
HKUST SPD - INSTITUTIONAL REPOSITORY

Title COMET: Coverage-guided Model Generation For Deep Learning Library Testing

Authors Li, Meiziniu; Cao, Jialun; Tian, Yongqiang; Li, Tsz On; Wen, Ming; Cheung, Shing Chi

Source ACM Transactions on Software Engineering and Methodology, 8 February 2023

Version Accepted Version

DOI 10.1145/3583566

Publisher Association for Computing Machinery

Copyright © 2023 Association for Computing Machinery

License This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Software Engineering and Methodology, https://doi.org/10.1145/3583566

This version is available at HKUST SPD - Institutional Repository (https://repository.hkust.edu.hk)

If it is the author's pre-published version, changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a definitive version of this work,
please refer to the published version.

https://doi.org/10.1145/3583566
https://repository.hkust.edu.hk


1

COMET: Coverage-guided Model Generation For Deep Learning

Library Testing

MEIZINIU LI, The Hong Kong University of Science and Technology, China

JIALUN CAO, The Hong Kong University of Science and Technology, China and Guangzhou HKUST Fok Ying

Tung Research Institute, China

YONGQIANG TIAN, University of Waterloo, Canada and The Hong Kong University of Science and Tech-

nology, China

TSZ ON LI, The Hong Kong University of Science and Technology, China

MING WEN*, Huazhong University of Science and Technology, China

SHING-CHI CHEUNG*, The Hong Kong University of Science and Technology, China and Guangzhou

HKUST Fok Ying Tung Research Institute, China

Recent deep learning (DL) applications are mostly built on top of DL libraries. The quality assurance of these libraries is

critical to the dependable deployment of DL applications. Techniques have been proposed to generate various DL models and

apply them to test these libraries. However, their test effectiveness is constrained by the diversity of layer API calls in their

generated DL models. Our study reveals that these techniques can cover at most 34.1% layer inputs, 25.9% layer parameter

values, and 15.6% layer sequences. As a result, we find that many bugs arising from specific layer API calls (i.e., specific layer

inputs, parameter values, or layer sequences) can be missed by existing techniques.

Because of this limitation, we propose COMET to effectively generate DL models with diverse layer API calls for DL

library testing. COMET: (1) designs a set of mutation operators and a coverage-based search algorithm to diversify layer

inputs, layer parameter values, and layer sequences in DL models. (2) proposes a model synthesis method to boost the test

efficiency without compromising the layer API call diversity. Our evaluation result shows that COMET outperforms baselines

by covering twice as many layer inputs (69.7% vs. 34.1%), layer parameter values (50.2% vs. 25.9%), and layer sequences

(39.0% vs. 15.6%) as those by the state-of-the-art. Moreover, COMET covers 3.4% more library branches than those by existing

techniques. Finally, COMET detects 32 new bugs in the latest version of eight popular DL libraries, including TensorFlow and

MXNet, with 21 of them confirmed by DL library developers and 7 of those confirmed bugs have been fixed by developers.
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Fig. 1. An Example of A Layer API Call In DL Model

1 INTRODUCTION

Deep learning (DL) has been increasingly adopted for mission-critical applications such as authentication [14, 16],
medical treatment [30], pandemic control [3, 4], and autonomous driving [5, 45, 46]. Currently, many recent
works focus on assuring the quality of DL applications, e.g., testing the trained DL models [35, 42, 59] or testing
the DL program written by DL application developers [55, 61]. However, there are only a few research works on
testing DL libraries, such as TensorFlow [1], PyTorch [41], MXNet [7], and ONNX [36]. These DL libraries are
the basis during the development and deployment of current DL applications. Nevertheless, recent studies [6, 24]
found that these libraries suffer from coding bugs frequently. Early detection of these bugs is crucial.

Prior works [18, 19, 31, 43, 54] mainly follow the same testing paradigm, i.e., feeding various DL models (called
test inputs) to exercise specific modules (e.g., model loading, construction, and inference modules) in DL libraries.
To obtain sufficient test inputs (i.e., DL models), existing works either generate DL models by mutating the
network structures [19, 31, 54], parameters [19, 54], or input value [19, 31, 43, 54] of published models (e.g.,
ResNet [20] and InceptionNet [49]) or build DL models from scratch [18] based on predefined model structure
templates (e.g., chain structure [18]).
However, the test adequacy of existing works is far from satisfactory (e.g., achieving low test coverage [6]).

According to our investigation (see ğ2.3), only 16% of branches in TensorFlow’s model construction and model
execution modules could be covered even using the latest testing technique. The unsatisfactory result reveals the
inadequacy of existing techniques. Taking a closer look, we observed that a main reason is the lack of diversity of
test inputs (i.e., DL models). Specifically, existing techniques target generating DL models to either enlarge the
prediction inconsistency in differential testing [19, 54], increase the coverage of layer APIs [18] or increase the
graph structure diversity [31]. However, they are weak in generating DL models to expose bugs that reside in some
specific layer API calls. Take Figure 1 as an example. The diversity of layer API calls inside a DL model is attributed
to three finer properties: (1) layer inputs (e.g., input datatype and number of input dimensions, abbreviated to dims,
highlighted in orange), (2) layer parameter values (e.g., values of filters and kernel_size highlighted in blue),
and (3) layer sequences (e.g., the connection between Conv2D layer and BatchNormalization layer highlighted
in green). However, neither covering more types of layer APIs [18] nor diversifying the graph structure [31]
could encourage generating layer API calls with diverse layer parameter values or layer inputs. Indeed, we found
that models generated by existing techniques [18, 43, 54] do not cover most layer API calls, i.e., at most 34.1% of
layer inputs, 25.9% of layer parameter values, and 15.6% of layer sequences could be covered (see ğ2.3).
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Fig. 2. A Crash Bug of ONNXRuntime

Consequently, existing techniques cannot effectively detect bugs residing at specific layer API calls. Figure 2
shows a real bug detected by us that illustrates the weaknesses of these techniques.1 It is a crash bug triggered by
a variant of the ResNet model, leading to a core dump in ONNXRuntime, a famous DL library for model inference
and training with over 6.5K stars in GitHub. The bug can only be triggered when models with a specific layer
sequence (i.e., Dense→Dot) and layer input (as shown on the left with the layer input of Dot layer to has zero
shapes) are generated. Moreover, we found out that 18 out of 21 confirmed new bugs detected by our tools are
manifested by some specific layer API calls. In other words, testing techniques designed for diversifying layer
API calls are desired for testing DL libraries.

To this end, we propose COMET, a COverage-guided Model genEration tool for DL library Testing. COMET
is designed to generate DL models with diverse layer API calls. Similar to LEMON [54] and Audee [19], COMET
constructs the initial seeds based on published DL models. It then generates new DL models by iteratively
mutating them. The challenges of designing COMET are two-fold. First, it is hard to generate DL models

with diverse layer API calls due to the huge search space. For instance, considering a widely-used network,
InceptionResnetV2, with 782 layers and 30,400 layer parameters, by simply considering each possible layer
parameter once, it will take more than 30 thousand times to test, let alone considering the model structure.
Therefore, random mutation (e.g., randomly choosing a layer into a random position inside a DL model), as is
used by existing techniques [19, 31, 54]), may derive a layer API call that previously generated models has already
covered, thus is of no benefit for diversifying layer API calls. All in all, it is impossible to exhaustively search
for all possible cases in the huge search space with respect to a model. Second, the runtime overhead when

generating and executing a DL model is expensive. As reported by an earlier work [56], testing techniques
based on model generation and execution can be cost-prohibitive. It can take over 10 minutes to process a
new DL model based on InceptionResNetV2 on an Intel GPU server, which poses a significant challenge to test
efficiency. Iteratively mutating these published models, mostly large, incurs non-trivial runtime overhead in
model generation.

The insight of COMET to address these two challenges is based on the observation: generating DL models with
new layer inputs, parameter values, or sequences is likely to invoke different layer API calls, thus achieving more
comprehensive testing on DL libraries. Driven by the insight, we propose COMET, which mainly contains three
novelties. First, we design a set of mutation operators2 aiming to target diversifying layer API calls by mutating

1https://github.com/microsoft/onnxruntime/issues/11024
2Different from mutation testing works [21, 32, 35, 51] that insert error into DL models and consider them as subject under test. Our work

uses mutation operators to generate new DL models and we further uses the generated DL models as test inputs for DL library testing.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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the layer inputs, layer parameter values, and the layer sequence inside the DL model. Instead of random mutation,
our mutation operators search for the optimal mutation option to target mutating DL models with diverse layer
API calls. Second, since not all mutation operators are equally effective in diversifying DL models and increasing
test coverage, we employ the Monte Carlo Markov Chain (MCMC) algorithm with the coverage-based fitness
function to iteratively mutate seed models to achieve higher layer API call diversity and test coverage. Third, we
design a model synthesis method for published models to reduce their size while preserving the diversity of layer
inputs, parameters, and sequences. Benefiting from the model synthesis method, COMET can reduce the runtime
overhead during model generation and execution.

We evaluate the performance of COMET on eight popular DL libraries: Keras [11], TensorFlow [1], PyTorch [41],
MXNet [7], ONNXRuntime [44], Keras-MXNet [33], TF2ONNX [37], ONNX2PyTorch [38]. In particular, we adopt
differential testing for bug detection, i.e., the inconsistencies are compared between DL libraries. While the
DL model’s implementation varies from library to library, a model conversion step is thus needed to enable
comparison. Therefore, the first five libraries (i.e., Keras, TensorFlow, PyTorch, MXNet, and ONNXRuntime)
are tested using differential testing, exercising their model construction and inference modules. While the rest
libraries (i.e., Keras-MXNet, TF2ONNX, ONNX2PyTorch) are used for model conversion, thus their conversion
modules are tested. We compare COMET with three state-of-the-art DL library testing techniques as baselines:
CRADLE [43], LEMON [54], and the latest technique: Muffin [18]. For GraphFuzz [31] and Audee [19], since no
executables or source code are available, we do not include them as baselines. The evaluation results show that
COMET’s mutation operators and search algorithm can significantly increase the diversity of layer API calls
in the generated models, outperforming baselines by covering 35.6% more layer inputs, 24.3% more parameter
values, and 23.4% more sequences. Moreover, COMET can cover at least 3.4% more branches than baselines in
TensorFlow’s model construction and model execution modules. COMET successfully finds 32 new DL library
bugs. So far, 21 of them have been confirmed by DL library developers, and 7 of the confirmed ones have already
been fixed by developers in the latest version, the remaining 11 unconfirmed bugs are pending review.

In summary, our work makes the following major contributions:

• Originality. We propose COMET, a diversity-driven model generation framework for DL library testing,
which can improve the test coverage of existing techniques by increasing the diversity of layer API calls
inside DL models. Specifically, we propose three coverage criteria for layer API call diversity. We further
propose a set of mutation operators and a coverage-based MCMC search algorithm to diversify layer API
calls. In addition, we design a model synthesis method based on our coverage criteria to boost the efficiency
of COMET significantly.
• Effectiveness.Our evaluation shows that COMET outperforms the state-of-the-art by covering 35.6% more
layer inputs, 24.3% more layer parameters, 23.4% more layer sequences, and 3.4% more library branches.
• Usefulness.We applied COMET to eight popular DL libraries. It successfully detected 32 new bugs that
caused crashes, NaN, and inconsistent outputs. 21 out of these 32 new bugs have been confirmed by the
developers. 7 of those confirmed bugs have been fixed. Our implementation of COMET, the details of
detected bugs together with experiment results are publicly available at our project site: https://github.
com/maybeLee/COMET.

2 BACKGROUND AND MOTIVATION

2.1 Testing DL Libraries by DL Models

Prior testing techniques commonly use DL models as test input to test DL libraries. As illustrated in Figure 3,
feeding these models to DL libraries for making inferences will execute code in the loading and inferencing
modules. For test oracle design, they adopt differential testing to apply the same DL model on multiple DL
libraries with model conversion tools or shared high-level APIs. Inconsistent behavior (i.e., inconsistent outputs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Fig. 3. Overview of Testing DL Library by DL Models.

or inconsistent symptoms between DL libraries) indicates potential library bugs. They further design a set
of mutation operators or generation rules to obtain sufficient test inputs (i.e., DL models). These techniques
complement the unit test suites of a DL library by invoking a sequence of library APIs for the end-to-end
completion of machine learning.
CRADLE [43] is the earliest technique proposed to test DL libraries by collecting publicly-available models

and datasets to detect inconsistent outputs across DL libraries. It successfully detects implementation differences
of Keras across different library backends. Based on these existing DL models, two model generation techniques,
LEMON [54] and Audee [19], were later proposed to generate DL models driven by output inconsistency or NaN
symptoms. These two techniques present a set of mutation operators, such as mutating the model’s weights,
architectures, and layer parameters to explore library code. For guiding model mutation, they either use the
inconsistency of generated models’ outputs over different DL libraries as the guidance to expose the incorrect
computation or use a heuristic-based fitness function to encourage mutating DL models that tend to output
outliers (i.e., too large or small values) to expose NaN values. GraphFuzz [31] is further proposed to mutate the
computation graph in the DL model for DL library testing. It introduces an operator-level coverage to quantify
the model diversity and further designs a set of mutation operators to explore combinations of model structures
and parameters. Muffin [18] is the most recent DL library testing work that generates DL models driven by layer
diversity. In particular, Muffin abstracts the DL model as a Directed Acyclic Graph (DAG) and defines two types of
commonly used graph structures: chain structure and cell-based structure to generate the structure information
(i.e., the topology of how layers are connected); it further generates DL models towards increasing the coverage
of layer APIs.

2.2 Model Generation Strategies

Existing techniques, as mentioned in ğ2.1, adopt different strategies in model generation. For example, LEMON
generates models to enlarge the output inconsistency across DL libraries. Besides output inconsistency, Audee
also favors generating models that can trigger the Not-A-Number (NaN) value in DL libraries.3 GraphFuzz designs
an operator-level coverage defined as a sum of five coverage criteria (i.e., operator type coverage, input degree
coverage, output degree coverage, single edge coverage, shape&parameter coverage) derived from graph theory.
It further iteratively mutates models towards a higher operator-level coverage result.4 Muffin adopts the strategy
of maximizing layer type coverage (i.e., the percentage of invoked layer APIs in all the pre-defined layer APIs) in
model generation.

3Bugs detected by Audee are available at the site: https://sites.google.com/view/audee/bug-details.
4Exceptions detected by GraphFuzz are available at the site: https://github.com/gbftdlie/Graph-based-fuzz-testing.
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When testing DL libraries using DL models, the code executed in DL libraries is related to the layer API
calls (as is exemplified in Figure 1) used to define the DL models. First, diversifying layer input can help

better test DL libraries. Specifically, changing the datatype of layer input can test those precision-specific
codes in DL libraries [52]. For instance, in TensorFlow, changing the input datatype of BatchNormalization

( or LayerNormalization) from float32 to float16 (or non-float32) will trigger new branches handling
numeric instability (or layer fusion) issues. Changing the number of dimensions for a tensor will change the data
formats it represents (e.g., 3D tensors usually refer to text data, and 4D tensors represent image data), thus may
test new code in DL libraries. For example, changing the input of BatchNormalization layer from a 4D tensor
to a 5D tensor will trigger new functions related to operator fusion during the model construction. Changing the
shape of layer input may also affect library code, such as codes related to weights initialization and tensor padding
during the model construction. An example of this observation is that different tensor input shapes may affect
how the tensor is padded [48]. Besides, our experiment also found the manifestation of some bugs required a
specific layer input shape during the model conversion [40]. Second, diversifying layer parameter values can

also help increase the test coverage. For instance, changing the value of activation from relu to sigmoid

will test a different activation function in Conv2D. Changing the value of strides and dilation_rate may
result in the incorrect padding logic inside the Conv2D layer, which is a confirmed bug [15] we detected. Setting
units of the Dense layer to 0 will generate an empty-shape tensor which may result in a direct core dump if
this empty-shape tensor is directed to a Conv3DTranspose layer [13]. Changing the value of kernel_size will
also influence how Conv2D does the padding when constructing the model [25]. Third, testing DL libraries

with different layer sequences can also help to explore library code. On the one hand, introducing a layer
sequence with new layer types can test more layer APIs [18]. On the other hand, covering some specific layer
sequences may also cover new codes related to model construction and model computation inside DL libraries. For
instance, the layer sequence Conv2D→ReLU will trigger the operator fusion for Conv2D and Mul operator [12]
and the FindContractionWithBias function in TensorFlow.
However, existing model generation strategies are weak in diversifying layer API calls in DL models. First,

enlarging output inconsistency has little help in diversifying layer API calls. Second, only focusing on layer
type coverage can offer no guidance for diversifying other properties, i.e., layer parameter values, layer inputs,
and layer sequences. Although the operator-level coverage proposed by GraphFuzz provides a more optimal
granularity in guiding model generation to increase layer sequence diversity, they are still weak in diversifying
layer parameters and layer inputs. Therefore, some library code related to some specific layer API calls cannot be
covered by existing techniques. We observed that missing specific layer API calls may fail to detect some library
bugs. This observation motivates us to define more optimal criteria for measuring the layer API call diversities,
including layer sequence diversity adapted from existing works [18, 31] and two newly proposed ones: layer
input diversity and layer parameter diversity. Specifically, layer input diversity includes the variety of
input’s datatype (e.g., float16), input dimension (e.g., 4D), and input shape (e.g., (batch_size,24,24,3));
layer parameter diversity includes the diversities of parameter values for each type of layer; layer sequence
diversity comprises the flow of tensor from one layer API to another. All these three diversities collectively
contribute to the diversity of layer API calls. Accordingly, the core objective of our paper is to better test DL
libraries by increasing the diversity of layer inputs, parameters, and sequences in the generated models; thus, we
can achieve higher test coverage.

2.3 Limitations of Existing Techniques

To explore the limitations of baselines [18, 43, 54], we experimented with measuring their performance in
diversifying layer API calls. In particular, we use our proposed three coverage criteria: layer input coverage,
layer parameter coverage, and layer sequence coverage (see ğ3.2) as the metrics. Additionally, we record the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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branch coverage on TensorFlow’s model construction and model execution modules achieved by existing works
as the representative to reveal their inadequate testing effectiveness. We run each technique with the default
hyperparameters for six hours and then analyze the coverage results. The experiment results show low coverage
with respect to all four coverage criteria, suggesting the limited effectiveness of existing works in diversifying
layer API calls and achieving satisfactory test coverage on DL libraries. Specifically, only at most 34.1% of layer
inputs (261/766), 15.6% of layer sequences (338/2170), and 25.9% of layer parameter values (530/2049) have been
covered by existing techniques. As a result, only at most 16.0% of library branches are covered. Moreover, we
found that bugs (like Figure 2) residing at some specific layer API calls and library branches are not detected
by existing techniques. However, these bugs may lead to severe consequences (e.g., a core dump), which may
affect the reliability of DL libraries. Motivated by this finding, we propose COMET to generate diverse models to
increase the test coverage for DL library testing.

Table 1. Various Coverages by Existing Techniques

Technique
Layer Input Layer Parameter Layer Sequence Branch
Coverage Coverage Coverage Coverage

MUFFIN 34.1% 25.9% 15.6% 16.0%

LEMON 14.2% 6.4% 2.4% 12.5%

CRADLE 10.4% 5.9% 1.2% 12.0%

3 METHODOLOGY

3.1 Overview

Our work, COMET, is designed to generate DL models with diverse layer API calls effectively. As defined earlier,
a layer API call consists of three properties: layer input, parameter values, and sequences. We first propose three
coverage criteria (in ğ3.2) for the layer API call to measure its diversity. Based on our coverage criteria, we design
the workflow of COMET into three steps (Figure 4): (1) Initial Model Synthesis, (2) Diverse Model Generation, and
(3) Library Testing. We first apply our model synthesis (ğ3.4) method on published DL models to synthesize the
initial seeds with small size while retaining the published DL models’ layer API call diversity. We further apply
our mutation operators (ğ3.3) and MCMC algorithm (ğ3.5) to iteratively generate models toward higher layer API
call diversity and higher test coverage in DL libraries. Finally, we use these generated models as test input for
library testing (ğ3.6).

3.2 Coverage Criteria For layer API calls

Motivated by Figure 1, we focus on three properties (i.e., layer input, layer parameter values, and layer sequences)
to measure the diversity of layer API calls. The space of these properties is summarized in Table 2. Specifically,
a diverse layer API call is found if a DL model contains new layer inputs, parameter values, or sequences that
previously generated models have not covered. Based on these three properties, we further introduce three
coverage criteria (i.e., layer input coverage, layer parameter coverage, and layer sequence coverage) to measure
the parts of layer API calls exercised by the generated models.

3.2.1 Layer Input Coverage. A layer input is a tensor (i.e., a multi-dimensional array). The datatype, number
of dimensions, and shape (i.e., the number of elements in each dimension) are three essential properties that
determine an array. As exemplified by the tensor x in Figure 1, the datatype determines the floating point format

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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Table 2. Components In Layer API Calls

Property Element Space

Layer Input

Datatype
Layer A/B/...:

int16 | int32 | float16 | ...

Shape
Layer A/B/...:

shape 1 | shape 2 | shape 3 | ...

Number of Dimensions
Layer A/B/...:

2D | 3D | 4D | 5D | ...

Layer Parameter Parameter Value

Layer A:
Param A1: v1 | v2 | ...
Param A2: v1 | v2 | ...
...

Layer B:
Param B1: v1 | v2 | ...
Param B2: v1 | v2 | ...
...

...

Layer Sequence Pair of Layers

Layer A→ Layer B
Layer B→ Layer A
Layer A→ Layer A
...

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.
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stored in the computer (e.g., float32 means x is stored in the single-precision format). The number of dimensions
(abbreviated to łdimsž) of x is 4D means that x contains four dimensions. Usually, dimensions represent different
meanings in DL libraries (e.g., in TensorFlow, the four dimensions in x refer to the batch size, height, width, and
the number of channels, respectively). The shape of x determines the number of elements in each dimension (e.g.,
x is a three-channel tensor with the length of width and height to be 8). Motivated in ğ 2.2, mutating the datatype,
number of dimensions, or shape for a layer’s input may trigger different usage of library code. Therefore, for an
input of a layer, we capture these three properties: input datatype, input dimension, and input shape. However,
the total number of possible values for each property is already huge (e.g., the state-of-the-art [18] can cover
only 10.7% input datatype, 41% input dimension, and 34.1% input shape). Exhaustive testing that also considers
the interaction between these properties will significantly boost the test space [28], and it may be expensive to
find bugs related to only a specific value of input datatype, input dimension, or input shape. Therefore, our layer
input coverage encourages covering all possible values for each property rather than testing all combinations.
Accordingly, we define our layer input coverage for each layer type 𝑙 using Equation 1. Given the number of
covered datatypes (𝑐𝑜𝑣𝑡𝑦𝑝𝑒 ), dimensions (𝑐𝑜𝑣𝑑𝑖𝑚), shapes (𝑐𝑜𝑣𝑠ℎ𝑎𝑝𝑒 ), and the total number of possible datatypes
(𝑛𝑡𝑦𝑝𝑒 ), dimensions (𝑛𝑑𝑖𝑚), and shapes (𝑛𝑠ℎ𝑎𝑝𝑒 ), the layer input coverage 𝐶𝑜𝑣𝐼 measures the portion of values
covered for each property.

𝐶𝑜𝑣𝐼 (𝑙) =
𝑐𝑜𝑣𝑡𝑦𝑝𝑒 (𝑙) + 𝑐𝑜𝑣𝑑𝑖𝑚 (𝑙) + 𝑐𝑜𝑣𝑠ℎ𝑎𝑝𝑒 (𝑙)

𝑛𝑡𝑦𝑝𝑒 (𝑙) + 𝑛𝑑𝑖𝑚 (𝑙) + 𝑛𝑠ℎ𝑎𝑝𝑒 (𝑙)
(1)

3.2.2 Layer Parameter Diversity. To measure the layer parameter diversity, for each layer type 𝑙 , we record
the possible parameter values 𝑣 for each parameter 𝑝 inside 𝑙 . Layer parameters can be briefly grouped into two
categories based on the type of the parameter value: numeric parameter and non-numeric parameter. Numeric
parameter refers to those that require a number or a list of numbers as parameter values, e.g., the rate for
the Dropout layer, kernel_size for the Conv2D layer). Non-numeric parameter refers to those that require
non-numeric values such as string or boolean as parameter values, e.g., padding for the Conv2D layer and
activation for the LSTM layer. Potential parameter values for non-numeric parameters are usually categorical
for each layer and can be listed following the library documentation. In contrast, the numeric parameter for each
layer often has a huge value space. Since enumerating all possible values for a numeric parameter is impossible and
may not help to test DL libraries, we approximate the size of the value space using a finite integer 𝜎 . Accordingly,
for layer API 𝑙 , given the number of covered parameter values 𝑐𝑜𝑣𝑝𝑖 and the total number of possible parameter
values 𝑛𝑝𝑖 (for numeric parameters, 𝑛𝑝𝑖 = 𝜎) for each parameter 𝑝𝑖 inside a layer API 𝑙 , we define the layer
parameter coverage 𝐶𝑜𝑣𝑃 for layer 𝑙 in Equation 2, where 𝑁 is the total number of mutable parameters in 𝑙 . In
our experiment, we set 𝜎 = 5.

𝐶𝑜𝑣𝑃 (𝑙) =

∑𝑁
𝑖=1 𝑐𝑜𝑣𝑝𝑖
∑𝑁

𝑖=1 𝑛𝑝𝑖
(2)

3.2.3 Layer Sequence Diversity. Layer sequence diversity defines the execution sequence of layer APIs inside
the DL model. Following GraphFuzz [31], we denote the layer pair as <𝑙𝑎𝑦𝑒𝑟𝑖 , 𝑙𝑎𝑦𝑒𝑟 𝑗>, indicating the tensor is
first sent to 𝑙𝑎𝑦𝑒𝑟𝑖 , and then the output of 𝑙𝑎𝑦𝑒𝑟 𝑗 is sent into 𝑙𝑎𝑦𝑒𝑟 𝑗 . In other words, the space of layer API pairs
is all possible permutations between all layer APIs. Note that not all layer sequences are valid. For instance, the
output of the Conv3D layer is always a 5D tensor, and this tensor cannot be sent to the Conv2D layer, which
only accepts a 4D tensor. We refer to this constraint as the dimension constraint (see Figure 5). In other words,
any layer sequence that violates this dimension constraint is invalid. To construct the valid layer sequence, we
manually collect the set of the possible number of input dimensions (denoted as 𝑠𝑖𝑑𝑖𝑚 (𝑙)) and output dimensions
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(denoted as 𝑠𝑜𝑑𝑖𝑚 (𝑙)) for each layer 𝑙 . Finally, given the total number of layer types is 𝑁𝑙𝑎𝑦𝑒𝑟 and the total number
of covered layer sequences 𝑐𝑜𝑣𝑠𝑒𝑞 (note that all covered layer sequences are valid), we define the layer sequence
coverage 𝐶𝑜𝑣𝑆 as below:

𝐶𝑜𝑣𝑆 =

𝑐𝑜𝑣𝑠𝑒𝑞
∑

𝑖∈[1,𝑁𝑙𝑎𝑦𝑒𝑟 ]

∑

𝑗 ∈[1,𝑁𝑙𝑎𝑦𝑒𝑟 ]
sign( |𝑠𝑜𝑑𝑖𝑚 (𝑙𝑎𝑦𝑒𝑟𝑖 ) ∩ 𝑠𝑖𝑑𝑖𝑚 (𝑙𝑎𝑦𝑒𝑟 𝑗 ) |)

(3)

Specifically, we permute all the possible layer sequences and check if they are valid. For each layer sequence
(𝑙𝑎𝑦𝑒𝑟𝑖 , 𝑙𝑎𝑦𝑒𝑟 𝑗 ), we consider it to be valid if 𝑙𝑎𝑦𝑒𝑟𝑖 has at least one output tensor whose number of dimensions is
accepted by 𝑙𝑎𝑦𝑒𝑟 𝑗 (i.e., 𝑠𝑜𝑑𝑖𝑚 (𝑙𝑎𝑦𝑒𝑟𝑖 ) ∩ 𝑠𝑖𝑑𝑖𝑚 (𝑙𝑎𝑦𝑒𝑟 𝑗 ) ≠ ∅).

3.3 Diversity-Driven Mutation

Existing model mutation operators [19, 31, 32, 54] are mainly designed to generate mutants by changing the
structure or weights of seed DL models. The design, however, does not consider the diversity of layer API calls
inside DL models. Examples of these operators are inverting the activation state of neurons and layer duplication.
However, these mutation operators fail to introduce the new layer API call (i.e., new layer inputs, layer parameters,
or layer sequences). Therefore, we propose eight mutation operators in this section to generate diverse mutants
for the three coverage criteria. As shown in Table 3, the mutation operators could be categorized into three levels,
i.e., input-level mutation, parameter-level mutation, and structure-level mutation. In addition, we include one
anomaly mutation for robustness testing.
Our mutation operators are designed to increase the diversity of layer API calls by introducing new layer

inputs, parameter values, and layer sequences. Unfortunately, arbitrarily mutating DL models can easily cause
model failure [18, 31, 54]. In particular, model mutations must comply with some tensor constraints (i.e., rules)
to avoid breaking validity checks in DL libraries. Specifically, we summarize four general tensor constraints
(as exemplified in Figure 5), including three followed by existing works [18, 31, 54]: input degree constraint,
dimension constraint, and shape constraint, and an additional one required by us when mutating the layer input
datatype: datatype constraint. Input degree constraint refers to the required number of input tensors for each
layer, e.g., the Conv2D layer can only receive one tensor while the Add layer requires more than one tensor.
Dimension constraint refers to the number of tensor dimensions required for each layer, e.g., the Conv2D

layer can only accept the four-dimensional (4D) tensor, while BatchNormalization can accept 3D, 4D, or
5D tensor. We refer the shape constraint to the case where merging layers (e.g., Add layer) require a specific
tensor shape (e.g., the Add layer requires the input tensors to have the same shape). Additionally, inconsistent
computation precision (i.e., datatype constraint), determined by the datatype property, will also cause model
failure. Specifically, DL libraries will directly raise an exception if the precision used for layer initialization is
inconsistent with the layer input. For instance, a Conv2D layer initialized in 32 bits floating point (float32) will
reject a float16 input tensor. The model mutation that violates either of these four constraints will result in an
invalid DL model, which cannot be correctly built and loaded by DL libraries, thus, are ineffective in testing DL
libraries. Therefore, we design our mutation operators to increase layer API calls’ diversity while not violating
four tensor constraints mentioned above.

3.3.1 Input-Level Mutation. The design of input-level mutation aims to mutate the layer input’s properties
(i.e., datatype, number of dimensions, and shape) inside DL models. However, because of the huge search space
in the layer input, randomly mutating these properties is weak in exploring new datatype, number of dimensions,
and shape. Intuitively, for the target layer input to be mutated, if previously generated models have not covered a
specific option (i.e., a particular input datatype, a particular number of dimensions, or a particular shape), our
input-level mutation should have a higher chance to generate mutants with these options. Moreover, to increase
the mutation ratio, Instead of randomly choosing one layer to mutate, our input-level mutation will randomly
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Shape ConstraintDimension Constraint

Conv2D
Tensor 

(3, 10, 3)

Input Degree Constraint

Conv2D 

[float32]

Tensor

[float16]

Datatype Constraint

Conv2D

Tensor A

Tensor B

Tensor C Add

Tensor 

(3, 10, 10, 3)

Tensor 

(3, 10, 12, 3)

Add

Fig. 5. Example of Invalid Model Violating Tensor Constraints

Table 3. Mutation Operators

Type Names Input Description

Input-Level Mutation

Mutate Datatype (MDtype) a model; a list of layers Change the datatype of input for layers in the list.

Mutate Dimension (MDims) a model; a list of layers Change the number of input dimensions for layers in the list.

Mutate Shape (MShape) a model; a list of layers Change the shape of input for layers in the list.

Parameter-Level Mutation Mutate Parameter (MParam) a model; a list of layers Change the value of layer parameters for layers in the list.

Structure-Level Mutation

Insert Layers (IL) a model; a list of layers Insert a list of layers into model.

Merge Layers (ML) a model; a merging layer merge two layers’ output using the selected merging layer.

Connect Layers (CL) a model; a list of layer pairs connect layers according to the layer pair in the list

Anomaly Mutation Special Input (SpecialI) a model; a layer Change the input of a selected layer to infinity or NaN

Mutate Datatype Mutate Dimensions Mutate Shape

BatchNormalization

ExpandDims

dims: 3D, shape: (5, 6, 2)

Conv2D

dims: 4D, shape: (5, 8, 8, 3)

ReshapeLayer

dims: 4D, shape: (5, 6, 6, 2)

dims: 3D, shape: (5, 6, 2)

dims: 4D, shape: (5, 6, 6, 2)

Conv2D

CastLayer

datatype: float16

datatype: float16

datatype: float32

BatchNormalization

CastLayer

datatype: float32

datatype: float32

BatchNormalization

Conv2D

shape: (5, 8, 8, 3)

shape: (5, 6, 3, 2)

shape: (5, 6, 6, 2)

shape: (5, 8, 5, 3)

ReshapeLayer

PadShape

shape: (5, 6, 6, 2)

Conv2D

Layer Parameter

filters: 2

activation: ‘sigmoid'

kernel_size: [3, 3]

strides: [2, 1]

dilation_rate: [3, 3]

…

Mutate Parameter

dims: 4D, shape: (5, 6, 1, 2)

PadShape

Fig. 6. Example of Input-Level Mutation (Left Three) and Parameter-Level Mutation (Right One)

choose 𝑛 layers (denoted as {𝑙𝑎𝑦𝑒𝑟1, 𝑙𝑎𝑦𝑒𝑟2, ..., 𝑙𝑎𝑦𝑒𝑟𝑛}), where 𝑛 is a random integer between 1 and 10. Based on
these intuitions, we design our input-level mutation, i.e., MDtype, MDims, and MShape, as follows:

• Mutate Datatype (MDtype): Given a seed model and a list of layers {𝑙𝑎𝑦𝑒𝑟1, ..., 𝑙𝑎𝑦𝑒𝑟𝑛}, MDtype searches
through all generated models and chooses the datatype 𝑑𝑡𝑦𝑝𝑒𝑚 (𝑚 ∈ [1, 𝑛𝑡𝑦𝑝𝑒 (𝑙𝑎𝑦𝑒𝑟𝑖 )]) that have not been
covered by inputs of 𝑙𝑎𝑦𝑒𝑟𝑖 (𝑖 ∈ [1, 𝑛]). If all datatypes have been covered, MDtype randomly chooses one
instead. Finally, for each 𝑙𝑎𝑦𝑒𝑟𝑖 , MDtype changes its input datatype to 𝑑𝑡𝑦𝑝𝑒𝑚 by type casting (e.g., cast the
datatype 𝑙𝑎𝑦𝑒𝑟𝑖 ’s input from float16 to float64).
• Mutate Dimensions (MDims): Given a seed model and a list of layers {𝑙𝑎𝑦𝑒𝑟1, ..., 𝑙𝑎𝑦𝑒𝑟𝑛},MDims searches
through all generated models and chooses the possible number of dimensions 𝑛𝑑𝑖𝑚𝑖 that can be accepted
by 𝑙𝑎𝑦𝑒𝑟𝑖 and have not been covered by inputs of 𝑙𝑎𝑦𝑒𝑟𝑖 . If all numbers of dimensions have been covered,
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MDims randomly choose one instead. Finally, for each 𝑙𝑎𝑦𝑒𝑟𝑖 , MDims changes the number of its input
dimensions to 𝑛𝑑𝑖𝑚𝑖 by inserting dimensions of length 1 (e.g., expand 𝑙𝑎𝑦𝑒𝑟𝑖 ’s input shape from {10,3,3}

to {10,3,3,1}) or randomly dropping dimensions (e.g., mutate 𝑙𝑎𝑦𝑒𝑟𝑖 ’s input shape from {10,3,3} to
{10,3}).
• Mutate Shape (MShape): Given a seed model and a list of layers {𝑙𝑎𝑦𝑒𝑟1, ..., 𝑙𝑎𝑦𝑒𝑟𝑛}, MShape searches
through all generated models and checks if the number of different input shapes of 𝑙𝑎𝑦𝑒𝑟𝑖 is larger than
𝑛𝑠ℎ𝑎𝑝𝑒 (i.e., five as defined in ğ3.2). If true, MShape generates a new input shape 𝑠ℎ𝑎𝑝𝑒𝑖 that preserves the
same number of dimensions. Otherwise, it randomly generates one shape. Finally, for each layer 𝑙𝑎𝑦𝑒𝑟𝑖 ,
MShape changes the shape of its input to 𝑠ℎ𝑎𝑝𝑒𝑖 by padding with a constant value (e.g., pad the shape of
𝑙𝑎𝑦𝑒𝑟𝑖 from {10,3,3} to {10,5,5} with a constant value) or cropping (e.g., crop the shape of 𝑙𝑎𝑦𝑒𝑟𝑖 from
{10,3,3} to {10,1,1}).

Note that mutating layer inputs may result in improper layer output that cannot be sent to the subsequent
layers. Therefore, we design our input-level mutation operators as layer-wise mutations, which means we only
target mutating the input of a list of selected layers while not affecting the subsequent layers. Specifically, when
applying MDtype to the layer under mutated (denoted as 𝑙𝑎𝑦𝑒𝑟𝑖 ), we first record the original output datatype of
𝑙𝑎𝑦𝑒𝑟𝑖 , then cast the 𝑙𝑎𝑦𝑒𝑟𝑖 ’s output datatype to the original one after each mutation. Similarly, when applying
MShape and MDims, we also record 𝑙𝑎𝑦𝑒𝑟𝑖 ’s output shape (denoted as 𝑠ℎ𝑎𝑝𝑒𝑜𝑖 ). After each mutation, we check
whether the layer output shape after mutation (denoted as 𝑠ℎ𝑎𝑝𝑒𝑚𝑖 ) is the same as 𝑠ℎ𝑎𝑝𝑒𝑜𝑖 . If not, we reshape
𝑠ℎ𝑎𝑝𝑒𝑚𝑖 to 𝑠ℎ𝑎𝑝𝑒𝑜𝑖 . Specifically, we first expand 𝑠ℎ𝑎𝑝𝑒𝑚𝑖 ’s dimensions or randomly drop some dimensions to
make the number of dimensions in 𝑠ℎ𝑎𝑝𝑒𝑚𝑖 consistent with 𝑠ℎ𝑎𝑝𝑒𝑜𝑖 . Then, for each dimension, we apply padding
with random constant values or cropping to make the total number of elements in each dimension in 𝑠ℎ𝑎𝑝𝑒𝑚𝑖 is
consistent with 𝑠ℎ𝑎𝑝𝑒𝑜𝑖 .

Three examples on the left of Figure 6 are three mutants generated by input-level mutations. MDtype changes
the datatype of Conv2D’s input from float32 to float16 so we can test precision-specific code in this layer.
MDims mutates BatchNormalization’s input from a 4D tensor to a 3D tensor; this change can test library
codes designed for the tensor with a specific number of dimensions. MShape changes the tensor shape of Conv2D

from (5,8,8,3) to (5,8,5,3); thus can test library codes related to the specific tensor shape. After mutating
the layer inputs, all three mutation operators will cast or reshape the layer’s output to that before mutation.

3.3.2 Parameter-Level Mutation. The design of parameter-level mutation targets mutating the layer parame-
ter values. Similar to input-level mutation, the parameter-level mutation also prioritizes the uncovered mutation
option (i.e., parameter value) to diversify layer parameters effectively. Moreover, like input-level mutation, our
parameter-level mutation will also randomly choose 𝑛 layers to mutate. We design our parameter-level mutation,
i.e., MParam, as follows:

• Mutate Parameter (MParam): Given a seed model and a list of layers {𝑙𝑎𝑦𝑒𝑟1, ..., 𝑙𝑎𝑦𝑒𝑟𝑛}, MParam

searches through all generated models and chooses the parameter value (𝑣𝑎𝑙𝑢𝑒𝑖 ) of a specific parame-
ter (𝑝𝑎𝑟𝑎𝑚𝑖 ) that have not been covered by parameters of 𝑙𝑎𝑦𝑒𝑟𝑖 . Finally, for each 𝑙𝑎𝑦𝑒𝑟𝑖 , MParam changes
the 𝑝𝑎𝑟𝑎𝑚𝑖 of it to 𝑣𝑎𝑙𝑢𝑒𝑖 .

The example on the right of Figure 6 is a mutant generated by parameter-level mutation. In this example,
parameter-level mutation randomly chooses numeric parameters (e.g., strides and dilation_rate) and non-
numeric parameters (e.g., activation to mutate. By changing the value of activation parameter from relu to
sigmoid, this mutant can test new activation functions in the Conv2D. Besides, changing the value of strides

and dilation_rate will influence the padding logic in the Conv2D. Note that though both our COMET and a
prior work [19] mutate parameters, prior work randomly mutates parameter values, while COMET considers the
uncovered parameter values. By doing so, COMET could be more effective in exploring library code.
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Fig. 7. Example of Structure-Level Mutation

3.3.3 Structure-Level Mutation. The structure-level mutation targets diversifying the structure of a seed
model. In particular, it intends to explore the possible layer sequences within the search space. The most
straightforward way is to insert some layers into the seed model. However, because of the huge search space
when mutating a model’s structure, randomly inserting layers [32, 54] is weak in generating an effective mutant
that contains new layer sequences. Therefore, our structure-level mutation adopts a similar strategy as input-level
and parameter-level mutation. We choose the mutation option that can generate the mutant with new layer
sequences in each mutation. Moreover, since some structures cannot be covered by simply inserting layers into
the seed model, we also provide some other mutation operators to generate them. Specifically, we design our
structure-level mutation as follows:

• Insert Layers (IL): Given a seed model and the number of layers to be inserted (denoted as 𝑛), IL chooses
𝑛 layers ({𝑙𝑎𝑦𝑒𝑟1, ..., 𝑙𝑎𝑦𝑒𝑟𝑛}) from all possible types of layers which previously generated models have
not covered. If IL cannot find enough uncovered layers, it randomly chooses one instead. For each 𝑙𝑎𝑦𝑒𝑟𝑖
(𝑖 ∈ [0, 𝑛]), IL searches for a 𝑙𝑎𝑦𝑒𝑟 ′𝑖 in the seed model so that the layer pair

〈

𝑙𝑎𝑦𝑒𝑟 ′𝑖 , 𝑙𝑎𝑦𝑒𝑟𝑖
〉

not covered
by previously generated models can be inserted into this seed model. If no possible 𝑙𝑎𝑦𝑒𝑟 ′𝑖 can be found,
IL randomly chooses one layer inside the seed model instead. Finally, for each 𝑙𝑎𝑦𝑒𝑟𝑖 , IL inserts 𝑙𝑎𝑦𝑒𝑟𝑖
after 𝑙𝑎𝑦𝑒𝑟 ′𝑖 and directs the output of 𝑙𝑎𝑦𝑒𝑟𝑖 to the original subsequent layer of 𝑙𝑎𝑦𝑒𝑟 ′𝑖 so the 𝑙𝑎𝑦𝑒𝑟𝑖 can be
inserted into the seed model. To ensure that the insertion of 𝑙𝑎𝑦𝑒𝑟𝑖 follows the dimension constraint and
shape constraint required by its subsequent layer, IL further applies the same reshape strategy described in
ğ3.3.1 to reshape the 𝑙𝑎𝑦𝑒𝑟𝑖 ’s output shape to the original input shape of its subsequent layer.
• Merge Layers (ML): Given a seed model,ML chooses an uncovered merging layer 𝑙𝑎𝑦𝑒𝑟𝑚 which previously
generated models have not covered. If previously generated DL models have covered all merging layers,
ML randomly chooses one instead. As described in Figure 5, ML needs to follow the shape constraint, i.e.,
input tensors of the inserted merging layer should have the same shape. To do so, ML scans the seed model
and randomly chooses two layers (denoted as 𝑙𝑎𝑦𝑒𝑟𝑖 and 𝑙𝑎𝑦𝑒𝑟

′
𝑖 ) whose tensor output is the same, then

merges them using 𝑙𝑎𝑦𝑒𝑟𝑚 . If no 𝑙𝑎𝑦𝑒𝑟𝑖 and 𝑙𝑎𝑦𝑒𝑟
′
𝑖 can be found, ML will directly raise an exception, and

COMET will continue the next mutation. ML further directs the output of 𝑙𝑎𝑦𝑒𝑟𝑚 to the subsequent layer
of either 𝑙𝑎𝑦𝑒𝑟𝑖 or 𝑙𝑎𝑦𝑒𝑟

′
𝑖 so 𝑙𝑎𝑦𝑒𝑟𝑚 can be inserted into the seed model.
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• Connect Layers (CL): Given a seed model and the number of layer sequences to be inserted (denoted as
𝑛), CL chooses 𝑛 layer pairs (

〈

𝑙𝑎𝑦𝑒𝑟𝑖 , 𝑙𝑎𝑦𝑒𝑟
′
𝑖

〉

, 𝑖 ∈ [0, 𝑛]) inside the seed model that previously generated
models have not covered. If CL cannot find enough layer pairs, it randomly chooses two layers inside the
seed model to form a layer pair instead. For each layer pair

〈

𝑙𝑎𝑦𝑒𝑟𝑖 , 𝑙𝑎𝑦𝑒𝑟
′
𝑖

〉

, CL then connects 𝑙𝑎𝑦𝑒𝑟𝑖 and
𝑙𝑎𝑦𝑒𝑟 ′𝑖 by sending the output of 𝑙𝑎𝑦𝑒𝑟𝑖 to 𝑙𝑎𝑦𝑒𝑟

′
𝑖 . Note that directly connecting 𝑙𝑎𝑦𝑒𝑟𝑖 and 𝑙𝑎𝑦𝑒𝑟

′
𝑖 will break

the original connection between 𝑙𝑎𝑦𝑒𝑟 ′𝑖 and its preceding layer (denoted as 𝑙𝑎𝑦𝑒𝑟𝑝 ), leaving 𝑙𝑎𝑦𝑒𝑟𝑝 detached
from the seed model. To avoid this happens, CL first makes a copy of 𝑙𝑎𝑦𝑒𝑟 ′𝑖 to keep the original connection
between 𝑙𝑎𝑦𝑒𝑟 ′𝑖 and 𝑙𝑎𝑦𝑒𝑟𝑝 , then it directs the output of 𝑙𝑎𝑦𝑒𝑟𝑖 to the copied 𝑙𝑎𝑦𝑒𝑟 ′𝑖 . Since the output shape
of the copied 𝑙𝑎𝑦𝑒𝑟 ′𝑖 can be different from that of the original 𝑙𝑎𝑦𝑒𝑟 ′𝑖 , directing the output of copied 𝑙𝑎𝑦𝑒𝑟

′
𝑖 to

the subsequent layers may result in an invalid model that violates shape constraint or dimension constraint.
Therefore, CL appends the output tensor of the copied 𝑙𝑎𝑦𝑒𝑟 ′𝑖 to the final output lists of the mutant, so the
mutant is still valid.

Figure 7 exemplifies three mutants generated by structure-level mutations. IL inserts the
GlobalAveragePooling after Conv2D. Since the output shape of GlobalAveragePooling is (5,2), which
is inconsistent with the original output shape (5,6,6,2) and cannot be accepted by BatchNormalization,
IL further reshapes the output shape to the original one. Since the output shape of the Conv2D layer and the
BatchNormalization are the same, ML can merge these two outputs using the Add layer. CL introduces the
new layer sequence Conv2D→ BatchNormalization by connecting these two layers. It further appends the
output tensor of the copied Conv2D to the final output lists of the mutant.

3.3.4 Anomaly Mutation. Besides diversifying layer inputs, parameter values, or sequences, we noticed that
DL libraries lack consideration for some particular values, such as NaN. Indeed, we observed that the manifestation
of some bugs requires these special values. Following these observations, we design a SpecialI mutation operator
to test the layer API using these values. Specifically, given a seed model, SpecialI randomly chooses a layer
(denoted as 𝑙𝑎𝑦𝑒𝑟𝑖 ) and changes the input value of 𝑙𝑎𝑦𝑒𝑟𝑖 to NaN or Inf.

Note that our mutation operators are designed to apply legitimate modification on the seed model to pass
validity checks in DL libraries. However, there are still a few invalid mutants generated. For instance, the mutant
may require too large GPU memory that directly raises an out-of-memory issue in the DL library; the shape of
layer input may be too small, and thus some layers with typical configurations cannot process it. These mutants
cannot be successfully constructed by DL libraries. For these invalid models, we follow existing works [18, 54] to
ignore them and continue the next round of mutation.

3.4 Model Synthesis

This section proposes a method to synthesize initial seed models based on the collected published DL models
(denoted as original models). Ourmodel synthesis method aims to reduce the original model’s size while preserving
its diversity. Specifically, for an original model, our model synthesis algorithm constructs a new model which
covers the layer API calls inside the original model, and this new model is used as the initial seed model for
further mutation. However, randomly generating a model does not work well for the following reasons. On the
one hand, randomly building a model from scratch likely generates invalid models, which DL libraries cannot
load, and thus cannot be used for testing. Taking Figure 5 as an example, layer Add requires a specific shape
constraint (i.e., the shape of two inputs is the same), and layer Conv2D requires the input to have four dimensions.
Arbitrary removal of duplicated layers may break such input constraints and unable to generate a valid model.
On the other hand, randomly generating DL models cannot effectively achieve the goal of our model synthesis
method, i.e., reduce the size of original models while retaining their layer inputs, layer parameters, and layer
sequences.
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We synthesize a new model using our mutation operators, as introduced in ğ3.3. Specifically, we regard the
model synthesis as an iterative mutation process using our mutation operators until all layer API calls (i.e., layer
inputs, layer parameter values, and layer sequences) in the original model are covered. Given a published model
as the original model, we first extract the covered layer types and their parameter values to instantiate a list
of candidate layers to be inserted. We further use IL operator to insert these layers so the synthesized model
can cover all layer APIs and layer parameter values inside the original model. MDtype, MDims, and MShape are
further used to retrieve the original model’s layer input into the synthesized model. Finally, we use CL and ML to
cover the remaining layer sequences inside the original model.

Algorithm 1 shows the logic of our model synthesis method. Given a published DL model, we first analyze the
layer input (D𝑖 ), parameter (D𝑝 ), and sequences (D𝑠 ) covered by the published model. Based on the collected
diversities, we then use IL operator to insert layer_class with target layer_param to the synthesized modelM ′

(lines 7-10). In particular, the layer is appended to the end ofM ′, so we can insert it without breaking any layer
sequence diversity. After all D𝑝 are covered, MDtype, MDims, and MShape will be applied to the synthesized
model to cover D𝑖 (lines 11-18). Finally, if some layer sequences remain uncovered, the CL and ML operator
is further used to cover these layer sequences (lines 19-22). The model synthesis algorithm stops when the
synthesized model covers all layer inputs, layer parameters, and layer sequences inside the original one or the
given time budget (i.e., 5 minutes) is reached.

Original Model (782 layers, 55 M weights)
10X 20X 10X

Input Output

Output

Input

MaxPooling2D

Residual

Conv-BN-ReLU Block

AveragePooling2D
Concatenate
Dense (Fully Connect)

Conv-BN-ReLU Block

Conv2D
Batch Normalization
ReLU

Synthesized Model (41 layers, 466 K weights)

Fig. 8. Illustration of Model Synthesis Based on InceptionResNetV2

Figure 8 shows a model synthesized from InceptionResNetV2. The original model contains many duplicated
layers (e.g., the Conv-BN-ReLU block), which cannot contribute to the diversity of layer API calls. By extracting
the layer inputs, layer parameter values, and layer sequences covered by the original model, we can use our
model synthesis algorithm to synthesize a more lightweight model while preserving the layer API calls covered
by the original one. Note that the synthesized model is generated from scratch and only targets recovering the
layer inputs, layer parameter values, and layer sequences covered by the original model. Its topology may be
different from the original. As a result, we can reduce the total number of layers in the original model from
782 to 41 (i.e., reduce 94.8% number of layers) and the total number of weights from 55 million to 466 thousand
(i.e., reduce 99.2% weights). Moreover, the runtime overhead for TensorFlow to load and make inferences on the
synthesized model can be lessened from 65 seconds to six seconds while the layer API calls are preserved.
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Algorithm 1:Model Synthesis

Input: M: original model
Output: M ′: synthesized model

1 def ModelSynthesis(M):

2 D𝑖 , D𝑝 , D𝑠 ← CollectDiversity(M)

3 M ′← 𝜙

4 D ′𝑖 , D
′
𝑝 , D

′
𝑠 ← CollectDiversity(M ′)

5 𝑑𝑖𝑠 ←D𝑖 \ D
′
𝑖 ∪ D𝑝 \ D

′
𝑝 ∪ D𝑠 \ D

′
𝑠

6 while 𝑑𝑖𝑠 ≠ 𝜙 ∧ ¬timeout() do

7 if D𝑝 \ D
′
𝑝 ≠ 𝜙 then

8 layer_class, layer_param← rand.Choice(D𝑝 \ D
′
𝑝 )

9 M ′← IL(layer_class, layer_param)

10 continue

11 if D𝑖 \ D
′
𝑖 ≠ 𝜙 then

12 layer_class, dtype, ndims,shape← rand.Choice(D𝑖 \ D
′
𝑖 )

13 if dtype ≠ 𝜙 then

14 M ′←MDtype(M ′, ⟨layer_class, dtype⟩)

15 continue

16 if ndims ≠ 𝜙 then

17 M ′←MDims(M ′, ⟨layer_class, ndims⟩)

18 continue

19 if shape ≠ 𝜙 then

20 M ′←MShape(M ′, ⟨layer_class, shape⟩)

21 continue

22 if D𝑠 \ D
′
𝑠 ≠ 𝜙 then

23 layer_sequence← rand.Choice(D𝑠 \ D
′
𝑠 )

24 M ′← CL(M ′, layer_sequence)

25 continue

26 D ′𝑖 , D
′
𝑝 , D

′
𝑠 ← CollectDiversity(M ′)

27 𝑑𝑖𝑠 ←D𝑖 \ D
′
𝑖 ∪ D𝑝 \ D

′
𝑝 ∪ D𝑠 \ D

′
𝑠

28 returnM ′

3.5 Diversity-Driven Model Generation

Since not all mutation operators are equally effective, random selection may be ineffective in searching for diverse
models in the huge search space. Note that our main objective is to diversify the generated model. Therefore,
we should generate DL models for increasing the layer input coverage, layer parameter coverage, and layer
sequence coverage. Besides, we need to cover more branches inside the DL library to achieve a higher test
coverage. Following these objectives, we design our fitness function based on these coverage criteria to measure
the potential effectiveness of mutation operators. However, only selecting the mutation operators with the highest
fitness score is not optimal since the fitness score is based on the historical iteration and cannot totally represent
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future results. Intuitively, mutation operators should have a certain possibility to be selected, and those are more
likely to diversify DL models and test library code should be more likely to be chosen. This intuition motivates
our adoption of the Metropolis-Hasting algorithm, an MCMC (Markov Chain Monte Carlo) sampling method that
has been popularly used [10, 54] for mutation selection. In each iteration of model generation, COMET prioritizes
the mutation-selection effort to prefer those mutation operators that are more effective in increasing our fitness
score.

Fitness Function. Following existing works [10, 54], we define the mutation operator (𝑜𝑝) as the seed in the
MCMC sampling process. After selecting a mutation operator 𝑜𝑝 , COMET can generate a new model𝑚′ = 𝑜𝑝 (𝑚)

by applying the chosen mutation operator 𝑜𝑝 to a randomly selected seed model𝑚. For each 𝑜𝑝 , if applying 𝑜𝑝 is
more likely to generate a model that either increases the layer API call diversity or covers new branches inside
DL libraries (i.e., increases branch coverage), we should prefer it for future model generation. Therefore, the
fitness score of 𝑜𝑝 depends on the quality of𝑚′ generated by it. We first introduce how we measure the quality
of each generated model𝑚′ below:

𝑠𝑐𝑜𝑟𝑒 (𝑚′) = 𝜆 · 𝑑𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚′) + (1 − 𝜆) · 𝑏𝑟𝑎𝑛𝑐ℎ(𝑚′) (4)

Based on our intuition, we consider two factors when designing 𝑠𝑐𝑜𝑟𝑒 (𝑚′): whether it is a diverse model
(denoted as 𝑑𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚′)) and whether it can cover new branches (denoted as 𝑏𝑟𝑎𝑛𝑐ℎ(𝑚′)). The higher the
𝑠𝑐𝑜𝑟𝑒 (𝑚′) is, the more influential the model𝑚′ is in increasing the model diversity and covering new branches
in DL libraries. We set 𝜆 =

1
2 so that COMET prefers model diversity and branch coverage equally. To design

𝑑𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚′), we compare the layer inputs (D ′𝑖 and D𝑖 ), parameters (D ′𝑝 and D𝑝 ), and sequences (D ′𝑠 and D𝑠 )
covered by𝑚′ and𝑀 where𝑀 is the set of previously generated models. If𝑚′ contains new layer types, layer
pairs, or layer parameters, 𝑑𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚′) will return one, indicating that a diverse model is found; otherwise,
𝑑𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚′) returns zero.

𝑑𝑖𝑣𝑒𝑟𝑠𝑒 (𝑚′) =

{

1, (D ′𝑖 \ D𝑖 ) ∪ (D
′
𝑝 \ D

′
𝑝 ) ∪ (D𝑠 \ D

′
𝑠 ) ≠ 𝜙

0, 𝑒𝑙𝑠𝑒
(5)

To design 𝑏𝑟𝑎𝑛𝑐ℎ(𝑚′), we follow existing strategies [10] to use Equation 6. Suppose the total branches covered
by previously generated models is B𝑀 and the branches covered by𝑚′ is B𝑚′ , if B𝑚′ contains branches that𝑀
has not covered, 𝑏𝑟𝑎𝑛𝑐ℎ(𝑚′) will return one; otherwise, 𝑏𝑟𝑎𝑛𝑐ℎ(𝑚′) returns zero.

𝑏𝑟𝑎𝑛𝑐ℎ(𝑚′) =

{

1, B𝑀 \ B𝑚′ ≠ 𝜙

0, 𝑒𝑙𝑠𝑒
(6)

Finally, given a list of models (i.e.,𝑀𝑜𝑝 ) generated by mutation operator 𝑜𝑝 , we can define the fitness function
for 𝑜𝑝 using Equation 7 where 𝑁𝑜𝑝 denotes the total number of models in𝑀𝑜𝑝 .

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 (𝑜𝑝) =

∑𝑀𝑜𝑝

𝑚′ 𝑠𝑐𝑜𝑟𝑒 (𝑚′)

𝑁𝑜𝑝
(7)

Seed Selection. COMET adopts theMH algorithm, aMarkov ChainMonte Carlo (MCMC) algorithm commonly
used by testing techniques to guide the seed selection [8, 54]. The MH algorithm is designed for obtaining random
samples from a probability distribution. It works by generating a sequence of samples whose distribution closely
approximates the planned distribution. Samples are produced iteratively, where the acceptance of the subsequent
sampling (say 𝑠2) depends only on the current one (say 𝑠1). In our setting, a sample corresponds to a seed, i.e., a
mutation operator.
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Like existing works [9, 54], we use the geometric distribution as the desired distribution. The geometric
distribution is the probability distribution of the number X of Bernoulli trials needed to obtain one success.
Specifically, if the probability of success on each trial is 𝑝 , the likelihood that the 𝑘𝑡ℎ trial is the first success is
given by 𝑃𝑟 (𝑋 = 𝑘) = (1 − 𝑝)𝑘−1𝑝 , where 𝑝 ∈ (0, 1) is a hyperparameter related to the total number of seeds [9].
We sort all seeds based on their fitness scores computed by Equation 7 from the highest to the lowest. By mapping
the sorted seeds into the geometric distribution, the sampling process can prefer those with high fitness scores to
those with low fitness scores. Specifically, suppose the last selected seed is 𝑠1, the probability of accepting seed
𝑠2 is calculated by Equation 8. In particular, if the 𝑘2 (the index of 𝑠2 after we sort all seeds) is smaller than 𝑘1
(the index of 𝑠1), i.e., the fitness score of 𝑠2 is larger than that of 𝑠1, 𝑃 (𝑠1 → 𝑠2) = 1 and we directly accept 𝑠2.
Otherwise, we accept 𝑠2 with a certain probability (1 − 𝑝)𝑘2−𝑘1 .

𝑃 (𝑠1 → 𝑠2) =𝑚𝑖𝑛

(

1,
𝑃𝑟 (𝑠2)

𝑃𝑟 (𝑠1)

)

=𝑚𝑖𝑛
(

1, (1 − 𝑝)𝑘2−𝑘1
)

(8)

Table 4 is an example demonstrating the seed selection, it lists each seed’s fitness score (row 3) in one iteration.
Based on these fitness scores, COMET first sorts all seeds from the highest fitness score to the lowest (row 4),
and then it assigns the index 𝑘 for each seed (row 5) from 1 to 8. The selection of the next seed 𝑠2 relies on the
hyperparameter 𝑝 and the index of the last chosen seed 𝑠1. Specifically, COMET randomly selects a seed 𝑠2 and
accepts this selection based on acceptance probability (i.e., 𝑃 (𝑠1 → 𝑠2)) calculated by Equation 8 (in this example,
𝑝 = 0.4, and 𝑠1 is MDtype with the index to be 3). In particular, when COMET selects the seed whose index
is smaller than or equal to 3 (i.e., MParam, ML, or MDtype), the acceptance probability is 1, which means that
COMET will directly accept this selection. If COMET selects the seed whose index is larger than 3 (i.e., IL,MDims,
MShape, CL, or Special), COMET will accept this selection based on the acceptance probability. The higher the
selection’s acceptance probability is, the more likely COMET will accept this selection. In this example, among
seeds whose indexes are larger than 3, selecting IL is most likely to be accepted, while selecting SpecialI is least
likely to be accepted. COMET repeats this seed selection until a selection is accepted.

Table 4. Example of Seed Selection

Unsorted Seeds

MDtype (s1) MDims MShape MParam IL ML CL SpecialI

Fitness 0.60 0.53 0.44 0.68 0.57 0.62 0.42 0.38

Sorted Seeds

MParam ML MDtype (s1) IL MDims MShape CL SpecialI

k 1 2 3 4 5 6 7 8

𝑃 (𝑠1 → 𝑠2) 1 1 1 0.6 0.36 0.22 0.13 0.08

Model Pool Update. As illustrated earlier, in each iteration, COMET randomly selects a model from the model
pool to generate a mutant. In the beginning, the model pool contains all the initial synthesized models. During
the model generation, COMET adds mutants, which can introduce new layer inputs, parameters, or sequences
into the model pool to increase the diversity of the seed model. If the total number of seed models in the model
pool is larger than a pre-defined size (i.e., 50 following existing work [54]), COMET will randomly remove a seed
model from the model pool.
Algorithm 2 shows the detailed process for COMET to generate models. In each iteration, COMET uses the

MH algorithm to select an operator 𝑜𝑝𝑖 (in function SeedSelection) and randomly select a seed model𝑚𝑖 from the
model pool (line 4). A mutant𝑚′𝑖 is thereby generated by applying 𝑜𝑝𝑖 to𝑚𝑖 (line 5). If the mutant𝑚′𝑖 can cover
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new layer API calls or cover new branches inside the DL library, COMET updates the mutant to the model pool
𝑀 (lines 6-7). Otherwise, COMET continues the next iteration. The diverse model generation algorithm ends
when the given time budget is reached.

Algorithm 2: Diverse Model Generation Algorithm

Input: M: a model pool; Op: a mutation operator pool
Output: M′: All generated models

1 def ModelGeneration(𝑃 ,𝑀 , 𝑂𝑝):

2 while ¬timeout() do

3 𝑜𝑝𝑖 ← SeedSelection (𝑆)

4 𝑚𝑖 ← rand.Choice(𝑀) // randomly choose𝑚

5 𝑚′𝑖 ← 𝑜𝑝𝑖 (𝑚)

6 if score(𝑚′𝑖 ) > 0 then

7 𝑀 ← UpdateModelPool(𝑀 ,𝑚′𝑖 )

8 return𝑀 ′

9 def SeedSelection(𝑆):

10 // select candidate based on MH algorithm

11 𝑆𝑠𝑜𝑟𝑡𝑒𝑑 ← SortSeed(𝑆) // Using Fitness Function (Eq. 7)

12 𝑝𝑟𝑜𝑏 ← 0

13 𝑘1 ← get the index of last selected seed

14 while New Rand() ≥ 𝑝𝑟𝑜𝑏 do

15 𝑠𝑖 ← random.Choice(𝑆𝑠𝑜𝑟𝑡𝑒𝑑 )

16 𝑘2 ← 𝑆𝑠𝑜𝑟𝑡𝑒𝑑 .𝑖𝑛𝑑𝑒𝑥 (𝑠𝑖 )

17 𝑝𝑟𝑜𝑏 ← (1 − 𝑝)𝑘2−𝑘1

18 return 𝑠𝑖

19 def UpdateModelPool(𝑀 ,𝑚′𝑖 ):

20 if sizeof(𝑀)>=pool_size then

21 𝑖𝑑𝑥 ← rand.randInt(sizeof(𝑀))

22 𝑀 ′.pop(idx)

23 𝑀 ′.add(𝑚′𝑖 )

24 return𝑀 ′

3.6 Bug Detection

We further use the generated models as test inputs for DL library testing in each iteration. For bug detection,
we follow existing works [18, 19, 31, 43, 54] to adopt differential testing as the test oracle. Overall, COMET
targets three types of bugs: crash, Not-A-Number (NaN), and inconsistency bugs. For crash bugs and NaN bugs,
we consider a bug detected if some DL libraries crash or output NaN value when loading and executing the
model while some other libraries do not. Inconsistency bug refers to the difference between the model execution
results of different libraries. Since a DL model initialized with the same weights should have the same or close
model prediction result on different DL libraries, inconsistent prediction results may indicate the inconsistent
algorithm implementation of different DL libraries, which is likely to be a bug [19, 43, 54]. However, because of the
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computation randomness during the DL library, two libraries’ outputs on the same model and the same input are
not the same. Therefore, we adopt a well-defined inconsistency metric, i.e., 𝐷_𝑀𝐴𝐷 , proposed by CRADLE [43]
and has been used by existing DL library testing works [43, 54] to measure the inconsistency degree across
different DL libraries for inconsistency bug detection. In particular, 𝐷_𝑀𝐴𝐷 calculates the inconsistency distance
by comparing the relative distance of model outputs from the ground-truth labels [43]. Specifically, given two
predicted vectors 𝑌 , 𝑌 ′, and the ground truth 𝑂 , 𝛿𝑌,𝑂 and 𝛿𝑌 ′,𝑂 are calculated to measure the distance between
the predicted vectors and the ground truth using Equation 9, and the distance between two predicted vectors
are then measured by Equation 10. An inconsistency bug is detected when the 𝐷_𝑀𝐴𝐷 score is larger than a
pre-defined threshold𝑇 . Note that DL models may have multiple outputs (as exemplified on the right of Figure 7),
which is inapplicable to the 𝐷_𝑀𝐴𝐷 metrics. Therefore, for DL model with multiple outputs, we reshape its
outputs to the same shape and add them together so we can still use 𝐷_𝑀𝐴𝐷 for inconsistency bug detection.

𝛿𝑌,𝑂 =
1

𝑁

𝑁
∑︁

𝑖=1

|𝑌𝑖 −𝑂𝑖 | (9)

𝐷_𝑀𝐴𝐷𝑂,𝑌,𝑌 ′ =
|𝛿𝑌,𝑂 − 𝛿𝑌 ′,𝑂 |

𝛿𝑌,𝑂 + 𝛿𝑌 ′,𝑂
(10)

4 EVALUATION

We evaluated the performance of COMET from two perspectives: the effectiveness of diverse model generation
and bug detection. In particular, we studied four research questions (RQs):

• RQ1: Can COMET outperform existing techniques? We first demonstrate the advantage of our diversity-
driven approach by comparing COMET against existing techniques in terms of our proposed coverage criteria
(i.e., layer input coverage, layer parameter coverage, and layer sequence coverage) and their branch coverage,
line coverage on a representative DL library.
• RQ2: Can COMET detect real bugs? To further demonstrate the usefulness of COMET, we present its
bug-revealing capability. We evaluate COMET on the latest release of eight popular DL libraries: TensorFlow,
PyTorch, MXNet, ONNXRuntime, Keras-MXNet, TF2ONNX, and ONNX2PyTorch.
• RQ3: Can test efficiency be boosted by the synthesized initialmodels?We also conducted the experiment
to show the impact of the synthesized initial models on the test efficiency by illustrating the trends of coverage
growth achieved with and without model synthesis.
• RQ4: To what extent do the proposed diversity-drivenmutation operators and the search algorithm

contribute to the performance of COMET? Finally, to further dissect the secrets of COMET, we conducted
an ablation study to analyze two key components (i.e., diversity-driven model mutation operators and the
MCMC-based search algorithm) in COMET, examining their usefulness in generating diverse models and
exercising various computations.

4.1 Experiment Setup

All the experiments were conducted on a machine powered by Intel Core i9 with one Titan RTX and two 2080Ti
GPU cards.

Baselines. We considered three state-of-the-art DL testing techniques as baselines in our experiment: CRA-
DLE [43], LEMON [54], and Muffin [18]. Since no executables or source codes of GraphFuzz [31] and Audee [19]
are available, we did not include them as baselines. We consider the layer input coverage, layer parameter
coverage, layer sequence coverage, branch coverage, and line coverage as the metrics to evaluate their overall
performance. In particular, the first three coverage criteria are used to measure the layer API call diversity;
the branch and line coverage are used to measure their test coverage on DL libraries. The three baselines are
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Table 5. Statistics of Original Models

Model Name Total # Layers (Weights) Layer Inputs Layer Parameters Layer Sequences

AlexNet 17 (21.592M) 22 35 5

LSTM (SineWave) 5 (0.071M) 9 22 2

LeNet 9 (0.062) 14 20 3

DenseNet121 429 (8.162M) 29 45 6

InceptionResNetV2 782 (55.973M) 26 46 4

InceptionV3 313 (23.951) 30 45 4

ResNet50 177 (25.736M) 24 40 4

Xception 134 (23.010M) 30 54 3

LSTM (StockPrice) 3 (0.026M) 6 21 1

MobileNetV2 156 (3.639M) 37 54 9

designed in different ways. In particular, CRADLE focuses on detecting inconsistency issues exposed by collected
DL models and datasets. Since it does not involve the model generation, we collect the total layer inputs, layer
parameters, and layer sequences in the initial models. We use our target DL libraries to load their generated
models and make inferences on their collected datasets to collect their branch and line coverage. For LEMON
and Muffin, we used their default settings to generate models. Also, since other baselines do not consider the
training phase during testing, for Muffin, which targets both training and inference phases, we only considered
the inference phase for the fairness of the comparison.

Benchmarks and Implementations. We selected 10 popular DL models with different structures as the
original models. They cover diverse application domains across both image data and sequential data. The three
baselines have also used these models in the evaluation. In particular, eight DL models (i.e., LeNet, AlexNet,
DenseNet121, InceptionResNetV2, InceptionV3, MobileNetV2, ResNet50, Xception) are image classification models
trained on MNIST [29], CIFAR-10 [26], and ImageNet [27]. The remaining two models are LSTM-based models
trained on Sine-Wave dataset and Stock-Price dataset by existing work [54]. All DL models are online-available
on our project site.5 The number of layers, weights, and the diversity we collected for each original model are
listed in Table 5. The setting of hyperparameter 𝑝 in our algorithm depends on the size of seeds in the MH
algorithm [9]. Since the total size of initial seeds (i.e., mutation operators) is 8, following the setting recommended
by existing work [9], the range of 𝑝 should be set within [0.313, 0.598]. In our implementation, we set 𝑝 to 0.4
without fine-tuning in our experiment. For inconsistency detection, we set𝑇 to 0.4, which is the value used by an
existing technique [54].

LayerAPI call Diversity.We also use Keras [11] to generate DLmodels for a fair comparisonwith LEMON [54]
and Muffin [18]. Following existing works [18, 19], we take the Keras documentation6 as the reference to define
the mutation space. In particular, we collect the information of all 59 Keras layer APIs (i.e., 𝑁𝑙𝑎𝑦𝑒𝑟 = 59), including
their possible datatypes, required input dimensions, and possible parameter values. Specifically, we set all possible
datatypes for each layer API to be ‘bfloat16’, ‘double’, ‘float16’, ‘float32’, ‘float64’, ‘half’

(i.e., 𝑛𝑡𝑦𝑝𝑒 (𝑙) = 6,∀𝑙 ∈ 𝐿𝑎𝑦𝑒𝑟𝐿𝑖𝑠𝑡 ). We further manually collect the possible parameter values, possible number of
input dimensions, and possible number of output dimensions for each layer API. We set 𝑛𝑠ℎ𝑎𝑝𝑒 to be 5 to measure
the coverage of layer input shape. Following ğ3.2, the total number of possible layer sequences is 2170. Since the

5https://github.com/maybeLee/COMET
6https://keras.io/api/layers/
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total number of layer APIs is few and the documentation has identified the possible numbers of input dimensions
and possible parameter values, the manual effort in collecting these spaces is trivial.
Like GraphFuzz [31], when implementing our mutation operators, we inevitably introduce some utility

operators into the generated models. Specifically, we add the tf.cast operator into the model to cast the original
input’s datatype to our required one; we use padding, cropping, and reshaping operators to diversify layer
input shape and input dimension. Since models generated by other works do not have these operators, we do not
consider them when measuring the diversity of our generated models.

DL Libraries Under Test. We evaluated the bug detection performance of COMET on the latest release of
eight popular DL libraries: Keras 2.8.0, TensorFlow 2.9.0, PyTorch 1.10.0, MXNet 1.9.0, ONNXRuntime 1.10.0,
Keras-MXNet 2.2.4.3, TF2ONNX 1.9.3, and ONNX2Pytorch 0.4.1. Following earlier practice [18, 43, 54], COMET
leverages Keras APIs to generate models uniformly for testing different DL libraries. The generated models are
converted for MXNet, ONNX, and PyTorch using three libraries, Keras-MXNet, TF2ONNX, and ONNX2Pytorch.
The setup helps to control the variation of models used for different libraries.

Unique Bugs Identification. Following the practice of existing works [19, 43, 54], we manually analyzed
each detected bug and identified the unique ones. In particular, we consider a crash bug unique if it has a distinct
stack trace. We manually located the layer that triggered the bugs for NaN and inconsistency bugs and analyzed
the root cause. If the exact root cause causes multiple bugs, we consider them as duplicated bugs and only consider
one of them in the subsequent analysis.

4.2 RQ1: Comparison with Baselines

This section compares COMET with three baselines: CRADLE [43], LEMON [54], and Muffin [18]. Specifically,
we evaluated their performance by running them on the same 10 published DL models (see ğ4.1) for six hours.
Note that CRADLE tests DL libraries by directly collecting publicly-available DL models. We, therefore, referred
to the coverage results of initial DL models to capture CRADLE’s performance. Since Muffin does not require
initial DL models for model generation, we ran it for six hours using its default setting to capture the coverage
result. Although Muffin does not require these DL models for model generation, we can easily obtain these 10
publicly-available DL models used in our experiment online without additional training. Therefore, we argue
that using these initial models will not affect fairness when we compare Muffin with COMET and LEMON.

Table 6 presents the coverage results achieved by the baselines. Since collecting DL library coverage is costly
and testing practices and bugs inside different DL libraries share a significant commonality [6, 22, 34, 58], we
used the branch and line coverage on TensorFlow’s model construction and model execution modules as the
representative for evaluating each technique’s test coverage. According to Table 6, COMET outperforms the
baselines on all five coverage criteria. In particular, the layer input coverage achieved by COMET (69.7%) is 35.6%
higher than the best result among the baselines (34.1%); and the layer parameter coverage achieved by COMET
(50.2%) is 24.3% higher than the best result achieved by the baseline (25.9%). COMET can also cover over twice as
many layer sequences as the state-of-the-art (39.0% vs 15.6%).

Besides the improvement of layer API call diversity, the results suggest a correlation between the test coverage
and the diversity of the generated models. Specifically, COMET outperforms the baselines by covering at least
3.4% more branches and 4.5% more lines in TensorFlow’s model construction and model execution modules.
Nevertheless, the issue of relatively low branch coverage is common to fuzzing-based techniques. We further
performed an in-depth analysis towards the uncovered covered code and discussed it in ğ5.1.
Overall, COMET outperforms the state-of-the-art approaches. In particular, compared with the optimum

performance achieved by baselines, COMET improves 35.6%, 24.3%, and 23.4% on layer input coverage, layer
parameter coverage, and layer sequence coverage. In addition, COMET can outperform the baselines by covering
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Table 6. Coverage by COMET and Baselines

Technique
Branch Line Layer Input Layer Parameter Layer Sequence

Coverage Coverage Coverage Coverage Coverage

COMET 19.4% 34.9% 69.7% 50.2% 39.0%

MUFFIN 16.0% 30.4% 34.1% 25.9% 15.6%

LEMON 12.5% 26.6% 14.2% 6.4% 2.4%

CRADLE 12.0% 25.9% 10.4% 5.9% 1.2%

Table 7. Performance on Bug Detection

DL Libraries

ONNXRuntime MXNet Keras-MXNet TF2ONNX ONNX2PyTorch Keras TensorFlow PyTorch

Crash 2 (2) 4 (0) 1 (0) 4 (3) 4 (1) 8 (7) 0 (0) 0 (0)

NaN 2 (2) 1 (1) 0 (0) 1 (1) 0 (0) 4 (3) 0 (0) 0 (0)

Inconsistency 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0)

Subtotal 4 (4) 5 (1) 1 (0) 5 (4) 4 (1) 12 (10) 1 (1) 0 (0)

The number of confirmed bugs is parenthesized.

at least 3.4% more branches and 4.5% more lines in TensorFlow’s model construction and model execution
modules.

4.3 RQ2: Effectiveness of Bug Detection

Table 7 demonstrates the new bugs detected by COMET across various DL libraries, categorized by their bug
symptoms. In total, COMET detected 32 new bugs in the latest release version of evaluated DL libraries. After we
reported them, 21 of them have been confirmed by DL library developers and 7 out of those confirmed bugs were
fixed. The remaining 11 bugs have been reported and are waiting for developers’ confirmation. The detected
bugs can be categorized according to three different symptoms. We further conduct an in-depth analysis of these
bugs to answer two questions: 1) Are diversifying layer API calls practical in generating DL models to detect
bugs? 2) Are there any other diversities that can help detect bugs? The first question examines the usefulness of
our insight; if the manifestation of the majority of bugs requires a specific layer API call (i.e., a particular layer
input, parameter value, or sequence), diversifying layer API calls can help detect DL library bugs. The second
question aims to evaluate the completeness of our diversities. If the majority of the bugs are detected by other
diversities, diversifying layer inputs, layer parameters, and layer sequences may be insufficient.

Crash Bugs. Among the bugs detected, 23 are crash bugs. Developers have confirmed 13 bugs and fixed five
out of these confirmed bugs. We further analyzed the 13 confirmed crash bugs. Four occurred during model
conversion (three in TF2ONNX library and one in ONNX2PyTorch library). The remaining eight crash bugs
occurred during model execution (two in ONNXRuntime and six in Keras). We noticed that only one crash bug

is caused by a single layer with its default parameter values. 11 of the 13 crash bugs were manifested by
either a specific layer input, a specific layer parameter, or a specific layer sequence. For instance, sending a tensor
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with bfloat16 datatype to Conv2D will cause Keras crashes; failing to set either strides or dilation_ rate

in SeparableConv2D to 1 can result in the wrong shape inference, causing Keras to crash; layer sequence between
two ThresholdReLU layers will cause TF2ONNX crashes. The experiment result affirms the importance

of generating models with diverse layer inputs, parameters, and sequences.Moreover, COMET detected
two severe crash bugs that directly led to core dump issues in Keras and ONNXRuntime. Among these two bugs,
one is caused by a particular layer sequence (i.e., Dense-Dot) and a particular layer parameter (i.e., units=0);
the other one is caused by a specific layer input shape (i.e., tensor with an empty shape for Conv3DTranspose

layer). For these two issues, developers instantly created pull requests to fix them after our reporting.
NaN Bugs. Besides crash bugs, we also detected eight Not-A-Number (NaN) bugs, seven out of which have

been confirmed by developers, including two fixed ones. We further investigated the fault-triggering conditions
for these confirmed NaN bugs. We found that four out of seven NaN bugs are caused by a particular layer API
call, while the remaining three NaN bugs are caused by a particular value: NaN. Specifically, two confirmed
NaN bugs were manifested by particular layer parameters, such as setting the max_value in the ReLU layer
to a concrete value instead of łNonež (the default option). One NaN bug was caused by a specific layer pair
(i.e., Conv2D+Multiply). One NaN bug was caused by a specific layer input shape (i.e., setting the shape of
ConvLSTM2D input’s first dimension to ł1ž). We noticed that the remaining three NaN bugs were exposed when
we passed a NaN value to a layer with its default parameter. Although the manifestation of these three NaN bugs
does not require a specific layer input, layer parameter, or layer sequence, it still requires a special value: NaN,
indicating the usefulness of our mutation operator SpecialI in detecting bugs.
Inconsistency Bugs. One confirmed bug is the inconsistency bug between the TensorFlow library and the

ONNXRuntime library. We find that this bug lies in the model conversion phase in TensorFlow. Specifically, when
TensorFlow converts the model from the Keras format to TensorFlow Protobuf format (a private format of DL
model inside the TensorFlow library), the model will trigger the bug if the axis parameter in the Softmax layer
is set to ł-2ž.

To better understand the characteristics of DL library bugs detected by us, we summarized the fault-triggering
condition of our confirmed bugs. As shown in Table 8, most bugs (i.e., 18 out of 21) detected require a specific
layer input, layer parameter value, or layer sequences. In contrast, only one bug is manifested by a single layer
API with its default parameter. Therefore, only covering the layer API is not enough to detect DL library bugs.

In conclusion, our experiment shows that COMET effectively detects bugs in DL libraries. More importantly,
we found that 18 out of the 21 bugs confirmed by developers can only be triggered by deliberate layer inputs,
layer parameters, and layer sequences. The remaining three bugs are manifested by directly calling a layer API
with a particular value: NaN. The finding further supports the insight of COMET, i.e., models with diverse layer
API calls help detect DL library bugs.

4.4 RQ3: Performance of Model Synthesis

In the above RQs, we evaluate the effectiveness and significance of COMET by assessing the diversity of the
generated models, the achieved test coverage, and the real new bugs detected by COMET. In the following, we
further investigate the effectiveness of the major components in COMET. Specifically, we aim to examine the
effectiveness of model synthesis in this RQ by answering the following two questions: 1) Can our model synthesis
method successfully reduce the size of original models while preserving their layer API call diversity? 2) Can our
model synthesis method boost the efficiency of DL library testing?

Model Synthesis Results. We first study the effectiveness of our model synthesis method. Specifically, we
investigate the results of our model synthesis method, including the size of synthesized models and the diversity
of synthesized models. To comprehensively evaluate the synthesis results, we apply our model synthesis method
to the original DL models 20 times and present the results in Table 9. As shown in Table 9, the 10 published
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Table 8. Analysis On Fault-Triggering Conditions of Bugs Detected By COMET

Library Issue ID Layer Input Layer Parameter Layer Sequence Single Layer W/ Default Parameter Other

ONNXRuntime 11173 ✓ ✓

ONNXRuntime 11024 ✓

ONNXRuntime 11010 ✓

ONNXRuntime 11241 ✓

MXNet 20947 ✓ ✓

Keras 16348 ✓

Keras 16273 ✓ ✓

Keras 16158 ✓

Keras 16289 ✓

Keras 16314 ✓

TF2ONNX 1875 ✓ ✓

TF2ONNX 1807 ✓

ONNX2PyTorch 33/34 ✓

TF2ONNX 1811 ✓

Keras 16314 ✓

Keras 16492 ✓ ✓

Keras 16927 ✓

Keras 16933 ✓

Keras 16970 ✓ ✓

Keras 17044 ✓

TF2ONNX 1903 ✓

Count 6 7 6 1 7

models (denoted as original models) used by existing techniques contain 2025 layers and over 300 million weights.
However, these original models can only cover 116 unique layer inputs, 122 unique layer parameter values, and
25 unique layer sequences. Compared with these original models, models synthesized by our method contain an
average of 318 layers in total. At the same time, they can cover 123.75 layer inputs, 153.85 layer parameters, and
45.25 layer sequences on average, including all layer inputs, parameters, and sequences covered by the original
models. Moreover, our synthesized models can provide an even higher diversity of layer parameters and layer
sequences. Such results reflect that our model synthesis method can not only significantly reduce the original
models’ size, but also can preserve and even increase their diversities.

We further investigate the efficiency of our synthesis method. As is shown in Figure 9, for most original models,
our model synthesis method can synthesize a new one within one minute (the average synthesis time for most DL
models is less than 20 seconds). We notice that the synthesis time of the InceptionResNetV2 model is comparably
larger than the others. The reason is that InceptionResNetV2 is carefully crafted with more complex structures
(i.e., it contains 782 layers). It is not easy to analyze and generate a valid DL model that can cover all layer inputs,
layer parameters, and layer sequences inside it. Therefore, our model synthesis algorithm needs to spend more
time searching until a valid model is found. Nevertheless, since the model synthesis will only be applied once to
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Table 9. Performance of Model Synthesis Algorithm

Initial Seed Models Total # Layers (Weights) Layer Inputs Layer Parameters Layer Sequences

Original Models 2025 (305.28M) 116 122 25

Synthesized Models 317.8±3.9( 104.16K/±46.44K) 123.75±1.89 153.85±1.53 45.25±2.23

AlexNet LSTM0 LeNet DenseNet Incep.V2 Incep.V3 ResNet Xception LSTM2 Mob.NetV2
Original Model
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Fig. 9. Model Synthesis Time For Each Original Model

the original model and the maximum synthesis time for each model is 4 minutes, our model synthesis method is
feasible and affordable.

Comparison of Efficiency Between Synthesized Models and Original Models. To investigate how our
synthesized models can boost the efficiency of our diverse model generation, we prepared two sets of initial seed
models based on the original DL models collected in ğ4.1 and the models synthesized from these original models.
We run our diverse model generation algorithm on each set of initial seed models for six hours. We observed a
significant improvement in terms of efficiency. In particular, when we used the original models as initial seeds,
the average model generation time overhead is 38.10 seconds. In contrast, the average model generation time
overhead is reduced to 24.35 seconds when we used the synthesized models as initial seeds. As a result, under the
same time budget, using synthesized models as initial seeds can generate 888 models, 56.33% larger than the total
number of models generated when using the original models (i.e., 568).

We further record the layer input coverage, layer parameter coverage, and layer sequence coverage during the
model generation. Figure 10 presents the coverage results when using the synthesized models as the initial seed
model (in red) or the original models as the initial seed model (in blue). The coverage result demonstrates a clear
improvement after using the synthesized models as the initial seed models. Specifically, the layer input coverage
rises from 58.6% to 69.7%, layer parameter coverage increases from 39.0% to 50.2%, and layer sequence coverage
improves from 25.3% to 39.0%.

In summary, compared with the original models, our model synthesis method can efficiently synthesize models
with much smaller sizes while retaining the original models’ diversity. Using these synthesized models as the
initial seed models for further model generation, we can significantly improve the layer input coverage, layer
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Fig. 10. Coverage by using Original Models and Synthesized Model

parameter coverage, and layer sequence coverage compared with those using the original models as the initial
seed models.

4.5 RQ4: Ablation Study on Mutation Operators and Search Algorithm

We further evaluate the effectiveness of our diversity-driven mutation operators and MCMC-based search
algorithm. The diversity-driven mutation operators aim to target mutating with diverse layer API calls. The
MCMC-based search algorithm is designed to guide model generation towards a higher layer API call diversity
on DL libraries.
To conduct an ablation study of the proposed mutation operators, we constructed another baseline named

COMETo. Instead of using our proposed mutation operators, COMETo adopts the existing mutation operators
designed by LEMON [54], DeepMutation [32], and Audee [19]. These mutation operators are designed to randomly
mutate the model’s architecture and parameters. If COMET can outperform COMETo, our proposed mutation
operators would be more helpful in diversifying layer API calls. To conduct an ablation study of the proposed
MCMC-based search algorithm, we constructed a baseline named COMETr. COMETr is the same as COMET,
except that COMETr adopts a random mutation strategy instead of the MCMC-based search algorithm. In other
words, COMETr randomly selects a mutation operator in each iteration for model generation. If COMET can
outperform COMETr, our MCMC-based search algorithm would help guide model generation towards higher
diversity and test coverage.

We ran COMET, COMETo, and COMETr for six hours. Similar to the setting in ğ4.4, we use layer input coverage,
layer parameter coverage, and layer sequence coverage to evaluate their effectiveness. We present our results
in Figure 11. Our result shows that, compared to COMETo and COMETr, COMET can effectively increase the
layer API call diversity of the generated models on TensorFlow, and the improvement is significant. In particular,
compared with COMETo, COMET can cover 50.4% more layer inputs, increase the layer parameter coverage
by 39.6%, and improve the layer sequence coverage by 30.5%. The improvement by using our proposed search
algorithm is also noticeable. Besides improving layer API call diversity, we observe that COMET’s MCMC-based
search algorithm also contributes to the test coverage. Specifically, COMET can increase the branch coverage of
COMETo and COMETr by 6.40% and 1.09%, respectively.
The result of the ablation study shows that both our mutation operators and search algorithm contribute to

generating diverse DL models.
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Fig. 11. Comparison of COMET, COMETo, and COMETr

5 DISCUSSIONS

5.1 Analysis Of Uncovered Branches

As is shown in ğ4.2, all existing techniques and COMET can cover only a portion of branches (at most 19.4%)
and lines (at most 34.9%) inside TensorFlow. Following the Reachability, Infection, Propagation (RIP) model [2],
a program failure requires the location of the program that contains the fault must be reached. In this section,
we collected and analyzed some library branches that COMET cannot cover. Through this study, we hope to
better understand why these branches are not reached and how we can reach them in the future. In particular, we
collected uncovered branches of two representative modules: keras/convolution.py and ops/array_ops.py.
The former module implements the Keras’ layer APIs, and the latter supports implementing low-level tensor
operators. Specifically, COMET covers 173 out of 356 branches in keras/convolution.py and 133 out of 462
branches in ops/array_ops.py.
We observed two main reasons COMET fails to cover branches in our analyzed modules. The first reason is

caused by the implementation. In line with existing works, we use Keras to generate DL models. However, Keras
only provides APIs to construct high-level layers, while using Keras’ APIs cannot directly access many low-level
operators. As a result, these low-level operators’ input diversity is limited. For instance, we found that a specific
parameter (i.e., axis) of the low-level operator tf.stack is always 0 when using Keras to generate models,
resulting in around half of the branches inside this operator’s implementation being uncovered. Nevertheless,
COMET can still improve the branch coverage of the state-of-the-art technique (i.e., Muffin) from 16.0% to 19.4%,
regardless of this implementation restriction. The testing paradigm causes another reason. We observe that in our
analyzed modules, there exist some utility functions that cannot be invoked through a DL model. For instance,
some private methods in Convolution class are designed for developers, and these methods cannot be invoked
through public APIs provided by TensorFlow developers.

5.2 Effect Of the Hyperparameter 𝜎 on Numeric Parameter Mutation

On top of the remarkable results achieved by COMET, we explore a further question: whether the setting of the
hyperparameter 𝜎 defined in ğ3.2.2 will affect the effectiveness of COMET? Specifically, 𝜎 is used to define the size
of value space for numeric parameters so COMET will not exhaust all possible values. In our experiment, we set
𝜎 = 5 based on our experience. We further discuss whether changing the value of 𝜎 will influence the model
diversity and test coverage on the DL library achieved by COMET. To answer this question, we set 𝜎 from 5 to 55
with the step of 5, and examined the branch coverage, line coverage, layer input coverage, and layer sequence
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coverage. We also fix the value range of each numeric parameter for different values of 𝜎 . 7 Since changing the
value of 𝜎 will influence the size of test space for numeric parameters, different 𝜎 will output different layer
parameter coverage results on the same DL model. Therefore, we did not compare the layer parameter coverage
in this discussion. We can see from Figure 12 that branch, line, and input coverage are relatively insensitive to
the value of 𝜎 , while sequence coverage may vary a bit but not significantly when we chose different values of 𝜎 .
For instance, the branch coverage achieved by COMET with different 𝜎 fluctuates from 18.8% to 19.4%, the layer
sequence coverage fluctuates from 29.3% to 39.5%.
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5.3 Threats to Validity

Overall, there are three threats that may affect the experimental results. We ran experiments with a time budget
of six hours for each baseline on the same machine in turn. Yet, the amount of available system resources for
the experiments may vary across 24 hours. To alleviate the influence caused by system computing performance,
we set the total number of threads/GPU cards used in each experiment to be the same. The second threat is the
number of new bugs detected by COMET. For those unconfirmed crash bugs, following existing work [54], we
used the stack trace to distinguish them. However, it is possible that one crash bug can have different stack traces.
To alleviate this problem, we manually checked the root cause of each unconfirmed crash bug to reduce false
positives. The third threat is introduced by our test coverage measurement. The fact that coverage is measured
in only one DL library may affect the evaluation result. To alleviate the bias of measurement, our criteria for
selecting the representative library to collect code coverage follow the practice of one recent JVM testing work [8].
Specifically, we choose TensorFlow as the representative because 1) it is the DL library with the highest GitHub
stars and is the most popular one with the richest implementations, 2) all existing DL library testing techniques
consider TensorFlow as their subject under test, and 3) the testing practices and bugs inside DL libraries share
a significant commonality [6, 22, 34, 58]. Therefore, the code coverage in TensorFlow can reflect DL library
testing techniques’ effectiveness in terms of test coverage. To collect the branch coverage and line coverage on
TensorFlow’s model construction and execution modules, we iterated all modules inside TensorFlow’s source
code and chose the related ones. Indeed, this may introduce some bias (e.g., some modules may be missed by us).
To alleviate this problem, we carefully read TensorFlow’s documentation and the description in each module. We
publish our collected module names on our project site.

6 RELATED WORKS

6.1 Testing of DL Library

Besides testing DL libraries by DL models [18, 19, 31, 43, 54], there are other studies on a related testing
problem with different focuses. DocTer [57] extracts the argument constraint of DL library functions from the

7See our implementation at https://github.com/maybeLee/COMET for details.
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documentation of DL libraries. To analyze the free-form API documentation, DocTer first preprocesses and parses
the documentation into the dependency parse tree and employs a learning algorithm to extract constraints from
this documentation. Based on these constraints, it randomly generates two types of test inputs: valid inputs and
invalid inputs. FreeFuzz [56] also targets collecting DL library functions constraint. Instead of statically collecting
the constraints as DocTer, it instruments the library functions and obtains their input constraints by running
code/model from open source (i.e., library documentation, unit test suite written by developers, and DL models
in the wild). After collecting input constraints, it randomly generates test inputs following them for DL library
testing. Predoo [60] proposes a fuzzing technique to test the operators in the DL library. It aims to estimate and
detect individual DL operator’s precision errors. Specifically, Predoo collects publicly available test inputs as the
seeds and generates variants by iteratively adding perturbations such as Gaussian noise to the initial seeds to
maximize output precision errors. Furthermore, TVMFuzz [47] focuses on the testing of the DL compilers. The
major difference between our works and these works is that COMET generates DL models as test inputs to test
DL library modules related to a DL model’s execution.

6.2 Empirical Studies for DL Libraries

To date, researchers also conducted some empirical studies on DL libraries. We briefly group them into two
categories: studies on DL framework bugs and studies on DL library testing practice. Jia et al. [23] report an
empirical study to understand the characteristics of the bugs in TensorFlow. They further study the symptoms,
causes and repair patterns of TensorFlow bugs [24]. Their studies reveal that the root causes of a large portion
of reported bugs reside in the algorithm implementations or the interfaces (i.e., API) provided by TensorFlow.
Tambon et al. [50] study silent bugs such as performance or accuracy issues inside TensorFlow. Silent bugs will
lead to incorrect behavior, but they do not cause system crashes or hang, nor show an error message to users.
This study indicates that inaccurate calculation result is the most common symptom of silent bugs. Chen et
al. [6] conduct a comprehensive study to facilitate a sufficient understanding of DL library bugs. Compared with
previous studies, they took not only TensorFlow but also PyTorch, MXNet, and Deeplearning4j as the study
subjects. Based on their analysis, they point out that components implemented for deep learning algorithms are
the buggiest ones, and over 53.75% of bugs are observed at the model training stage, which could lead to lengthy
testing and debugging.

Several studies have been proposed to study the DL library testing practice. Nejadgholi et al. [34] conduct the
first study on the design and evolution of oracle approximation(OA) assertions inside the DL libraries’ test suite.
They point out that a non-negligible portion (25%) of OA assertions in DL libraries and developers frequently
change OA assertions. Wang et al. [53] conduct an empirical study on five machine learning libraries with two
popular unit test case generation tools, i.e., EVOSUITE [17] and Randoop [39]. They find out that most machine
learning libraries do not maintain a high-quality test suite to achieve satisfactory code coverage; although existing
unit test case generation tools can help improve test suite quality, the improvement is limited. Jia et al. [22]
evaluate the quality of unit test suites in DL frameworks using mutation analysis. They find out that existing test
cases are more effective in detecting bugs inside incorrect control flow logic, while they perform worse when
wrong values cause the bug. Instead of focusing on the root causes and symptoms of library bugs or analyzing
the testing practice adopted by DL library developers, we focus on the generation of diverse DL models in terms
of their layer API calls.

6.3 Mutation Testing for Deep Learning

There are also some mutation testing works proposed to modify DL models. DeepMutation [32] proposes a set of
source-level mutations to inject faults into the training data and training program, and model-level mutations to
inject the faults into the trained DL model by mutating the value of neurons or adding/removing some layers. By
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doing so, DeepMutation can inject faults into the DL application and use the mutated DL application to evaluate
the quality of DL application’s test suite (i.e., testing data). DeepCrime [21] defines 35 source-level mutation
operators based on real DL program faults to inject coding errors into the training programs and labeling errors
into the training data. Same as DeepMutation, DeepCrime is also designed to inject faults into the DL application
to evaluate the quality of test suites. Wang et al. [51] apply model-level mutation to inject the faults into the
trained DL model by mutating the value of neurons. They further guide adversarial test input generation using
the mutated DL model based on the insight that adversarial test input would be more sensitive to mutations on the
DL model. Different from these mutation testing works, our work designed mutation operators to generate test
input instead of generating the mutants of the subject under test. In other words, we use the mutation operator
to apply changes to the seed DL model rather than injecting faults to the subject under test.

7 CONCLUSION

In this paper, we propose a novel technique named COMET to test DL libraries by generating diverse layer API
calls as test inputs. Motivated by the model generation script of Keras, COMET defines three coverage criteria
to measure the layer API call diversity: layer input coverage, layer parameter coverage, and layer sequence
coverage. Driven by these criteria, COMET proposes a set of novel mutation operators and a coverage-guided
search algorithm to search for DL models with diverse layer API calls to achieve more comprehensive testing on
DL libraries. It also proposes a model synthesis method to significantly boost the efficiency of diverse model
generation by addressing the challenge of runtime overhead incurred by large models. Our evaluation of popular
DL libraries shows that COMET significantly outperforms the state-of-the-art DL library testing techniques in
the effectiveness of diverse model generation. In total, 32 new bugs were detected by COMET, among which, 21
of them were confirmed by developers and 7 of these confirmed bugs have been fixed by developers.
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