DPAS

Property 3. Thus, 𝑈
QMF

[𝑈𝑟 ] on register of index 𝐼2, resp. 𝐼4, su-

perposes all OPT[𝐽 , 𝑡] in 𝐼3, resp. 𝐼5. In other words, the circuit

𝑈
𝐼 2
3
⊕𝐼 3

QMF
[𝑈 𝐼 2

3
⊕𝐼 3

1

𝑟 ]⊗𝑈 𝐼 4
3
⊕𝐼 5

QMF
[𝑈 𝐼 4

3
⊕𝐼 5

1

𝑟 ] that appears in𝑈
recur1

superposes

(with high probability) all optimal values of Equation (3) for 𝐽 of

size 𝑛/2. Now that the optimal values are known for sets of size

𝑛/2 (before, we only knew optimal values for sets of size 𝑛/4), we
apply one more time𝑈

QMF
[𝑈𝑟 ] on these new registers: it outputs

OPT[[𝑛], 0] on the register of index 𝐼6
2
with high probability. □

Lemma 23. The complexity of Q-DDPAS is O∗ ( |𝑇 | · 1.754𝑛).

Proof. Let us compute the complexity of this algorithm. First,

we compute the complexity of the classical part. The proof of

Lemma 2 shows that solving all OPT[𝑋, 𝑡] for all 𝑋 of size 𝑛/4
and for all 𝑡 ∈ 𝑇 is done by DPAS in time

|𝑇 |𝑝𝑜𝑙𝑦 (𝑛)
𝑛/4∑︁
𝑘=1

𝑘

(
𝑛

𝑘

)
= O∗

(
|𝑇 |

(
𝑛

≤ 𝑛/4

))
.

Thus, because O∗
( ( 𝑛

≤𝑛/4
) )

= O∗ (20.811𝑛) (see Equation (6)), the

complexity of the classical part is

O∗ ( |𝑇 | · 20.811𝑛) .

Second, let us compute the complexity of the quantum part (using

Property 10).

• The complexity of𝑈
ini

is polynomial in 𝑛. Indeed,𝑈Λ is poly-

nomial in 𝑛 (Property 13). Moreover,𝑈Ω is also polynomial

in 𝑛: the classical part stored in the QRAM all OPT[𝑋, 𝑡] for
𝑋 of size 𝑛/4 and 𝑡 ∈ 𝑇 (Property 15).

• The complexity of 𝑈
recur

is O∗
(√︃( 𝑛

𝑛/2
) (𝑛/2
𝑛/4

) )
. Indeed, both

terms 𝑈
QMF

[𝑈𝑟 ] in 𝑈
recur1

have a polynomial complexity

for 𝑈𝑟 and find the minimum of functions with a domain

of size

(𝑛/2
𝑛/4

)
. Thus, each complexity of these two factors is

O∗
(√︃(𝑛/2

𝑛/4
) )
, and so is the complexity of the tensor prod-

uct. The circuit 𝑈
recur1

has the same complexity because

of the composition with 𝑈𝑟 that is polynomial. The circuit

𝑈
recur

finds the minimum of a function with a domain of

size

( 𝑛
𝑛/2

)
described by the corresponding quantum circuit

𝑈
recur1

above. Thus, its complexity is O∗
(√︃( 𝑛

𝑛/2
) (𝑛/2
𝑛/4

) )
.

BecauseO∗
(√︃( 𝑛

𝑛/2
) (𝑛/2
𝑛/4

) )
= O∗ (20.75𝑛) (see Equation (8)), the com-

plexity of the quantum part is

O∗ (20.75𝑛) .

Eventually, the complexity of Q-DDPAS is

O∗
(
2
0.75𝑛 + |𝑇 | · 20.811𝑛

)
= O∗

(
|𝑇 | · 20.811𝑛

)
= O∗ (|𝑇 | · 1.754𝑛 ) .

□

Proof of Theorem 20. Follows directly from Lemmas 22 and 23.

□

Proof of Observation 21. The slight modification of Q-

DDPAS amounts to add a level of recurrence in the quantum

part, but instead of searching for the best concatenation among

all the bi-partition of size (𝑛/8, 𝑛/8) (i.e. solving Equation (3) for

|𝐽 | = 𝑛/4), we search for the best concatenation among all the

bi-partition of size (0.945 · 𝑛
4
, 0.055 · 𝑛

4
), i.e. solving

OPT[𝐽 , 𝑡] =

min

𝑋 ⊆ 𝐽
|𝑋 |=0.945| 𝐽 |

{
OPT[𝑋, 𝑡1 (𝐽 , 𝑋, 𝑡)] + 𝑔(𝐽 , 𝑋, 𝑡) + OPT[𝐽 \ 𝑋, 𝑡2 (𝐽 , 𝑋, 𝑡)]

}
This further recurrence implies that:

• the classical part computes OPT[𝐽 , 𝑡] for 𝐽 of size 0.945 · 𝑛
4

and 0.055 · 𝑛
4
. Its complexity is then O∗

(
|𝑇 |

( 𝑛
≤0.945· 𝑛

4

) )
=

O∗ ( |𝑇 | · 20.789𝑛) (see Equation (7)).

• the quantum part applies three levels of recurrence of QMF,

finding the minimum over functions with a domain of size( 𝑛
𝑛/2

)
,

(𝑛/2
𝑛/4

)
and

( 𝑛/4
0.945·𝑛/4

)
respectively. Its complexity is
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then O∗
(√︃( 𝑛

𝑛/2
) (𝑛/2
𝑛/4

) ( 𝑛/4
0.945·𝑛/4

) )
= O∗ (20.789𝑛) (see Equa-

tion (9)).

The quantum part and the classical part have the same complex-

ity, thus the total complexity of Q-DDPAS is the same, namely

O∗ (20.789𝑛) = O∗ (1.728𝑛) . □

We summarized in Table 1 the complexities of solving the sched-

uling problems studied in Section 2 with Q-DDPAS and compare

them with the complexities of the best-known current classical

algorithms. Q-DDPAS improves the complexity of the exponent

but sometimes at the cost of a pseudo-polynomial factor (

∑
𝑝 𝑗 for

problems 1| ˜𝑑 𝑗 |
∑

𝑗 𝑤 𝑗𝐶 𝑗 and 1| |∑𝑗 𝑤 𝑗𝑇𝑗 ).

4 CONCLUSION
This paper extends the hybrid algorithm of [2] to scheduling prob-

lems that satisfy the Dichotomic DPAS property. Such problems,

which are often solved in O∗ (2𝑛) by classical DPAS, are solved by

our bounded-error algorithm in O∗ ( |𝑇 | ·1.754𝑛), where |𝑇 | is meant

to be at most pseudo-polynomial in the size of the problem. We

detail the application of the resulting hybrid algorithm on three

single-machine scheduling problems (1| ˜𝑑 𝑗 |
∑

𝑗 𝑤 𝑗𝐶 𝑗 , 1| |
∑

𝑗 𝑤 𝑗𝑇𝑗
and 1|𝑝𝑟𝑒𝑐 |∑𝑗 𝑤 𝑗𝐶 𝑗 ), showing a reduction of the exponent com-

pared to the best-known classical complexity. We notice that a

pseudo-polynomial factor appears in the complexity of two out of

three problems. Future works will seek to extend these results to

other scheduling problems for which the Dichotomic DPAS holds,

such as the 3-machine flowshop scheduling problem [14].
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A NOTATIONS AND UPPER BOUNDS
In what follows, we use the notation(

𝑛

≤ 𝑘

)
=

𝑘∑︁
𝑖=1

(
𝑛

𝑖

)
.

We also note the binary entropy of 𝜖 ∈]0, 1[ the quantity 𝐻 (𝜖) =
−(𝜖 log

2
(𝜖)+(1−𝜖) log

2
(1−𝜖)) .We give some useful upper bounds

of binomial coefficients [2]:

∀𝑘 ∈ ⟦1, 𝑛⟧,
(
𝑛

𝑘

)
≤ 2

𝐻

(
𝑘
𝑛

)
·𝑛
,

∀𝑘 ∈
�
1,
𝑛

2

�
,

(
𝑛

≤ 𝑘

)
≤ 2

𝐻

(
𝑘
𝑛

)
·𝑛
.

Observe that

( 𝑛
≤𝑛/4

)
is bounded above by 2

𝐻

(
𝑛/4
𝑛

)
·𝑛
, where

𝐻

(
𝑛/4
𝑛

)
= 𝐻

(
1

4

)
= −

(
1

4
log

2

(
1

4

)
+ 3

4
log

2

(
3

4

))
= 0.811 , so we

obtain (
𝑛

≤ 𝑛/4

)
≤ 2

0.811𝑛 . (6)

In the same way, we can show that(
𝑛

≤ 0.945 · 𝑛/4

)
≤ 2

0.789𝑛 . (7)

Similarly,

√︃( 𝑛
𝑛/2

) (𝑛/2
𝑛/4

)
is bounded above by

√︃
2

𝐻

(
𝑛/4
𝑛/2

)
· 𝑛
2

2

𝐻

(
𝑛/2
𝑛

)
·𝑛

=

2

1

2
( 1
2
𝐻 ( 1

2
)+𝐻 ( 1

2
)) ·𝑛 = 2

3

4
𝐻 ( 1

2
)𝑛 , where 𝐻

(
1

2

)
= 1, leading to√︄(

𝑛

𝑛/2

) (
𝑛/2
𝑛/4

)
≤ 2

0.75𝑛 . (8)

In the same way, we can show that√︄(
𝑛

𝑛/2

) (
𝑛/2
𝑛/4

) (
𝑛/4

0.945 · 𝑛/4

)
≤ 2

0.789𝑛 . (9)

B DETAILED PROOF OF LEMMA 22
Next, we compute 𝑈

recur
𝑈
ini

|ini⟩ and show that OPT[[𝑛], 0] is

stored in register of indexes 𝐼6
2
. First, we compute𝑈

ini
|ini⟩.

𝑈
𝐼 1⊕𝐼 2⊕𝐼 4
Λ |ini⟩ =𝑈 𝐼 1⊕𝐼 2⊕𝐼 4

Λ | [𝑛]⟩ |0⟩︸   ︷︷   ︸
𝐼 1

|0⟩⊗3︸︷︷︸
𝐼 2

|0⟩⊗2︸︷︷︸
𝐼 3

|0⟩⊗3︸︷︷︸
𝐼 4

|0⟩⊗2︸︷︷︸
𝐼 5

|0⟩⊗2︸︷︷︸
𝐼 6

= | [𝑛]⟩ |0⟩︸   ︷︷   ︸
𝐼 1

∑︁
(𝜆𝑠

1
,𝜆𝑡

1
,𝜆𝑠

2
,𝜆𝑡

2
) ∈Λ( [𝑛],0)

1√︁
|Λ( [𝑛], 0) |��𝜆𝑠

1

〉 ��𝜆𝑡
1

〉
|0⟩︸        ︷︷        ︸

𝐼 2

|0⟩⊗2︸︷︷︸
𝐼 3

��𝜆𝑠
2

〉 ��𝜆𝑡
2

〉
|0⟩︸        ︷︷        ︸

𝐼 4

|0⟩⊗2︸︷︷︸
𝐼 5

|0⟩⊗2︸︷︷︸
𝐼 6

.
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Thus,

𝑈
ini

|ini⟩ =
(
𝑈
𝐼 2

Ω ⊗ 𝑈
𝐼 4

Ω

)
·𝑈 𝐼 1⊕𝐼 2⊕𝐼 4

Λ |ini⟩

=

(
(𝑈 𝐼 2

Ω ⊗ 𝑈
𝐼 4

Ω

)
| [𝑛]⟩ |0⟩︸   ︷︷   ︸

𝐼 1

∑︁
(𝜆𝑠

1
,𝜆𝑡

1
,𝜆𝑠

2
,𝜆𝑡

2
) ∈Λ( [𝑛],0)

1√︁
|Λ( [𝑛], 0) |��𝜆𝑠

1

〉 ��𝜆𝑡
1

〉
|0⟩︸        ︷︷        ︸

𝐼 2

|0⟩⊗2︸︷︷︸
𝐼 3

��𝜆𝑠
2

〉 ��𝜆𝑡
2

〉
|0⟩︸        ︷︷        ︸

𝐼 4

|0⟩⊗2︸︷︷︸
𝐼 5

|0⟩⊗2︸︷︷︸
𝐼 6

= | [𝑛]⟩ |0⟩︸   ︷︷   ︸
𝐼 1

∑︁
(𝜆𝑠

1
,𝜆𝑡

1
,𝜆𝑠

2
,𝜆𝑡

2
) ∈Λ( [𝑛],0)

1√︁
|Λ( [𝑛], 0) |

��𝜆𝑠
1

〉︸︷︷︸
𝐼 2
1

��𝜆𝑡
1

〉︸︷︷︸
𝐼 2
2

©­­­­«
∑︁

𝜔∈Ω (𝜆𝑠
1
,𝜆𝑡

1
)

1√︃
|Ω(𝜆𝑠

1
, 𝜆𝑡

1
) |

|𝜔⟩︸︷︷︸
𝐼 2
3

|0⟩⊗2︸︷︷︸
𝐼 3

ª®®®®¬
��𝜆𝑠
2

〉︸︷︷︸
𝐼 4
1

��𝜆𝑡
2

〉︸︷︷︸
𝐼 4
2

©­­­­«
∑︁

𝜔∈Ω (𝜆𝑠
2
,𝜆𝑡

2
)

1√︃
|Ω(𝜆𝑠

2
, 𝜆𝑡

2
) |

|𝜔⟩︸︷︷︸
𝐼 4
3

|0⟩⊗2︸︷︷︸
𝐼 5

ª®®®®¬
|0⟩⊗2︸︷︷︸
𝐼 6

.

Second, we apply the tensor product of the two first QMF to the

previous state.(
𝑈
𝐼 2
3
⊕𝐼 3

QMF
[𝑈 𝐼 2

3

𝑟 ] ⊗ 𝑈
𝐼 4
3
⊕𝐼 5

QMF
[𝑈 𝐼 4

3

𝑟 ]
)
| [𝑛]⟩ |0⟩︸   ︷︷   ︸

𝐼 1∑︁
(𝜆𝑠

1
,𝜆𝑡

1
,𝜆𝑠

2
,𝜆𝑡

2
) ∈Λ( [𝑛],0)

1√︁
|Λ( [𝑛], 0) |

��𝜆𝑠
1

〉︸︷︷︸
𝐼 2
1

��𝜆𝑡
1

〉︸︷︷︸
𝐼 2
2

©­­­­«
∑︁

𝜔∈Ω (𝜆𝑠
1
,𝜆𝑡

1
)

1√︃
|Ω(𝜆𝑠

1
, 𝜆𝑡

1
) |

|𝜔⟩︸︷︷︸
𝐼 2
3

|0⟩⊗2︸︷︷︸
𝐼 3

ª®®®®¬
��𝜆𝑠
2

〉︸︷︷︸
𝐼 4
1

��𝜆𝑡
2

〉︸︷︷︸
𝐼 4
2

©­­­­«
∑︁

𝜔∈Ω (𝜆𝑠
2
,𝜆𝑡

2
)

1√︃
|Ω(𝜆𝑠

2
, 𝜆𝑡

2
) |

|𝜔⟩︸︷︷︸
𝐼 4
3

|0⟩⊗2︸︷︷︸
𝐼 5

ª®®®®¬
|0⟩⊗2︸︷︷︸
𝐼 6

= | [𝑛]⟩ |0⟩︸   ︷︷   ︸
𝐼 1

∑︁
(𝜆𝑠

1
,𝜆𝑡

1
,𝜆𝑠

2
,𝜆𝑡

2
) ∈Λ( [𝑛],0)

1√︁
|Λ( [𝑛], 0) |

��𝜆𝑠
1

〉︸︷︷︸
𝐼 2
1

��𝜆𝑡
1

〉︸︷︷︸
𝐼 2
2∑︁

𝜔∈Ω (𝜆𝑠
1
,𝜆𝑡

1
)

1√︃
|Ω(𝜆𝑠

1
, 𝜆𝑡

1
) |

|𝜔⟩︸︷︷︸
𝐼 2
3

����argmin

𝜔
𝑟 (𝜔)

〉 ���min

𝜔
𝑟 (𝜔)

〉
︸                            ︷︷                            ︸

𝐼 3
1
⊗𝐼 3

2��𝜆𝑠
2

〉︸︷︷︸
𝐼 4
1

��𝜆𝑡
2

〉︸︷︷︸
𝐼 4
2

∑︁
𝜔∈Ω (𝜆𝑠

2
,𝜆𝑡

2
)

1√︃
|Ω(𝜆𝑠

2
, 𝜆𝑡

2
) |

|𝜔⟩︸︷︷︸
𝐼 4
3����argmin

𝜔
𝑟 (𝜔)
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𝜔
𝑟 (𝜔)

〉
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𝐼 5
1
⊗𝐼 5

2

|0⟩⊗2︸︷︷︸
𝐼 6

.

Thus, we apply the second circuit of QMF.

𝑈
recur

𝑈
ini

|ini⟩ = 𝑈
𝐼 2
1
⊕𝐼 3

3
⊕𝐼 4

1
⊕𝐼 5

3
⊕𝐼 1

2
⊕𝐼 6

QMF
[𝑈

recur1
]𝑈

ini
|ini⟩
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𝐼 2
1
⊕𝐼 3

3
⊕𝐼 4

1
⊕𝐼 5
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〉︸︷︷︸
𝐼 2
2∑︁

𝜔∈Ω (𝜆𝑠
1
,𝜆𝑡

1
)

1√︃
|Ω(𝜆𝑠

1
, 𝜆𝑡

1
) |

|𝜔⟩︸︷︷︸
𝐼 2
3

����argmin

𝜔
𝑟 (𝜔)

〉 ���min

𝜔
𝑟 (𝜔)

〉
︸                            ︷︷                            ︸

𝐼 3
1
⊗𝐼 3

2��𝜆𝑠
2

〉︸︷︷︸
𝐼 4
1

��𝜆𝑡
2

〉︸︷︷︸
𝐼 4
2

∑︁
𝜔∈Ω (𝜆𝑠

2
,𝜆𝑡

2
)

1√︃
|Ω(𝜆𝑠

2
, 𝜆𝑡

2
) |

|𝜔⟩︸︷︷︸
𝐼 4
3����argmin

𝜔
𝑟 (𝜔)

〉 ���min

𝜔
𝑟 (𝜔)

〉
︸                            ︷︷                            ︸

𝐼 5
1
⊗𝐼 5

2����� argmin

𝜆∈Λ( [𝑛],0)
𝑟 (𝜆𝑠

1
, min

𝜔∈Ω (𝜆𝑠
1
,𝜆𝑡

1
)
𝑟 (𝜔), 𝜆𝑠

2
, min

𝜔∈Ω (𝜆𝑠
2
,𝜆𝑡

2
)
𝑟 (𝜔), 0)

〉
︸                                                                      ︷︷                                                                      ︸

𝐼 6
1����� min

𝜆∈Λ( [𝑛],0)
𝑟 (𝜆𝑠

1
, min

𝜔∈Ω (𝜆𝑠
1
,𝜆𝑡

1
)
𝑟 (𝜔), 𝜆𝑠

2
, min

𝜔∈Ω (𝜆𝑠
2
,𝜆𝑡

2
)
𝑟 (𝜔), 0)

〉
︸                                                                      ︷︷                                                                      ︸

𝐼 6
2

.

According to definition of 𝑟 and the Dichotomic DPAS Property 3,

the results stored in register of indexes 𝐼6
2
is OPT[[𝑛], 0].

Notice that optimal permutation 𝜋∗ [[𝑛], 0] can be rebuilt with
registers of indexes 𝐼3

1
, 𝐼5
1
and 𝐼6

1
, and with the access to the results

of the classical part in the QRAM.
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