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A suitable square root transformation of a gamma 
random variable with mean a -- 1 yields a probability 
density close to the standard normal density. A modifi- 
cation of the rejection technique then begins by sampling 
from the normal distribution, being able to accept and 
transform the initial normal observation quickly at least 
85 percent of the time (95 percent if a _> 4). When used 
with efficient subroutines for sampling from the normal 
and exponential distributions, the resulting accurate 
method is significantly faster than competing algorithms. 

CR Categories and Subject Descriptors: G.3 [Prob- 
ability and Statistics]: statistical computing; 1.6.m [Sim- 
ulation and Modeling]: Miscellaneous. 

General Term: Algorithms 

Additional Key Words and Phrases: gamma distri- 
bution, random numbers, acceptance-rejection method 

1. Introduction 

A number of useful algorithms for sampling from the 
standard gamma distribution with parameter a (mean a) 
have been published in recent years. For an even better 
utility routine the following four properties, A, V, C, and 
F, are desirable: 

(A)--The method should be theoretically correct, and all 
calculations should approximately maintain single- 
precision accuracy. 
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( V ) - - T h e  algorithm should remain efficient even if the 
parameter a varies all the time. 

(C)--The method should guarantee constant computa- 
tion times for a ~ o0. 

(~  ) - -  Functions like In and exp should not occur in the 
main paths of  the algorithm. 

We shall carefully consider these four requirements: 

(A)--Whenever a formula is likely to produce a 
substantial loss of  accuracy if implemented directly, a 
numerically safer substitute expression is proposed. 

(V) - -This  requirement rules out procedures which 
need parameter-dependent tables of coefficients like the 
Forsythe method in Atkinson and Pearce [7]. Ahrens 
and Kohrt [5] describe a general table-aided inversion 
routine. When applied to gamma distributions, their set- 
up algorithm produces about 350 coefficients for 99 
approximating polynomials of average degree 2.4 to 2.6. 
The sampling routine is then almost as fast as a square 
root (SQRT) and faster than a logarithm (ALOG); but 
the set-up is slow, and the method is therefore suitable 
only for repeated sampling with fLxed parameters. 

(C)---=The best existing algorithms lead to decreasing 
times which stabilize quickly as a increases. The require- 
ment C rules out the old method of  taking - I n  of a 
product of  uniform deviates, as well as the algorithms of 
Fishman [16] and Tadikamalla [23]. 

(F ) - -S tanda rd  functions can be permitted only in 
steps of low probability. There seems to be no way of 
avoiding one square root whenever the parameter a 
changes. Otherwise we aim at the speed of one single 
logarithm, and this precludes frequent use of In, exp, and 
In 1'. The methods in Atkinson 16], Best [8, 9], Cheng 
[ 10], Cheng and Feast [111, TadikamaUa [22], and Ahrens 
and Dieter [2, Algorithm GC] require at least one call of 
In or exp. 

However, we assume that fast subprograms for sam- 
piing from the normal and exponential distributions are 
available, such as the ones in Marsaglia's Super-Duper 
set (software package at McGill University, Montreal). 
For our experiments we incorporated assembler pro- 
grams of Algorithm FL5 in Ahrens and Dieter [3] and 
Algorithm SA in Ahrens and Dieter [1], and naturally 
we did not mind the two-day job of debugging our final 
gamma method GD in assembler code. In high-level 
languages, procedures which violate property F can still 
appear to be fully competitive, particularly if something 
like the polar method for the normal distribution is 
employed, as in Cheng [10]. 

The literature contains three methods which conform 
to all requirements A, V, C, and F. The first two (GO 
and MS) use von Neumann's [21] rejection technique. 
For this a function which is proportional to some density 
and which majorizes the given or transformed gamma 
density is constructed. We use the words hat or cover for 
such majorizing functions. 

GO is Algorithm GO in Ahrens and Dieter [2], which 
is restricted to a > 2.5328. A normal hat is constructed, 
but this does not majorize the right-hand tail of the 

-3 .  - 2 .  -1. 

gamma distribution. Therefore an additional exponential 
cover is needed in about 1 percent of all cases. 

MS is Greenwood's [17] application of the Wilson- 
Hilferty transformation, as improved by Marsaglia's 
"squeeze" method in Marsaglia [20] (a > t). The trans- 
formation x <-- a ( l  - ~a + t / , ~ a )  3 changes the gamma 
probability density y(x) into a new function g(t) which 
is much closer to a normal densi tyf( t)  and which can be 
covered completely by a normal hat proportional tof( t ) .  

CF, the third Algorithm G K M  3 in Cheng and Feast 
[12], uses Kinderman and Monahan's [18] quotients of 
uniform deviates (a > 1); it does not employ a normal 
cove r .  

In between GO (linear transformation) and MS 
(third-order transformation) lies the as yet unexplored 
possibility of  a quadratic transformation such as Fisher's 
x ~-- (x/a - ¼ + t/2) 2. This is our basic approach, but 
we take x ,,-- ( ~  + t/2) 2 instead. The resultihg 
transformed function g(t) is not as close to the standard 
normal density f ( t )  as the one obtained from Fisher's 
transformation, and it is certainly a poorer approxima- 
tion when compared with the Wilson-Hilferty formula. 
Moreover, there is no scaling factor a such that a normal 
cover af ( t )  could majorize g(t), and this is true no matter 
which quadratic transformation is tried. 

Still, our g(t) has some other features which are 
proved in Sec. 2. The mode of g(t) is at t = 0, but g(0) 
is a little larger than f (0)  = 1/2,/~-~. Also, g(t) intersects 
the standard normal dens i tyf ( t )  only once at some t = 
~'(a) < 0. Consequently, g(t) >_f(t) for all t _ 0 (Figure 
1 displays the case a = 2.) This calls for the following 
modification of  yon Neumann's [21] acceptance-rejec- 
tion technique: 

Generate a standard normal deviate T. If  T >_ 0, 
accept X *--- ( ~ - - - ~  + T/2) 2 as a gamma(a) sample. For 
T < ~'(a), where f ( t )  majorizes g(t), the ratio r(T) = 
g ( T ) / f ( T )  can be compared with a (0, l)-uniform deviate 
U for an ordinary rejection test. (For simplicity this test 
is also applied when r(a) < T < 0. In this case r(t) >1 
and T is always accepted.) Obviously rejection occurs 
with probability 

f~/ 0 . I .  

z l t )  f(t) 
..- " r -  ~ , , ~ l  t 

I. 2. 3. 
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Fig. I. Comparison of Standard Normal Density f ( t )  with Trans- 
formed Gamma (2) Density g(t). 
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f P ( H )  = ( f ( t )  - g( t ))  dt = (g( t )  - f ( t ) )  dt. 
co  

Hence, whenever a negative T is rejected, it must be 
replaced with a new T___ r (a), and this has to be a sample 
from the difference distribution whose probability den- 
sity function is proportional to g( t )  - f ( t )  in [z, oo). 
Sampling from this difference is tricky, but it can be 
done by means of  a double-exponential hat, whose 
proper construction requires some analysis. The hat case 
will also burden the final sampling Algorithm G D  with 
some additional calculations. Therefore we shall not 
attempt to include parameters 0.5 < a < 1, which our 
transformation would still permit. For  a >1, the proba- 
bility of  shifting the excess area on the left (t < r )  over 
to the right (t > ~) dwindles away fairly quickly (O(1/  
42)). 

With a probability of  0.5 we have nothing but a 
transformed sample from the standard normal distribu- 
tion, and the transformation is easier to calculate than 
the one in MS. (This probability could be increased by 
also accepting samples T between ¢(a) and O immedi- 
ately. However, since the calculation of  ~'(a) is difficult 
we decided against this possibility after some experimen- 
tation with timing.) 

When t < 0, the evaluation of  r( t)  = g ( t ) / f ( t )  can 
usually be replaced with a simpler function z(t) which is 
a lower bound of  r(t).  Such functions have been dubbed 
squeezes by Marsaglia [20]. Their faster evaluation leads 
to a quicker acceptance with high probability. Our 
squeeze z ( t )  does not need standard functions, thus 
satisfying requirement F. 

In order to conform to requirement A, some expres- 
sions involving small differences of  large quantities will 
be replaced with economized polynomials. After all, 
there is no point in correcting the normal distribution to 
a transformed gamma distribution if this adjustment 
becomes meaningless on account of  truncation errors. In 
fact, MS would also need such a device (or slow double- 
precision calculations). 

The final Algorithm GD looks more complicated 
than CF, MS, and even GO. A tested Fortran version is 
contained in Ahrens and Dieter [4]; it may also be 
requested from the authors. The new method is meant to 
be part of  a package consisting of  fast machine-code 
routines for sampling from the most common statistical 
distributions. (In assembler code GD is not much more 
complex than GO.) 

A formal statement of  GD in the style of  Knuth [ 19] 
is contained in Sec. 3, and computational experience is 
reported in Sec. 4. The new algorithm is significantly 
faster than its competitors for all a > 1. Trials with 
continually changing parameters yielded computation 
times between less than two ALOG times (large a) and 
about three ALOG times at a -- 1 and approximately 
one ALOG time for a > 10. There the generation of  one 
gamma deviate took only twice as long as one sample 
from the standard normal distribution. 
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2. The Method 

The standard gamma(a) probability density function 
! 

-/(x) = o-1 F---~x exp ( - x ) ,  a > 1, x ___ 0 (1) 

is transformed into a density g( t )  by the substitution 

x =  s +  ; dx  = s +  art (2) 

where s = 2' 

,( l(,)2) 
e x p t -  , (3) 

a > _ 1, t > _ - 2 s .  

This g( t )  is close to the standard normal density 

1 ( 1 ) 
f ( t )  -- - ~  exp - ~ P , - ~  < t < ~. (4) 

Figure 1 displays the case a --- 2. To the left of  
r(2) = -0.67988 we have g(t) < f ( t ) .  The area in 
between (horizontal shades) is equal to the area on the 
right of  ~" (vertical shades) where g(t)  > f ( t ) .  The narrow 
black area on the left illustrates the so-called squeeze 
z G ) f ( t  ) which is explained later by Eq. (11). 

We now prove that g(t )  and f ( t )  always intersect 
only once at some negative r(a). For this the following 
quantities are calculated: 

f(t~ - r ( a )  s + - exp - s 2 - st + (5) 

q(t )  = In r(t)  ---- In ~ -- In I ' (a)  

- s 2 - st + - ~  + 2s21n s +  

(,) = q ( O ) - s t + ~ - + 2 s 2 i n  1 + ~ s  " (6) 

q (0) is analyzed by means of  the Stirling approximation 

l n I ' ( a ) = i n x / - f ~ r r r r r + ( a - 1 ) i n a - a  

1 1 1 
+ 12---~ 360a ~ + 1260a ~ + O(a-5)  

q(0) = In ~ - In I ' (a)  - s 2 + s2In s z 

-- a -  In 1 - ~ -  a - t~  12a 

1 1 
+ 360a ~ 1260a------~ + O(a -5) 

1 1 23 
- 24a t- ~ 4 2880aa 

1 11 
+ 640a-------- q 40320a s I- O(a-5).  (7) 
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The error in Eq. (7) is below 1 percent even for a = 1, 
and it fades away quickly as a increases. At any rate, we 
have q(0) > 0 and hence r(0) > 1, implying g(0) >f (0 ) .  

Differentiating q( t )  in Eq. (6), we obtain 

q'( t )  = r ' ( t ) / r ( t )  = s + ~ (8) 

which shows that q (t) and r(t)  are monotonically increas- 
ing for t > -2s .  Because g ( -2 s )  = 0 implies r ( -2 s )  = 
0 and because r(0) > 1, there is exactly one 

t = ,  for which g ( r ) = f ( ~ ' )  and - 2 s < z < 0 .  (9) 

Hence 

g ( t ) < f ( t )  if t < % g ( t ) > f ( t )  if t>~ ' .  (10) 

In particular, we see that g( t )  > f ( t )  for all t _> 0. 
As mentioned before, the rejection test will be 

speeded up considerably if a simple lower bound z ( t )  of 
the quotient r(t)  = g ( t ) / f ( t )  can be established for all 
negative t. Tables of g( t )  a n d f ( t )  indicate an approxi- 
mation r(t)  = 1 + t3/C, and a theory of Dieter [13] yields 
the same type of bound. Therefore, we tried z ( t )  = 
1 + t3 /C and determined the greatest best constant C: 

t 3 
z ( t ) =  1 + < r ( t )  if t_<0. (11) 

12s - 4x/2 

Proof. Differentiating z ( t ) / r ( t )  and using Eq. (8) 
yields 

d ( z ( t ) ~ ,  z ( z "  z ~ )  z ( 3t 2 t 2 ) 
dt \ r ( t ) ]  = r - = r ~ C  "+ t 3 as  -71- 2t 

_ t 2 ( 1 2 s -  c + 6 t -  t 3) 

r ( t )C(4s  + 2t) 

The last denominator is positive for all t > -2s .  The 
expression n( t )  -- 12s - C + 6t - t 3 in the numerator is 
positive if t < 0 and I t l large, n( t )  decreases for t < 
-x /2  and increases for -x/2 < t < x/2. Thereafter it 
decreases again. At the local minimum t = -x/2 we 
require n(-v/2) = 12s - C -  4x/2 _> 0 or C_< 12s 
- 4  x/2. The greatest feasible value is C = 12s - 4x/2, and 
with this we still have 

n ( t ) - -  1 2 s -  C + 6 t - t  3 = 4 ` / 2 + 6 t - t  3 

= (t + , , / 2 ) 2 ( 2 ~  - t) > 0 

for all t < 24~. Hence ( z ( t ) / r ( t ) ) '  >_ 0 for all t <_ 0 and 
therefore z ( t ) / r ( t )  <__ z(O)/r(O) -- l /r(0) < 1. 

We can now state the basic sampling method. 

(I) Take a sample T from the standard normal distri- 
bution; calculate X ~-- s + T/2; if T >_ 0, return X 2 
as a sample from the standard gamma(a) distribu- 
tion. Obviously, the probability of this "immediate 
acceptance" is P ( I )  = 0.5 

(S) If  T < 0, generate a (0, l)-uniform deviate U and 
return X 2 if 1 - U <_ z ( T )  [see Eq. (1 1)], that is, 
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if (4x/2 - 12s)U <_ T 3. The 
"squeeze acceptance" is 

fu P ( S )  = f ( t ) z ( t )  dt 

probability of this 

o t 3 

= f .  - - ~ 2 ~ e x p ( - - ~ ) (  1+  1 2 s _ 4 x / ~ )  dt 

1 1 1 

= ~ - ~ ( u ) -  ~ 1 2 s _ 4 ~  

where u is determined from z~_u) = 1 + u3/(12s - 
4x/2) = 0 as u = - (12s  - 4 ~ / 2 )  1/3, and ~(t) is the 
standard normal distribution function. 

(Q) If  (S) fails, calculate Q = q( t )  from Eqs. (6) and (7) 
and accept X if ln(1 - U) _ Q. This "quotient 
acceptance" is the rarest case; its probability is 

e ( a )  = 1 - P ( I )  - P ( S )  - P ( H )  

= 0 . 5 - P ( S ) - P ( H )  (13) 

where P ( H )  pertains to the next case. 
(H) If  (Q) also leads to rejection, a new sample T from 

the difference distribution with density proportional 
to g( t )  - f ( t )  in (~, oo) is taken and (s + T/2) 2 is 
returned. For this a hat function h( t )  >_ g( , )  - f ( t )  
is constructed, and von Neumann's [2 1] acceptance- 
rejection procedure is used. The probability of this 
"hat acceptance"is 

P ( H )  = f ( t )  dt - g ( t )  dt 
- o o  2 s  

- ~ exp - dt 
oo 

-- 2s~--- ~ S + -- 

(14) 

where P(a, x)  is the incomplete gamma function 

l"(a, x)  = (1/I '(a)) f~ t"- lexp(- t )  dt. 
The method will be complete once a suitable hat 

function h( t )  has been selected. Convenient choices are 
the gamma(2), the Cauchy, or the t distribution with 2 
degrees of freedom, but after some experimentation we 
chose a double-exponential (Laplace) hat of the form 
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h(t) = - ~  exp o ' --oo < t < oo. 
Fig. 2. Dif ference  funct ions  g ( t )  - f ( t )  and  thei r  " H a t s "  h( t ) ;  E x a m p l e s  

( 1 5 )  (i) a = 2, (ii) a = 8, and  (iii) a = 20. 

The Laplace density has the factor 1/2o and the exponent 
- [  t [/0. Hence h(t) is proportional to a double-exponen- 
tial density shifted to the fight by b. Our notation c~ 

for the factor has a technical reason: it speeds up 
the test in Step 11 of  the Final Algorithm G D  in Sec. 3. 

The constants c, b, and o have to be determined in 
such a way that the area below the hat h(t) is as small as 
possible. For optimal e, b, and o the hat function h(t) 
will touch g(t) - f ( t )  at least at two points. The situation 
is explained best by Figure 2. 

(i) I f a  _< 3.686, the optimal h(t) touches g(t) - f ( t )  at L '  
and R, where -0 .29 < L '  < -0 .22  and 2.18 < R < 2.22. 
There is a third point L" for which the difference h(t) 
- (g(t) - f ( t ) )  has a local minimum. 
(ii) I f  3.686 _< a _< 13.022, the hat contacts at L', R, and 
L" (-0.23 < L '  < -0.21,  1.08 < L" < 1.20, 2.21 < R < 
2.59). 
(iii) I f  13.022 ~ a, the optimal h(t) touches g(t) - f ( t )  at 
L" and R, where 1.08 < L" < 1.17, 2.57 < R < 2.59, and 
the local minimum of  h(t) - (g(t) - f ( t ) )  at L '  is again 
positive. 

The optimal b, c, and o were calculated as follows. I f  
g(t) - f ( t )  is covered by a Laplace hat o f  smallest area 
touching at L and R, then 

2 0 = R - L  provided that L < b < R .  (16) 

This follows from Dieter [13]. L and R are determined 
by 

g(L) - f ( L )  = h(L); 

g'(L) - f ' ( L )  --- h'(L) = _1 h (L) 
o 

g(R) - f ( R )  = h(R); 

g'(R) - f ' ( R )  = h'(R) = -_1 h(L) 
o 

which can be combined into 

g'(L) - f ' ( L )  -- l_ (g(L) - f ( L ) ) ;  
o 

l 
g'(R) - i f ( R )  = - ( f (R)  - g(R)). (17) 

o 

Equations (16) and (17) are sufficient to determine L, R, 
and o. Thereafter b and c are obtained from 

c [ L  - b'~ 
g(L) - f ( L )  = ~ e x p ~ ) ;  

- / ( R )  = exp --Z-- ) 
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0 = 2  0 = 8  

A 

a s  

2b = L + R + o In g(R) - f ( R )  . 
g(L) - f ( L ) '  

c 2 = 2~reZ(g(R) - f ( R ) ) ( g ( L )  - f ( L ) ) .  (18) 

This solves the problem in the case (i), where L = L',  
and (iii) where L = L". Numerical calculations show 
that there is a third point M < b [M = L"  in (i), M = L '  
in (iii)] for which h(t) - [g( t )  - f ( t ) ]  has a local positive 
minimum. However, this difference is negative whenever 
a lies between 3.686 and 13.022. Consequently, in case 
(ii) the Laplace hat of  minimum area touches g(t) - f ( t )  
at three points L '  < L" < b < R. L '  and L" are again 
determined by the left half  and R by the fight half  of  Eq. 
(17). o is now obtained as follows: 

c [ L ' -  
g(L')  - f ( L ' )  = ~ expl ~ J ;  

c { L "  - 
g(L") - f ( L " )  = ~ expl ~ /  

L" - L' 
0 ~  

ln(g(L ' )  - f ( L ' ) )  - ln(g(L') - f (L ' ) )"  (19) 

In this way L', L ' ,  R, and o are calculated simultaneously 
(for instance, by Newton iteration), and b and c are 
worked out as before. 

In the algorithm the true optimal b, c, and o cannot 
be used. The tedious recalculation of  these parameters 
would wreck the performance of  the method in the case 
of  shifting means a. Instead we insert reasonable ap- 
proximations in the three cases of  Figure 2; they are 
stated in Step 4 of  Algorithm G D  in See. 3. I f  a < 3.686, 
the hat case is critical enough to justify four multiplica- 
tions/divisions. This number  is three in the intermediate 
case, and for a > 13.022 we fix b and o; only c still 
requires one division. Once the theoretically best values 
of  b and o are approximated, one can always make sure 
that c is large enough such that h(t) > g(t) - f ( t )  holds 
for all t and all a _> 1, and we have amassed enough 
evidence to be absolutely certain about this. 

The theoretically best hats minimize the expected 
number  of  trials a until a sample from h(t) is accepted 
as a sample from g(t) - f ( t ) :  
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Table 1. Intersections ~-, Probabilities of  the Cases L S, Q, H and Hat Parameters. 

a r P(1) P(S)  P(Q) P(H) b o cs a & 

1 -0.7187 0.5 0.3468094 0•0309360 0.1222546 1.0813 1 . 2 3 5 7  0.1469 1.6750 1.6772 
1.5 -0.7035 0.5 0.4036618 0.0156981 0.0806401 1.2864 1 . 2 3 4 2  0.1314 1.6050 1.6130 
2 -0.6800 0.5 0.4250712 0.0117060 0.0632228 1.4211 1.2304 0.1215 1 . 5 4 0 9  1.5557 
3 -0.6424 0.5 0.4449496 0.0081460 0.0469044 1.5960 1.2234 0.1094 1 . 4 3 9 6  1.4628 
4 -0.6153 0.5 0.4549244 0.0063205 0.0387551 1.6847 1.1724 0.1058 1.3656 1.3799 
5 -.0.5945 0.5 0.4611236 0.0051745 0.0337019 1.6988 1 . 0 6 0 8  0.1117 1.3221 1.3445 
7 -0.5641 0.5 0.4686248 0.0037992 0.0275760 1.7174 0.9274 0.1218 1 . 2 8 2 2  1.3057 

10 -0.5332 0.5 0.4747796 0.0027123 0.0225081 1.7351 0.8172 0.1348 1 . 2 6 6 9  1.2824 
15 -0.4997 0.5 0.4801523 0.0018311 0.0180165 1.7502 0.7470 0.1470 1.2771 1.3215 
20 -0.4771 0.5 0.4831778 0.0013794 0.0154428 1.7551 0.7414 0.1484 1 . 2 8 7 5  1.3294 
50 -0.4112 0.5 0.4898723 0.0005537 0.0095740 1.7654 0.7286 0.1521 1.3123 1.3459 

100 -0.3670 0.5 0.4930037 0.0002776 0.0067187 1.7699 0.7222 0.1540 1 . 3 2 4 5  1.3527 
103 -0.2508 0.5 0.4978650 0.0000285 0.0021065 1.7764 0.7119 0.1576 1 . 3 4 3 8  1.3613 
104 -0.1710 0.5 0.4993319 0.0000029 0.0006651 1.7782 0.7086 0.1587 1 . 3 4 9 4  1.3630 
105 -0.1165 0.5 0.4997894 0.0000003 0.0002103 1.7788 0.7076 0.1591 1.3510 1.3634 
106 -0.0794 0.5 0.4999335 0.0000000 0.0000665 1.7789 0.7073 0.1592 1.3515 1.3635 

-0.0000 0.5 0.5000000 0.0000000 0.0000000 1.7790 0.7071 0.1593 1.3517 1.3635 

f_ ~ h(t) dt 
2co 

= ~ - . ( 2 0 )  

f~ dt (P(H) ~ )  (g(t) -- f ( t ) )  

In the last two columns of  Table I the theoretically 
possible expected numbers a are compared with the 
slightly larger values ~ resulting from our approxima- 
tions of  b, c, and o. The true optimum values of b, o, and 
cs in Table I can be compared easily with their approx- 
imations using the simple formulas in Step 4 of  Algo- 
rithm GD. The left-hand side of  Table I contains the 
intersections r [ f ( z )  = g(~')] and the probabilities e(1), 
P(S), P(Q), and P(H) of  occurrence of the four cases. 

For large a, the following approximations hold: 

1"---> -(2s)-1/3; P(H)--~ (6s ,d~)-~;  

l 3 
b-- ,~ 4 ~  + ~ 47 In 4 +  ; 

43 l 3 ~  
c---*~-~e s , o - - -~-~ ,  a---~ 2e 

In Algorithm GD we fix b and o for a > 13.022. In 
order to be sure that (g(t) - f ( t ) ) / h ( t )  < 1 remains true 
for a --> 0% we.p_roved that for o = 0.75 this quotient 
is extreme at (x/31 + 2)/3 = t~ and t2. With b = 1.77 the 
maximum permissible cs works out to t 3 exp( I t - 1.77 1/ 
0.75 - t2/2)/12, which is 0.1514764645 at /1 and 
0.1499036494 at t2. Hence our approximation 0.1515/s 
for c is safe even if a is large. 

3. The Algorithm 

In the formal statement of  Algorithm G D  below the 
triggers a' and a" ensure that the quantities s2, s, d, q (0), 
b, o, and c are recalculated in Steps 1 and 4 only if this 
is demanded by a change o f  parameter a. 
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Steps 2 and 3 express ( I ) ( immediate  acceptance) and 
(S)  (squeeze acceptance), and in most cases the algo- 
rithm will exit here. 

The evaluation of q (0) in Step 4 should never be done 
from its definition directly, using slow and badly written 
system routines for In I'(a) and losing precision to an 
intolerable degree: both In l"(a) and s 2 In s 2 - s 2 grow 
faster than a. Instead the approximation (7) can be 
modified so as to become single-precision accurate even 
for small a ___ 1. In Table II we supply three sets of 
coefficients qk for 7 to 10 decimal-digit accuracy of  q(0) 
= ~ qka -k. They are obtained from our general routine 
for producing Chebychev-economized polynomials. Step 

Table II. Coefficients of Approximating Polynomials. 

1e1<3.2 × 10 -8 I~l < 1.4 × 10 -7 [El < 1.1 × 10 -7 

q, 0.04166669 a, 0.3333333 e, 1.0000000 
q2 0.02083148 a2 -0.2500030 e2 0.4999897 
q3 0.00801191 aa 0.2000062 ea 0.1668290 
q4 0.00144121 a4 -0.1662921 e4 0.0407753 
qs -0.00007388 as 0.1423657 es 0.0102930 
q8 0.00024511 a8 -0.1367177 
q7 0.00024240 a7 0.1233795 

I E [ < 5.5 X 10 -9 I ~ [ < 1.5 × 10 -8 ] E I < 2 .0  × 10 -9 

qj 0.041666661 a~ 0.33333332 ej 1.00000000 
q2 0.020834040 a2 -0.24999995 e2 0.50000027 
q3 0.007970958 az 0.20000622 e3 0.16666050 
q4 0.001686911 a4 --0.16667748 e4 0.04171864 
qs -0.000775882 as 0.14236572 es 0.00813673 
q6 0.001274709 a6 -0.12438558 e6 0.00172501 
q7 -0.000506403 a7 0.12337954 
q8 0.000213943 a8 -0.11275089 

l e l < 2 . 6 x  10 - '°  [ ~ [ < 2 . 1  × 10 -9 [ e [ <  3.1 x 10-" 

ql 0.0416666664 a, 0.333333333 e, 1.000000000 
q2 0.0208333723 a2 -0.249999949 ez 0.499999994 
q3 0.0079849875 a3 0.199999867 e3 0.166666848 
q4 0.0015746717 a4 -0.166677482 e4 0.04 1664508 
qs -0.0003349403 a5 0.142873973 es 0.008345522 
q6 0.0003340332 a6 -0.124385581 ee 0.001353826 
q7 0.0006053049 a7 0.110368310 e7 0.000247453 
q8 -0.0004701849 as -0.112750886 
qa 0.0001710320 aa 0.104089866 
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Tab le  I lL  S iemens  7760 Assemble r  T imes  (in #s) for F ixed  and  Var iab le  Pa ramete r  a. 

a 

A l g o r i t h m  1 1.5 2 3 5 7 10 15 20 30 50 100 103 104 

F ixed  p a r a m e t e r  a 

G D  96 80 74 67 61 59 56 54 53 52 51 50 48 48 
MS 108 101 98 95 93 92 91 91 91 90 90 90 91 91 
G O  - -  - -  - -  162 152 145 137 127 119 111 101 92 77 73 

Var iab le  Pa ramete r  a 

G D  144 132 123 110 102 101 99 96 92 90 90 90 89 89 
MS 171 164 161 158 157 156 155 153 152 152 152 153 154 154 
G O  - -  - -  - -  225 215 208 201 191 184 175 165 159 141 138 

4 also contains our approximations of  b, o, and c as 
explained in Sec. 2. 

If  X _< 0 in Step 5, then T <_ -2s ,  g(t) is undefined 
[Eq. (3)], and the hat case applies (Step 8). Otherwise Q 
is evaluated in Step 6 according to Eq. (6). However, 
severe accuracy problems can arise if V = T/2s is small. 
So, whenever [ V[ < 1/4 we substitute the economized 
expression Q = q(0) + (7"2/2) ~ akV ~ with coefficients 
as also listed in Table II. Note that I VI -< 1/4 is practi- 
cally always true if a is large. 

Step 7 expresses (Q) (quotient acceptance). In Step 
8 the hat case (H) is entered: the new T is a sample from 
the Laplace distribution with parameters b and o. If  T 
-< rl = T(I) in Step 9, then T_< ~-(a) and g(t) - f ( t )  <_ O. 
Therefore we can reject T immediately (an omission of  
Step 9 would occasionally lead to overflow in Step 11.) 
Otherwise a new Q(T) is calculated in Step I0. 

In Step 11 rejection is indicated whenever I u I  > 
[g(T)  - f ( T ) ] / h ( T ) ;  that is, i f [  U] > [r(T) - 1 ] f ( T ) /  
h(T)  [see Eq. (5)] or, using Eqs. (4), (6), (15), and E = 
[ T -  b 1/o (Step 8), whenever c[ U[ > [exp(Q) - 1]exp 
(E - T2/2). If  Q _< 1/2, the factor exp(Q) - I is 
calculated as ~ ekQ k with coefficients ek from Table II. 
If  T is not rejected, the new X = (s + 7"/2) 2 is returned 
in Step 12 (H) (hat acceptance). 

Algorithm GD would look simpler without the poly- 
nomial approximations, but a direct calculation of  q(0), 
Q and exp(Q) - I for a = 100 yielded errors of up to 20 
percent in the test function of  Step 11. For larger a, the 
results became completely meaningless, whereas using 
Table II everything works out even more accurately 
when a is large. On our Siemens 7760 computer with its 
24-bit mantissa the top blocks in Table II were used: all 
truncation errors [ ~ [ are below 1.3 x 10 -7.  The other two 
sets of  coefficients qk, ak, ek are for computers with a 
better single-precision accuracy. 

Algorithm GD 
0. Preset  a'  * -  0 and  a "  * -  0 (at compi l a t i on  time). 
!. I f a ~ a ' s e t a '  ~--a, s 2 ~ - a -  l / 2 ,  s* - -~s2 ,  a n d d ~ - - 4 , f 2  - 12s 

= 5.656 854 249 492 38 - 12s. 
2. Gene ra t e  T ( s tandard  n o r m a l  deviate) .  Set X *-- s + T/2.  I f  T > 0 

return X ~. 
3. Gene ra t e  U [(0, l ) -uniforrn  deviate].  I f d U  <_ T 3 re turn  X ~. 
4. I f  a ~ a"  set a"  *-- a and  ca lcu la te  q0,  b, o, and  c as follows. 

5 3  

qO ~ Y. qka -k ( ins tead of  In ~ - In F (a )  - s2 + s21n s2); 1 _< a 
_< 3.686: b ~--- 0.463 + s + 0.178s2, o *-- 1.235, c ,-- 0 .195/s  - 0.079 
+ 0.16s; 3.686 < a --< 13.022: b ~ 1.654 + 0.0076s2, o ~ 1.68/s 
+ 0.275, c *--- 0 .062/s  + 0.024; 13.022 < a < Qo: b ~ 1.77, o *--- 0.75, 

c ~ 0.1515/s.  
5. I f  X--< 0 go to Step 8. 
6. Set V *-- T / ( s  + s) and  ca lcula te  Q as follows. 

I f [  V ] >  1/4: Q ~ - - q O -  s T  + TZ/4 + (s2 + sz)ln(l + II). 
I f  I V  I <  l / 4 : Q ~ q 0 + ( T 2 / 2 ) ~ a k V  s. 

7. I f  l n ( l  - U)  <- Q re turn  X 2. 

8. Gene ra t e  E ( s tandard  exponen t i a l  devia te)  and  U [(0, l ) -un i fo rm 
deviate].  Set U ~-- U + U - 1 and  T *-- b + E o  sign U. 

9. I f  T <  ~-~ = - 0 . 7 1 8  744 837 717 19 go to Step 8. 
10. Set V *-- T / ( s  + s) and  ca lcu la te  Q as in Step 6. 
11. I f Q  _< 0 or i f c  I U[ > (exp Q - l ) exp (E  - TZ/2) go to Step 8. 

( I f  Q <_ 1/2 the factor  exp  Q - 1 is ca lcu la ted  as ~ ekQk.) 
12. Set X * -  s + T[2 and  re turn  X 2. 

4. Computational Experience 

Two computers, a Siemens 7760 and a Univac 1100/ 
81, were used to check out the accuracy of  all calculations 
and the correct fit of  the hat function h(t). The exits in 
Steps 2, 3, 7, and 12 of  Algorithm GD were also counted, 
and the counts corresponded closely to the expected 
values P(1), P(S) ,  P(Q), and P(H)  in Table I. The 
observed Siemens 7760 computation times in Table III 
were based on 10,000 samples for each choice of a. In 
the case of  variable parameters the calculations in Step 
1 were carded out for every sample, and Step 4 was 
performed whenever the exits in Step 2 and 3 could not 
be taken. Corresponding measures were applied to com- 
peting Algorithms MS (Marsaglia [20]) and GO (Ahrens 
and Dieter [2]). We did not program CF (GKM 3 in 
Cheng and Feast [12]) in Assembler language, but its 
times should be close to those of  MS. 

Fortran versions of  GD, MS, and GO produced the 
same sets of  samples as the corresponding Assembler 
routines because they used the same Assembler subpro- 
grams for sampling from the normal and exponential 
distributions (Algorithms FL5 and SA). Their computa- 
tion times (for a > 3) were larger than the figures in 
Table III by the following amounts: 

GD: fixed a: 35-40 #s; variable a: 35-40 #s. 
MS: fixed a: 85-88 ~s; variable a: 130-133/xs. 
GO: fixed a: 90-115 #s; variable a: 105-130/~s. 
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In order to predict the performance of the new 
algorithm on other computers, the times in Table III 
should be compared with observed Siemens 7760 times 
for the following statements: 

Y = SQRT(X): 31-32 ps; 
Y = ALOG(X): 47-51 ps; 
Y = EXP(X): 48-51 ps; 
Y = SUNIF(IR) [(0, l)-uniform deviate, multiplicative- 

congruential generator]: 10 #s; 
Y = SEXPO(IR) (exponential deviate, Algorithm SA): 

20 ~ts; 
Y = SNORM(R) (normal deviate, Algorithm FLs): 24 

/.ts. 

The claims at the end of the introduction are based 
on these comparisons. 
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