
ar
X

iv
:2

30
1.

08
23

5v
4

 [
cs

.D
C

]
 2

6
Se

p
20

23

Improved Tradeoffs for Leader Election

SHAY KUTTEN, Technion - Israel Institute of Technology, Israel

PETER ROBINSON, Augusta University, Georgia, USA
MING MING TAN, Augusta University, Georgia, USA
XIANBIN ZHU, City University of Hong Kong, Hong Kong SAR

We consider leader election in clique networks, where = nodes are connected by point-to-point communication
links. For the synchronous clique under simultaneous wake-up, i.e., where all nodes start executing the algorithm
in round 1, we show a tradeoff between the number of messages and the amount of time. The previous lower
bound side of such a tradeoff, in the seminal paper of Afek and Gafni (1991), was shown only assuming adver-
sarial wake-up. Interestingly, our new tradeoff also improves the previous lower bounds for a large part of the
spectrum, even under simultaneous wake-up. More specifically, we show that any deterministic algorithm with

a message complexity of = 5 (=) requires Ω
(

log=
log 5 (=)+1

)

rounds, for 5 (=) > 1. Our result holds even if the node

IDs are chosen from a relatively small set of size Θ(= log=), as we are able to avoid using Ramsey’s theorem, in
contrast to many existing lower bounds for deterministic algorithms.We also give an upper bound that improves
over the previously-best tradeoff achieved by the algorithm of Afek and Gafni. Our second contribution for the
synchronous clique under simultaneous wake-up is to show that Ω(= log=) is in fact a lower bound on the mes-
sage complexity that holds for any deterministic algorithm with a termination time) (=) (i.e., any function of
=), for a sufficiently large ID space. We complement this result by giving a simple deterministic algorithm that
achieves leader election in sublinear time while sending only > (= log=) messages, if the ID space is of at most
linear size. We also show that Las Vegas algorithms (that never fail) require Θ(=) messages. This exhibits a gap
between Las Vegas and Monte Carlo algorithms.

For the synchronous clique under adversarial wake-up, we show that Ω(=3/2) is a lower bound for 2-round
algorithms. Our result is the first superlinear lower bound for randomized leader election algorithms in the
clique. We also give a simple algorithm that matches this bound.

Finally, we turn our attention to the asynchronous clique: Assuming adversarial wake-up, we give a random-
ized algorithm that, for any : ∈ [2,$ (log=/log log=)], achieves a message complexity of $ (=1+1/:) and an
asynchronous time complexity of : + 8. Our algorithm achieves the first tradeoff between messages and time in
the asynchronous model. For simultaneous wake-up, we translate the deterministic tradeoff algorithm of Afek
and Gafni to the asynchronous model, thus partially answering an open problem they pose.

CCS Concepts: • Theory of computation→ Distributed algorithms.

Additional Key Words and Phrases: Distributed Algorithm; Leader Election; Lower Bound

1 INTRODUCTION

We address one of the most fundamental problems in the area of distributed computing—breaking
symmetry by electing a leader among the = nodes of a network. This problem was introduced by Le
Lann [17] and serves as a crucial building block in numerous applications such as resource allocation,
load balancing, etc. The literature on leader election is too rich to survey here even for models close
to the one used here, and the study of leader election has had a significant influence on other areas
including e.g., peer-to-peer networks, sensor networks, population protocols, programmable matter,
etc. [3, 5, 8, 19, 23]. The main complexitymeasures studied have beenmessage and time complexities as
studied here. Note that for some of the other abovementioned kinds of networks (e.g., sensor networks),

1

http://arxiv.org/abs/2301.08235v4

2 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

saving in energy is also very important. However, saving in messages and time can also help save
energy.
In this work, we focus on resolving the complexity bounds of leader election in the synchronous

clique. However, let us note that clique networks have been studied intensively for their own sake.
This includes a wide literature on leader election in clique networks. Some such papers are mentioned
below. Clique networks have also been studied for other problems and other models of distributed
computing. One reason may be the fact that they capture the network (or the application) layer of
most networks, where essentially, every node is able to reach every other node.

1.1 Our Contributions

Ourmain contributions are new tradeoff and lower bound results that aim at resolving themessage and
time complexity of leader election in clique networks under various assumptions. Table 1 summarizes
our main results.

1.1.1 Results for the Synchronous Clique under Simultaneous Wake-up.

Improved Tradeoff between Messages and Time. In Section 3.2, we focus on the setting where ev-
ery node is awake at the start of round 1. We show that there is an inherent tradeoff betweenmessages

and time by proving that any deterministic leader election algorithm takes at least
log2 =−1

log2 5 (=)+1
rounds,

if it sends at most = · 5 (=) messages, for 5 (=) > 1, and therefore any ℓ-round algorithm requires at
least Ω

(

=1+1/(ℓ−1)
)

messages. We point out that, in contrast to previous lower bounds for general1 de-
terministic algorithms under simultaneous wake-up, such as the celebratedmessage complexity lower
bound of Ω(= log=) for leader election in rings by Frederickson and Lynch [7], our result does not use
Ramsey’s theorem, and thus holds even for moderately large ID spaces, i.e., of size Θ(= log=). This
difference is meaningful in the CONGESTmodel [20], where assuming a large ID space implies a large
communication complexity trivially.
In Section 3.3, we give a nearly matching upper bound via a simple modification of the deterministic

algorithm by Afek and Gafni [1], obtaining an ℓ-round algorithm, for any odd ℓ = 2:−3 > 3 that sends
$

(

ℓ =1+2/(ℓ+1)
)

messages.

An Ω(= log=) Lower Bound for Time-Bounded Algorithms. In Section 3.4, we prove a lower
bound of Ω(= log=) messages that holds for any time-bounded algorithm, i.e., for algorithms with
a time complexity that is a function of =. We also show that the assumption of a sufficiently large ID
set (though significantly smaller than the one used in [7]) is indeed crucial for a message complexity
lower bound of Ω(= log=) to hold, by giving a deterministic algorithm that terminates in sublinear
time and sends > (= log=) messages when the ID space has linear size.

An Ω(=) Lower Bound for Las VegasAlgorithms. In Section 3.5, we show that any randomized Las
Vegas leader election algorithm has a message complexity of Ω(=) and argue that this bound is tight.
This reveals a polynomial gap in the message complexity compared to the Monte Carlo algorithm of
Kutten et al. [16] which succeeds with high probability while terminating in only 2 rounds and sending

$ (
√
= log3/2=) messages.

1that is, not necessarily comparison-based algorithm

Improved Tradeoffs for Leader Election • 3

Result Remarks Time Messages

Synchronous, Deterministic, SimultaneousWake-up

Lower Bound, Theorem 3.8 for any 5 (=) > 1 ∗
6

log2 =−1
log 5 (=)+1 + 1 ⇒ > = 5 (=)

Lower Bound, Theorem 3.11) (=) is any function of = $
6) (=) ⇒ Ω(= log=)

Algorithm, Theorem 3.10 any odd ℓ > 3 ℓ $
(

ℓ =1+
2

ℓ+1

)

Synchronous, Deterministic, Adversarial Wake-up

Algorithm [1] any ℓ > 2 ℓ $
(

ℓ =1+
2
ℓ

)

Lower Bound [1] for any 2 > 2 6
1
2 log2 = ⇒ >

2−1
2 = log2 =

Lower Bound [1]) (=) is any function of = 6) (=) ⇒ Ω(= log=)
Synchronous, Randomized, SimultaneousWake-up

Algorithm, Theorem 3.16 Las Vegas 3 (w.h.p.) $ (=) (w.h.p.)
Lower Bound, Theorem 3.16 Las Vegas Ω(=)
Algorithm [16] succeeds w.h.p. 2 $

(√
= log3/2(=)

)

Lower Bound [16] for small constant error prob. Ω
(√
=
)

Synchronous, Randomized, Adversarial Wake-up

Algorithm, Theorem 4.1 succeeds w.p. 1 − n 2 $
(

=3/2 log
(

1
n

)) †,††

Lower Bound, Theorem 4.2 for any constant error prob. 6 2 ⇒ Ω
(

=3/2
) †

Algorithm [14] succeeds w.h.p. 9 $ (=)
Asynchronous, Randomized

Algorithm, Theorem 5.1 succeeds w.h.p.; : ∈ [2,$
(

log=
log log=

)

] : + 8 $
(

=1+1/:
)

Algorithm [14] succeeds w.h.p. $ (log2 =) $ (=)
∗ Assuming an ID space of size at least Ω(= log=).
$ Assuming an ID space of size at least Ω

(

=log2 = () (=))log2 =−1
)

.
† In expectation.
††With high probability, the message complexity does not exceed$ (=3/2 log=).

Table 1. Results for Leader Election in Clique Networks. Note that the “⇒” symbol for the entries of The-
orems 3.8, 3.11, and 4.2 indicates that a sufficiently small time complexity implies the stated bound on the
message complexity.

1.1.2 ATight Bound for the Synchronous Clique under AdversarialWake-up. In Section 4, we
turn our attention to the setting where the adversary wakes up an arbitrary set of nodes, while all other
nodes are asleep initially, and awake only upon receiving a message. We show that any randomized
2-round algorithm that succeeds with constant probability must send Ω(=3/2) messages in expectation,
and give a simple algorithm that tightly matches this bound. To the best of our knowledge, this is the
first lower bound that holds for randomized leader election algorithms under adversarial wake-up.

4 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

1.1.3 Results for the Asynchronous Clique. In Section 5, we give the first algorithm that achieves
a tradeoff between messages and time in the asynchronous model, again, under the assumption that
some subset of nodes is awoken by the adversary. In particular, we show that, for any parameter choice
of : ∈ [2, $ (log=/log log=)], there is an algorithm that terminates in : + 8 rounds while sending
$ (=1+1/:) messages.
The above tradeoff algorithm is randomized. As a second asynchronous tradeoff, in Section 5.4

we translated the original deterministic tradeoff algorithm (and tradeoff upper bounds) of Afek and
Gafni [1] to the limited asynchronous model. That is, for the sake of this (deterministic) algorithm
only, we assume that indeed, the delay of each message is still chosen by the adversary, however, the
time complexity for this algorithm is counted from the last spontaneous wake up of a node (or, alter-
natively, assuming all the nodes wake up simultaneously). This partially answers an old open problem
posed by Afek and Gafni.

1.2 Related Work

A result that is closely related to our tradeoff lower bound is the seminal work of Afek and Gafni [1],
who showed (see Theorem 4.5 in [1]) that if a deterministic algorithmelects a leader in atmost 1

2 log2 (=)
rounds of the synchronous clique under adversarial wake-up, then it must send at least 2−1

2 = log2 =
messages, for any 2 > 2. However, their lower bound uses an adversarially constructed execution
that crucially relies on the fact that nodes do not wake up simultaneously. Hence, their techniques do
not apply to the setting that we consider in Section 3.2, where all the nodes are assumed to start the
execution simultaneously.
For the case of adversarial wake up, where the lower bounds of [1] apply too, their tradeoff is not

directly comparable to the one obtained in in our Theorem 3.8. In more detail, consider any :-round
deterministic algorithm, where 2 6 : = $ (log=). (Note that any 1-round algorithm must trivially
send Θ(=2) messages.) Our Theorem 3.8 shows that any :-round deterministic algorithm must send

Ω((=/2)1+ 1
:−1) messages, whereas the message complexity lower bound of [1] is Ω

(

: =1+1/2:
)

. Thus, for
constant time algorithms, our result improves by a polynomial factor over the previously best lower
bound. On the other hand, for : = Θ(log=), the result of [1] yields a bound that is greater by a factor
of Θ(log=).
Afek and Gafni [1] also provide an Ω(= log=) lower bound on the message complexity that was not

conditioned by the bound on the time. However, again, their proof relies heavily on the assumption
that the adversary can choose which nodes to wake up and when, which is not admissible in our set-
ting; the Ω(= log=) lower bound we provide in Theorem 3.11 holds even when assuming simultaneous
wake up. An earlier Ω(= log=) lower bound for asynchronous networks was shown by Korach, Moran,
and Zaks [13]. Again, the wake-up was adversarial (since the network was asynchronous). Moreover,
a communication lower bound for asynchronous networks does not translate easily to one in synchro-
nous networks, since in synchronous networks, it is possible to convey information using the passage
of time.
Afek and Gafni also pose the open problem whether a sublinear time message optimal asynchro-

nous algorithm exists. In particular, when they translate their synchronous tradeoff algorithm into the
asynchronous model, they are forced to increase its time complexity to linear. The also explain and
demonstrate that “The arbitrary delay of messages (and not the absence of the clock) is the source of

Improved Tradeoffs for Leader Election • 5

the increase in the time complexity of the algorithm.” We managed to translate their algorithm to the
asynchronous model, preserving the very same tradeoff they obtained between time and number of
messages. The translated algorithm does cope well with the arbitrary delay of messages, thus over-
coming the hurdle they posed. However, for this algorithm only, we assume that all the nodes wake
up simultaneously. Alternatively, the translated algorithm exhibit that tradeoff (in the asynchronous
model) if one counts the time only starting from the time of the last spontaneous wake up.
Previous work on leader election also considered the trade-off betweenmessage complexity and time

complexity on networks with a regular structure. Frederickson [6] gave trade-offs on special network
topologies, including rings, meshes and trees.
For clique networks, it was shown by Korach, Moran, and Zaks [13] that the existential lower

bound of Ω(<) (eventually established in [15]) does not hold, since they presented an algorithm with
$ (= log=) message complexity, even though in a clique, < = Θ(=2). Such deterministic algorithms
were also presented by others, e.g., Humblet [9]. One explanation was a graph property that complete
networks have (linear traversability) as demonstrated in [12].
Afek and Matias [2] presented a randomized algorithm for the asynchronous model, but assuming

that all the nodeswake up at the same time. (Their algorithm requires each node to take actions initially,
to create a sparse graph.) On the average, the message complexity is $ (=) and the time complexity is
$ (log=). Ramanathan et al. [21] proposed a randomized synchronous leader election algorithm with

error probability $ (1/logΩ (1) =) that has $ (log=) time complexity and a linear message complexity.
Subsequently, Kutten et al. [16] gave a randomized synchronous algorithm that terminates in just 2

rounds, while using $ (√= log3/2=) messages with high probability, and elects a unique leader with
high probability. Recently, Kutten et al. [14] presented a randomized asynchronous algorithm that uses
$ (=)messages and$ (log2 =) time under adversarialwake up. For the samemodel, Singh [22] presented
a lower bound for deterministic algorithms, which shows that achieving $ (=) messages comes at the
price of having a time complexity of Ω(=/log=).

2 PRELIMINARIES

To solve leader election, exactly one of the nodes in the network needs to be distinguished as the leader.
In the explicit variant of leader election, every nodemust output the ID of the leader when it terminates,
whereas in implicit leader election (known to be in some cases easier [16]), each node must irrevocably
output a single bit indicating whether it is the leader, and the goal is that exactly one of the bits is set to
1. Since any algorithm that achieves explicit leader election also solves the implicit version, we focus
on implicit leader election whenever showing a lower bound.
We consider a clique network of = nodes that communicate via synchronous message passing using

point-to-point links. The computation proceeds in rounds and in each round A > 1, a node can send
(possibly distinct) messages to every other node. When we are mainly concerned with showing lower
bounds, we consider the LOCAL model [20] which means that we do not restrict the size of these
messages. However, our algorithms have their claimed complexities also under the CONGEST model.
Each node has a unique ID and we assume the most common model which is that of the clean network

model [20] (sometimes called KT0) that restricts the knowledge of each node as follows: initially, a node
is aware only of its own ID, and the total number of nodes =, but it does not know the IDs of the other
nodes. The nodes are connected via bidirectional links, each connecting two nodes. To address the

6 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

links, each node has a set of = − 1 ports, over which it receives and sends messages, respectively. The
assignment of port numbers to destinations is arbitrary and may differ for different nodes. Formally, a
port mapping ? is a function that maps each pair (D, 8) to some pair (E, 9), i.e., ? ((D, 8)) = (E, 9) means
that a message sent by node D over port 8 is received by node E over port 9 . We note that port mapping
is bijective, that is, if ? ((D, 8) = (E, 9) then ? ((E, 9)) = (D, 8). Note that neither D nor E are aware of how
their ports are connected until they send/receive the first message over these ports. We say that a port 8
is unused if no message was sent or received over 8 andwe say that a nodeD opens a port 8 in round A ifD
sends the first message over 8 in A . When analyzing the execution of the algorithm for a limited subset
of nodes (and a restricted number rounds up to some number A , it may not be necessary for us to fully
specify all port mappings, but rather only the mappings of the ports over which actual messages were
sent/received by nodes in (until round A , while leaving the remaining assignments undefined. We call
such a partially defined function a partial port mapping. If a port mapping @ extends a given partial
port mapping ? by assigning some previously undefined ports, we say that @ is compatible with ?.

3 THE SYNCHRONOUS CLIQUE UNDER SIMULTANEOUS WAKE-UP

3.1 Communication Graphs

For deterministic algorithms, we assume that each node is equipped with a unique ID chosen from an
ID universe * , which is a “sufficiently large” set of integers. An adversary chooses an =-subset from* ,
called (valid) ID assignment, which, together with the port mapping, fully determines the execution of
any given deterministic leader election algorithm (since the network is synchronous and all the nodes
wake up simultaneously). In some parts of our analysis, we are only interested in the behavior of the
algorithm up to some specific round A , and we define the round A execution prefix to consist of the first
A rounds of the execution.
We say that two executions �1 and �2 are indistinguishable for a node D up to round A if D has the

same ID in both executions and D receives the exact same set of messages in each round until the start
of round A . A simple consequence of indistinguishability is that nodeD will behave the same in both �1
and �2 and also output the same value in both executions, assuming A is sufficiently large. Our lower
bounds in this section assume that= is a power of 2; we do not need this restrictions for our algorithms,
unless stated otherwise.
We need to reason about which parts of the network have communicated with each other, which is

captured by the communication graph:

Definition 3.1 (Communication Graph). Consider a round A > 1, an ID assignment � , and a partial
port mapping ?. In the round A communication graph, we have the same node set as the clique network,
and there is a directed edge (D, E), if node D sent a message over a port that is connected to E in some

round A ′ < A . The behavior of the algorithm is fully determined by � and ?, and hence we write G�,?
A

to denote the resulting round A communication graph.

For brevity, we sometimes omit the superscripts � and ? when they are irrelevant or clear from the
context. Note that G1 is the empty graph that consists only of singleton nodes without any edges.

Consider some weakly connected components �1, . . . , �: ⊆ G�,?
A , and let (=

⋃:
8=1+ (�8), where

+ (�8) denotes the nodes in�8 . By definition, the nodes in (do not have any edges to nodes outside of

(in graph G�,?
A . Therefore, the behavior of the nodes in (up to round A only depends on their |(| IDs

Improved Tradeoffs for Leader Election • 7

and port mapping and is, in particular, independent of the IDs assigned to the remaining nodes. We
say that (is isolated up to round A under � and ?. For the remainder of this section, whenever we use
the term "component", we mean a weakly connected component.

Definition 3.2 (Capacity of Components). We say that a component � has capacity _ if, for each node
D ∈ �, it holds that D has no incoming and outgoing edge to at least _ nodes in �.

In other words, a capacity of _ means that each node has at least _ other nodes in � to which it has
not communicated yet.
Since any deterministic algorithmsmust correctly work on all ID assignments and any port mapping

between the node IDs, it is admissible for us to choose the mapping of the unused ports of nodes
“adaptively”, i.e., depending on the current state of the nodes. The proof of the following lemma is
immediate:

Lemma 3.3. Let � ⊆ G�,?
A be a component with capacity _ and suppose that the nodes in � send (in

total) at most C 6 _ messages<1, . . . ,<C during the interval of rounds [A, A ′], for some round A ′ > A . Then,

there exists a port mapping that is compatible with ? such that messages<1, . . . ,<C are received by nodes

in � .

Definition 3.4 (Restricted Execution Prefix). Consider a set - of at most =
2 IDs and suppose that we

execute the given algorithm for exactly A rounds on a set +- of |- | nodes with IDs in - that are
connected according to some partial port mapping ?. The resulting execution prefix will depend on
the partial port mapping ?, and we point out that the algorithm assumes that there are = nodes and
hence each node in+- has = − 1 ports. We define the set ExecA (-) to contain every round A execution
prefix of+- , in which the port mapping ? is such that every message sent by a node D ∈ - is received
by some D′ ∈ - .

Intuitively speaking, ExecA (-) consists of all of the execution prefixes where the nodes with IDs in
- operate “undisturbed”, i.e., in isolation, from the rest of the network. Notice that in every execution
prefix � ∈ ExecA (-), every node sends messages over less than |- | distinct ports by round A , since
otherwise, it would have sent a message to at least one node outside - and thus � ∉ ExecA (-).
The next definition captures the scenario that nodes with IDs in a certain set - can terminate “on

their own”, i.e., without sending messages to nodes with IDs not in - . Consequently, there must exist
some round A after which the components formed by these nodes in GA do not add any more outgoing
edges.

Definition 3.5 (Terminating and Expanding Components). Consider a set of IDs - of size at most =/2.
We say that - forms terminating components if there exists a round A such that, for every execution
prefix � ∈ ExecA (-), it holds that all nodes with IDs in - have terminated in � by round A . Otherwise,
we say that - forms expanding components.

We point out that when we say a set of IDs - forms terminating components, it is for each partial
port mapping that results in an execution prefix in ExecA (-). Throughout this section, all logarithms
are assumed to be of base 2 unless stated otherwise.

8 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

Lemma 3.6. Consider any ID universe * ′ and any integer ℓ 6 log2 = − 1. There exist at most 2log2 =−ℓ

disjoint subsets -8 ∈
(* ′

2ℓ

)

of size 2ℓ such that -8 form terminating components2.

Proof. Fix some integer ℓ that satisfies the premise and assume towards a contradiction that there
are at least 2log2 =−ℓ + 1 disjoint subsets -1, . . . -2log2 =−ℓ+1, each of which results in terminating compo-
nents (see Definition 3.5).
That is, for each 8, there exists a partial port mapping ?8 such that the nodes with IDs in-8 only send

messages to other nodes with IDs in-8 . Consider the set of IDs-0 =
⋃2log2 =−ℓ

8=1 -8 . Since each-8 has size
exactly 2ℓ , and these sets are pairwise disjoint,-0 consists of= unique IDs. Let�0 be the execution of the
algorithm on -0 with the port mapping ? such that, for each node D with ID in -8 and all : ∈ [= − 1],
we define ? (D, :) := ?8 (D, :). By the correctness of the algorithm, this yields a leader with some ID

0 ∈ -0 . Without loss of generality, assume that 0 ∈ -1. Now consider the set -1 =
⋃2log2 =−ℓ+1

8=2 -8 . Since

-1 is disjoint union of 2log2 =−ℓ sets of size 2ℓ we know that |-1 | = |-0 |, and thus -1 is also a valid ID
assignment for = nodes. Moreover, by combining the port mappings associated with -2, . . . , -2log2 =−ℓ+1
in a similar manner as for �0 , we obtain an execution �1 and a leader with some ID 1 when executing
the algorithm on -1 . As we have assumed that each -8 forms terminating components, it follows that,
for eachD with ID in-8 (8 ∈ [2, log2 =−ℓ]), some execution prefix in ExecA (-8) is indistinguishable from
�0 forD aswell as from �1 , for any round A . Thus, all the components formed by the sets-2, . . . , -log2 =−ℓ
must behave the same in both executions �0 and �1 until the nodes have terminated, which implies

that 1 ∈ -2log2 =−ℓ+1. Now consider the execution � on-1∪-2log2 =−ℓ+1∪
⋃2log2 =−ℓ−1

8=2 -8 with port mapping
?. It follows that we obtain leaderswith IDs 0 ∈ -1 and1 ∈ -2log2 =−ℓ+1 in �, yielding a contradiction. �

An immediate consequence of Lemma 3.6 is that a sufficiently large ID universe must contain a large
subset of IDs without any terminating component:

Corollary 3.7. Consider any ID universe * ′. There exists a set of IDs * ⊆ * ′ of size |* ′ | − = log2 =
such that, for any ℓ 6 log2 =−1 and any subset- ⊆ * of size 2ℓ , it holds that- does not form terminating

components.

3.2 A Lower Bound on the Communication-Time Tradeoff in the Synchronous Clique

Theorem 3.8. Suppose that = is a sufficiently large power of two. Consider any deterministic algo-

rithm that elects a leader in the synchronous clique of = nodes and terminates in) (=) rounds while
sending at most = · 5 (=) messages, where 5 (=) > 1 is any increasing function of =. If the IDs of the

nodes are chosen from a set of size at least 2= log2 = +=, then it must be that) (=) > log2 =−1
log2 5 (=)+1

+ 1.

Consequently, any deterministic :-round algorithm requires at least Ω
(

(

=
2

)1+1/(:−1)
)

messages.

In the remainder of this section, we prove Theorem 3.8. Let* ′ be the given ID universe. Corollary 3.7
ensures that, after removing = log2 = IDs from * ′, the remaining IDs do not produce any terminating
components of certain sizes (up to =/2).
2Wewill follow the standard notation from extremal combinatorics where

(* ′
:

)

denotes the family of all the:-element subsets

of * ′ .

Improved Tradeoffs for Leader Election • 9

Define* ⊆ * ′ to be this set of the remaining IDs and observe that

|* | > = log2 = + =.
Note that any execution of the algorithm on an ID assignment from * results in a communication
graph where the largest component contains a majority of the nodes upon the termination of the
algorithm.

Assume towards contradiction that) (=) 6 log2 =−1
log2 5 (=)+1

+ 1. The following lemma is the key technical

component for proving Theorem 3.8. Intuitively speaking, it shows that by selectively excluding certain
ID assignments, we can prevent components from growing too quickly.

Lemma 3.9. Suppose that = is a power of two. For every round A 6) (=), there is a set*A ⊆ * of size at

least |* | − = (A − 1) such that, for every ID assignment � ⊆ *A , there exists a partial port mapping ?, and

a decomposition of G�,?
A into sets of nodes -1, . . . , -=/2fA , where

fA :=
(⌈

log2 5 (=)
⌉

+ 1
)

(A − 1) (1)

and the following properties hold for every set -8 :

(A) For some integer :� > 1 (depending on �), there exist components �1, . . . ,�:� ⊆ G�,?
A such that

-8 =
⋃:�

9=1+ (� 9), i.e., there are no edges between nodes in -8 and nodes not in -8 .

(B) -8 contains exactly 2fA nodes.

Proof. We proceed by induction on A . For the basis A = 1, we define *1 := * . Properties (A) and (B)

are immediate since G�,?
1 is the empty graph that consists only of singleton nodes without any edges,

for every ID assignment � ⊆ *1 and port mappings ?. Moreover, f1 = 0 and hence 2f1 = 1, as required.
Now suppose that the lemma holds for some A > 1, i.e., there exists a set*A of size |* | −= (A − 1) such
that all ID assignments from *A satisfy the inductive hypothesis with respect to A . We define

`A+1 := 2fA (2 5 (=) − 1). (2)

Consider any ID assignment � ⊆ *A . Let ? be a partial port mapping and-1, . . . , -=/2fA be the decompo-

sition of G�,?
A induced by � as guaranteed by the inductive hypothesis. We say that � is costly, if, when

executing the algorithm on � and ?, there exists some -�,? ∈ {-1, . . . , -=/2fA } such that the nodes in

-�,? send at least `A+1 messages during round A + 1. We call the subset -�,? a costly subset of G�,?
A . We

will iteratively prune the IDs of costly subsets from *A as follows: Let �1 be any costly ID assignment

from *A . Then, there exists a costly subset -�1,?1 ⊂ G�1,?1
A (where ?1 is the partial port mapping asso-

ciated with �1 according to the inductive hypothesis), which contains 2fA nodes that send (in total) at
least `A+1 messages in round A + 1. We remove the IDs of -�1,?1 from *A and obtain a slightly smaller

ID universe denoted by *
(1)
A ⊆ *A . Again, we check whether there exists an ID assignment �2 ⊆ *

(1)
A

with a costly subset -�2,?2 and proceed by removing the offending set of 2fA IDs in the decomposition

induced by �2 from *
(1)
A , and so on.

This pruning process stops after ℓ iterations, for some integer ℓ , once we can no longer find any

costly ID assignment in the ID universe *
(ℓ)
A . We define *A+1 := *

(ℓ)
A .

Claim 1. The pruning process stops after at most ℓ 6 =
2fA − 1 iterations, and

|*A+1 | > |*A | − = > |* | − = A .

10 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

Proof of Claim 1. By a slight abuse of notation, the same variablemay refer to a set of nodes as well
as to their IDs. Assume towards a contradiction that we remove at least ℓ := =/2fA sets-�1,?1, . . . , -�ℓ ,?ℓ ,
each of size 2fA , due to having identified some costly ID assignments �1, . . . , �ℓ . Recall that ?8 is the
partial port mapping associated with �8 according to the inductive hypothesis of Lemma 3.9.
According to the pruning process described above, we identify the next costly ID assignment �8 after

having removed the set-�8−1,?8−1 ⊆ �8−1 of 2fA IDs. It follows that the ID sets-�1,?1, . . . , -�ℓ ,?ℓ are pairwise

disjoint, which tells us that the set � :=
⋃ℓ

8=1-�8 ,?8 is a valid ID assignment for = nodes. By combining
the port mappings ?1, . . . , ?ℓ , we obtain a partial port mapping ? in a natural way: for D ∈ -�8 ,?8 , we
define ? (D, :) := ?8 (D, :).
Let � be the round A + 1 execution prefix of the algorithm on � and ?, and let ��8 be the round

A + 1 execution prefix with IDs in �8 and port mapping ?8 . Since -�8 ,?8 was one of the subsets of the
decomposition induced by �8 , we know by the inductive hypothesis of Lemma 3.9 that -�8 ,?8 results in
a set of components in execution ��8 , i.e., there is no communication between the nodes with IDs in
-�8 ,?8 and the rest of the network. Consequently, ��8 ∈ ExecA+1 (-�8) and, by construction, � and ��8 are
indistinguishable for all nodes in -�8 ,?8 , for all 8. It follows that the nodes in each set -�8 ,?8 will also
jointly send at least `A+1 messages in round A + 1 of �. Recalling (2), this yields

ℓ · `A+1 =
=

2fA
(2fA (2 5 (=) − 1)) = 2= 5 (=) − = > = 5 (=)

messages in �, where in the last inequality, we use the assumption that 5 (=) > 1, contradicting the
assumed bound on the message complexity of the algorithm. �

Next, we describe the strategy of the adversary to ensure that, for any ID set chosen from *A+1, the
existing components do not expand too much. For any ID assignment � ⊆ *A+1 ⊆ *A , consider the

decomposition of G�,?
A into-1, . . . , -=/2fA sets for a partial port mapping ? guaranteed by the inductive

hypothesis. Since � is not a costly ID assignment, we know that at most `A+1, messages are sent by the
nodes in any -8 in round A + 1. Any message that is sent over an already-used port by a node in-8 will
reach some other node in -8 by construction, and thus we focus only on messages that are sent over
previously unused ports in round A + 1.
Let<1 6 `A+1 be the actual number of messages sent by nodes in -1 during round A + 1 over <1

unused ports. We define

C = 1 + ⌈log2 5 (=)⌉, (3)

and connect these<1 ports to arbitrary nodes in
⋃2C

8=1-8 . We will argue below that there are sufficiently
available ports in this set. Note that it is admissible for us to adaptively choose the port connections, as
we are considering deterministic algorithms that works for all IDs assignments and, moreover, in the
clean network model (see Section 3.1), a node D ∈ -1 with an unused port @ does not know to which
one of the nodes @ connects to until D sends or receives a message across @. In the following, we show

that there are sufficiently many nodes in
⋃2C

8=2-8 to which the<1 ports opened by nodes in -1 can be

Improved Tradeoffs for Leader Election • 11

connected to. Since |-8 | = 2fA by the inductive hypothesis, it follows from (2) that

�

�

�

�

�

2C
⋃

8=2

-8

�

�

�

�

�

=

2C
∑

8=2

|-8 |

= (2C − 1) 2fA

(by (3)) > (2 5 (=) − 1) 2fA

(by (2)) = `A+1 . (4)

As there are no prior connections between the nodes in -1 and
⋃2C

8=2-8 in G�,?
A by assumption, the

above bound tells us that there are sufficiently many nodes in
⋃2C

8=2-8 to which the<1 ports opened

by nodes in -1 can be connected to. We define - ′
1 =

⋃2C

8=1-8 , and we make this set - ′
1 part of the

decomposition of G�,?′

A+1 for some partial port mapping ?′ that is compatible with ?. Analogously, we
can direct the < 9 6 `A+1 messages that are sent over previously unused ports by nodes in - 9 , for

9 ∈ [2, 2C], to nodes in
⋃2C

8=1,8≠9 -8 ⊆ - ′
1 .

We proceed similarly for the remaining sets: That is, we define- ′
2 =

⋃22C

2C+1-8 and connect the newly
opened ports of the nodes in -2C+1 to nodes in -2C+2, . . . , -22C , and so forth. As a result, we obtain the

required decomposition of G�,?′

A+1 into sets - ′
1, . . . , -

′
=/2C+fA . Note that it is possible to process all sets in

this way since we assumed that = is a power of 2, and hence =/2C is an integer.
To complete the proof, we need to show that each obtained- ′

9 set satisfies (A) and (B). Property (A)

follows readily from the assumption that each set -8 consists of components in G�,?
A together with

our strategy for connecting the newly opened ports in round A + 1. In more detail, this ensures that a

node in - ′
9 does not have any edges to G�,?′

A+1 \ - ′
9 . For Property (B), we need to show that |- ′

9 | contain
exactly 2fA+1 nodes: According to the inductive hypothesis, |-8 | = 2fA and, by the fact that the sets -8

are pairwise disjoint, for any 9 , we have that

|- ′
9 | = 2fA +C

(by (3)) = 2fA +⌈log2 5 (=) ⌉+1

(by (1)) = 2(⌈log2 5 (=) ⌉+1) (A−1)+⌈log2 5 (=) ⌉+1

= 2(⌈log2 5 (=) ⌉+1) (A)

(by (1)) = 2fA+1 .

This concludes the proof of Lemma 3.9. �

We now complete the proof of Theorem 3.8. Recall that the algorithm terminates by round) (=) and
that we assume towards contradiction that) 6

log2 =−1
log2 5 (=)+1

+ 1. Lemma 3.9 implies that all components

have size 2f) 6 2(log2 5 (=)+1) () −1)
= 2log2 =−1 6 =/2. From Corollary 3.7, we know that the algorithm

cannot terminate unless one of the components has a size of more than=/2. Therefore, we have arrived
at a contradiction.

12 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

3.3 An Improved Deterministic Algorithm

We now describe a simple algorithm that can be viewed as an optimized variant of the deterministic
synchronous algorithm in [1] assuming simultaneous wake-up.
For a given integer parameter : > 3, the algorithm starts by executing : − 2 iterations, each of

which consists of two rounds. Initially, every node is a survivor. In round 1 of iteration 8, each survivor

sends its ID to ⌈= 8
:−1 ⌉ other nodes that become referees. Then, in round 2, each referee responds to the

survivor with the highest ID and discards all other messages. A node remains a survivor for iteration
8 + 1 if and only if it received a response from every referee; otherwise it is eliminated. Finally, at
the end of iteration : − 2, we perform one iteration that consists only of the first round, in which
all remaining survivors send a message to all other nodes (i.e., every node becomes a referee), and a
survivor terminates as leader if its own ID is greater than all other IDs that it received.
To bound the remaining survivors at the end of the 8-th iteration, observe that at most =

=8/(:−1)
=

=1−8/(:−1) of the survivors who sent out a message in this iteration could have received a response
from all of their referees. Thus, it follows that there remains only a single survivor at the end of the
(: − 1)-th iteration, who becomes leader. Moreover, each survivor of iteration 8 contacts ⌈= (8+1)/(:−1) ⌉
referees in iteration 8+1, whichmeans that we send$ (=1−8/(:−1)+(8+1)/(:−1)) = $

(

=1+1/(:−1)
)

messages

per iteration, for a total message complexity of $
(

: =1+1/(:−1)
)

. Since every iteration except the final
one require two rounds, the time complexity is 2(:−2) +1 = 2:−3. In particular, for a time complexity
of ℓ = 2: − 3 rounds, we obtain a message complexity of

$
(

: =1+1/(:−1)
)

= $
(

ℓ =
1+ 1

(ℓ+3)/2−1
)

= $
(

ℓ =1+
2

ℓ+1
)

.

Thus we have shown the following:

Theorem 3.10. Consider the synchronous clique under simultaneous wake-up. For any odd integer

ℓ > 3, there exists a deterministic algorithm that terminates in ℓ rounds and sends $
(

ℓ =1+
2

ℓ+1
)

messages.

We point out that Theorem 3.10 improves over the algorithm of Afek and Gafni [1], which, for ℓ
rounds, achieves a message complexity of $

(

ℓ =1+2/ℓ
)

. In particular, for constant-time algorithms, we
obtain a polynomial improvement in the message complexity.

3.4 An Extreme Point of the Trade-off

By how much can we reduce the message complexity if we increase the time complexity? We answer
this question by showing that any leader election algorithm must send at least Ω(= log2 =) messages,
even if all the nodes wake up spontaneously at the same time. This holds for all time-bounded algo-
rithms where the termination time) (=) is a function of =.

Improved Tradeoffs for Leader Election • 13

Theorem 3.11. Consider any deterministic algorithm that elects a leader in the synchronous clique

in) (=) rounds where the number of nodes = is a sufficiently large power of two. If the IDs of the

nodes are chosen from a set of size at least=log2 = () (=))log2 =−1, then it must send at least Ω(= log=)
messages.

The main technical argument of our proof will focus on the restricted class of algorithms where
each node sends at most one message per round, which we call single-send algorithms. The following
lemma shows that single-send algorithms are equivalent to standard multicast algorithms in terms of
their message complexity.

Lemma 3.12. If there exists a multicast leader election algorithm that sends " (=) messages and termi-

nates in) (=) rounds, then there exists a single-send leader election algorithm that sends at most " (=)
messages and terminates in at most = ·) (=) rounds.
Proof. We show how to simulate a given multicast algorithmA to obtain a new algorithm, calledS,

that is a single-send algorithm. The idea behind the simulation is simple: We simulate each round A > 1
of the multicast algorithm A, in an interval consisting of the sequence of rounds (A − 1)= + 1, . . . , A =
as follows: If, given a node D’s state at the start of round A , algorithm A requires D to send messages
<1, . . . ,<: during round A , the new algorithm S sends message<8 in round (A − 1)= + 8. Since a node
can send at most one message to any other node in a given round, we know that : 6 = − 1, which
ensures thatD sends at most one message per round in algorithmS. Moreover, any node E that receives
messages in some round (A − 1)= + 9 , simply adds this message to a buffer and, at the end of round A =,
it uses A to empty its buffer and process all messages accordingly.
By a straightforward inductive argument, it follows that every node D executing S processes the

exact same set of messages at the end of round A = that it receives in round A when executing A and
hence also performs the same state transitions. This implies the claimed time complexity of S. The
message complexity bound is immediate since S does not send any messages in addition to the ones
produced by A. �

The next lemma shows that the message complexity of leader election is high for single-send al-
gorithms, which, together with Lemma 3.12, completes the proof of Theorem 3.11. The proof of
Lemma 3.13 is technically more involved and postponed to Section 3.4.1.

Lemma 3.13. Consider a) (=) time-bounded single-send algorithm S and an ID universe * of size at

least =) (=)log2 =−1. There exists an ID assignment � ⊆ * such that S sends at least Ω(= log=) messages

under � .

3.4.1 Proof of Lemma 3.13.

Lemma 3.14. Consider an ID universe* ′ of size at least =) (=)log2 =−1+= ;>6(=) and let* ⊆ * ′ be a set
of IDs of the kind guaranteed by Corollary 3.7. For every integer 8 = 0, . . . , log2 = − 1, there exists a round

A8 and a set family *8 ⊆
(*
28

)

of 28 -element subsets of * such that, for every set � ∈ *8 , every execution

prefix � in ExecA8 (�), there exists a partial port mapping ? such that � forms a component � of 28 nodes

in G�̃ ,?
A8+1, for all ID assignment �̃ that contains � , with the following properties:

(a) � has capacity at least
|� |
2 − 1 = 28−1 − 1 at the start of round A8 + 1, if 8 > 1;

14 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

(b) the nodes in� have opened
|� |
2 = 28−1 previously unused ports during rounds [A8−1 + 1, A8], if 8 > 1;

(c) *8 contains at least
=
28
) (=)log2 =−8−1 pairwise disjoint sets.

Proof. For the base case, we define A0 := 0 and*0 := * . Note that the “end of round 0” refers to the
start of the (first) round 1 of the algorithm, and hence G1 is the empty graph consisting of = isolated
vertices, each of which forms a singleton component. Thus Properties (a)-(c) hold.
For the inductive step, suppose that (a)-(c) hold for 8, for some 0 6 8 6 log2 = − 2, which means that

rounds A0, . . . , A8 are already defined. Consider any � ∈ *8 and any execution �� ∈ ExecA8 (�). Let � be

the component formed in �� in round A8 . By Property (a),� has a capacity of at least |� |
2 − 1 at the start

of round A8 + 1, and Lemma 3.3 guarantees that it will be possible to connect the next |� |
2 − 1 previously

unused ports that the nodes in� open during rounds [A8 +1, A8+1] to other nodes within�. Conceptually,
opening these ports corresponds to adding |� |

2 − 1 directed edges to � in the communication graph.

Since 28 6 =
2 , Corollary 3.7 tells us that � does not form a terminating component and hence the nodes

in� cannot terminate without opening at least one port that is not connected to another node in�. It
follows that there exists some earliest round A� such that, for all A ∈ [A8 + 1, A� − 1], the total number

of newly opened ports used by the nodes in � is some, 6 |� |
2 − 1 and each node in some nonempty

subset (′ ⊆ + (�) such that |(′ | > |� |
2 −, , opens one new port in round A� . In other words, A� is the

earliest round in which the nodes in � have (collectively) opened at least |� |
2 ports since A8 .

Let 5 : *8 → [) (=)] be the mapping that assigns A� to each 28-element subset � ∈ *8 , and define
6 : [) (=)] → [|*8 |] be the mapping such that 6(A) is equal to the number of 28 -element subsets � ∈ *8

such that 5 (�) = A . We define

A8+1 := argmax
A6) (=)

{6(A)}.

Intuitively speaking, when considering all possible rounds in which the algorithm opens the |� |
2 -th

port since the start of round A8 + 1, round A8+1 is the one that occurs most frequently, breaking ties

arbitrarily. Define* ′
8 ⊆ *8 to be the family of all 28-subsets that open their |� |

2 -th new port since round
A8 exactly in round A8+1.
We now show how to construct isolated executions that yield components of size 28+1 bymerging the

28 components in * ′
8 in round A8+1 as follows: Let *8+1 be the resulting family of 28+1-element subsets

obtained by taking the union of all possible pairs of disjoint 28 -subsets of * ′
8 .

For any � ∈ * ′
8 , let �� be an execution in ExecA8 (�), and (� be the set of nodes that open a new port in

round A8+1 in �� . Now consider disjoint sets �, � ′ ∈ * ′
8 and let� and�′ be their components in �� and �� ′ ,

respectively. As we focus on single-send algorithms, we know that, in round A8+1, at most : 6 28 nodes
D1, . . . , D: each open a new port in execution �� and, similarly, at most :′ 6 28 nodes E1, . . . , E:′ ∈ (� ′ ,
each open a new port in execution �� ′ . Fix any one-to-one mappings 6 : {D1, . . . , D: } → � ′ and ℎ :
{E1, . . . , E:′} → � . We connect the port opened by D8 to the node with ID 6(D8) and, similarly, connect
the port opened by E8 to ℎ(E8), yielding the (merged) component � = � ∪ �′ of size 28+1 at the end
of round A8+1 with IDs � ∪ � ′. As a result, we have extended the A8 -round executions �� and �� ′ to an
A8+1-round execution in ExecA8+1 (� ∪ � ′).
To see why Property (a) holds for the merged component � with IDs in (� ∪ � ′) ∈ *8+1, recall that

we add at most 1 incident edge per node in the communication graph between components � and �′

Improved Tradeoffs for Leader Election • 15

in round A8+1 and these are the first edges interconnecting� and �′. In particular, any node D ∈ � has
at least 28 − 1 unused ports that can be connected to nodes in �′ and the same is true for nodes in �′.
This means that every node in � must have at least

|� | − 1 = |�′ | − 1 = 28 − 1 =
|� |
2

− 1

unused ports, which proves the claimed capacity bound for the merged component � .

Property (b) follows since the nodes in� as well as the ones in�
′
have opened |� |

2 new ports during
[A8 + 1, A8+1] according to our port mapping described above.
Finally, to show that Property (c) holds for *8+1, a counting argument reveals that

|* ′
8 | >

|*8 |
) (=) .

Since *8 contains at least
=
28
) (=)log2 =−8−1 pairwise disjoint sets by induction, the lower bound on |* ′

8 |
shows that* ′

8 contains at least
=
28
) (=)log2 =−8−2 pairwise disjoint sets. Note that any set of four pairwise

disjoint subsets -1, -2, -3, -4 in *
′
8 will give a pair of disjoint subsets -1 ∪ -2, -3 ∪ -4 in *8+1. Hence,

*8+1 contains at least
=
28+1) (=)

log2 =−8−2 pairwise disjoint sets of size 28+1. �

We now complete the proof of Lemma 3.13: According to Lemma 3.14, the family *log2 =−1 contains
at least 2 disjoint sets � ′ and � ′′, each of size =

2 . Consequently, �
∗
= � ′ ∪ � ′′ is a valid ID assignment.

By construction, � ∗ consists of the union of two sets in *log2 =−1, which in turn each consist of the
union of sets in *log2 =−2 and so forth. This means that, for every round A 9 (9 ∈ [0, log2 = − 1]) guar-
anteed by Lemma 3.14, there exist =

29
sets � ∗1 , . . . , �

∗
=/29 of size 29 such that � ∗ =

⋃=/29
:=1

� ∗
:
, and, for all

: , any restricted execution prefix in ExecA 9 (� ∗:) will satisfy Property (b). Now, for any restricted exe-
cution prefix ��∗1 , . . . , ��

∗
=/29

in Exec(� ∗1), . . . , Exec(� ∗=/29) respectively, consider the =-node execution �∗

obtained by running the executions ��∗1 , . . . , ��
∗
=/29

in parallel up to round A 9 . By construction, there will

be no messages sent between the components and hence a node D with some ID G ∈ � ∗
:
will behave

exactly in the same way as it does in ��∗
:
, because ��∗

:
and �∗ are indistinguishable for D until round

A 9 . Consequently, we obtain =/29 components �1, . . . ,�=/29 at the end of round A 9 , and Property (b) is

guaranteed to hold for each of these components even in execution �∗. This shows that 29−1 =
29

=
=
2 new

ports are opened in the interval [A 9−1 + 1, A 9], for every 9 > 1. Summing up over all 9 = 1, . . . , log2 =− 1,
it follows that Ω(= log=) ports are opened in total throughout execution �∗.

3.4.2 An Algorithm with > (= log2 =) Message Complexity and Sublinear Time for Small ID Universes.

We now show that requiring a sufficiently large ID space in Theorem 3.11 is indeed necessary, by
giving a deterministic algorithm for the case where the range of IDs of the nodes is restricted to the
set {1, . . . , = 6(=)}, where 6(=) > 1 is any integer-valued function of =. In the trivial case where the IDs
are from 1 to =, then the algorithm that chooses 1 to be the ID of the leader is optimal. In the following
algorithm, we generalize this observation. We use 83 (D) to denote the ID of a node D. Parameter 3 6 =

controls the trade-off between the time and message complexity.

16 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

Algorithm 1 Deterministic Algorithm for Small ID Universes

1: for each D ∈ + execute the following steps in parallel do
2: for round 8 = 1 to 8 = ⌈=3 ⌉ do
3: if 83 (D) ∈ [(8 − 1) 3 6(=) + 1, 8 3 6(=)] then
4: Node D sends its ID to all other nodes.
5: If a node receives messages in round 8, then it selects the smallest ID from all received IDs

in round 8 (including its own value, if it sent one) as the leader.

Theorem 3.15. Suppose that nodes are chosen from the set {1, . . . , = 6(=)}, where 6(=) > 1 is any
integer-valued function of =. For any 3 6 =, Algorithm 1 outputs a leader within ⌈=3 ⌉ rounds with
message complexity =3 6(=). In particular, for an ID universe of size $ (=), we obtain a sublinear

time algorithm that sends > (= log=) messages.

Proof. LetD be the nodewith theminimum ID and 8∗ is such that 83 (D) ∈ [(8∗−1) 3 6(=)+1, 8∗ 3 6(=)].
Then at round 8∗, each node with ID in [(8∗ − 1) 3 6(=) + 1, 8∗ 3 6(=)] will send its ID to all other nodes.
At the end of round 8∗, all nodes will receive the same set of IDs and select node D as the leader.
Since all nodes’ IDs are less than or equal to =6(=), 8∗ is at most ⌈=

3
⌉. Hence, within ⌈=

3
⌉ rounds, the

algorithm terminates. Moreover, there are at most3 6(=) nodes with IDs in [(8∗−1) 3 6(=)+1, 8∗ 3 6(=)],
hence, there are at most 3 6(=) nodes that send their IDs to all other nodes at round 8∗, giving the
message complexity of =3 6(=). In particular, when 6(=) is a constant and 3 is > (log(=)), then the
message complexity is > (= log(=)). �

3.5 Las Vegas Algorithms

As elaborated in more detail in Section 1, Kutten et al. [16] give a randomized Monte Carlo algorithm

that successfully solves leader electionwith high probability using only$ (√= log3/2 =) messages while
terminating in just 2 rounds. Their algorithm is for implicit leader election (that is, not every node
needs to know the name of the leader eventually [18]), and is a Monte Carlo one, i.e., fails with small
probability of error. One may ask whether those two assumptions were necessary. First, we comment
that it is trivial to turn their Monte Carlo algorithm into a Las Vegas explicit one. (Their algorithm
elects a leader in the second round; one can add a step where the leader announces its identity to
everybody at the third round: a nodewho does not receive an announcement in the third round restarts
the algorithm.) Unfortunately, this obvious transformation of their algorithm increases the message
complexity to$ (=). Below, we show that this is necessary, even for implicit leader election, i.e., if the
nodes do not need to learn the identity of the leader.

Theorem 3.16. Any randomized Las Vegas leader election algorithm requires Ω(=) messages in

expectation. Moreover, there exists an algorithm that with high probability, achieves$ (=) messages

and terminates in 3 rounds.

Proof. The upper bound follows immediately from the previous discussion.

Improved Tradeoffs for Leader Election • 17

For the lower bound, suppose that there exists a Las Vegas randomized algorithm that solves implicit
leader election, i.e., exactly one node becomes leader whereas everyone else becomes non-leader, with
an expectedmessage complexity of> (=). Let � be the event that the algorithm sends > (=)messages, and
notice that � is guaranteed to happen with constant probability, for every assignment. Now consider
some ID assignment � on a network with an even number of nodes. Conditioned on �, there exists
a set of =/2 nodes with IDs (⊆ � such that no node in this set receives or sends any message from
any other node throughout the execution. By the correctness of the algorithm, all nodes in (must
eventually terminate. Let !(be the indicator random variable that is 1 if and only if some node in (

becomes leader, i.e., !(= 0 if none of them does. Clearly, Pr[!(=1 | �] + Pr[!(=0 | �] = 1 and thus,
one of the two events must occur with probability at least 1

2 .
Now consider two additional ID assignments � ′ and � ′′ such that � , � ′, and � ′′ are mutually disjoint.

By a similar argument as before, there exists a set =/2 nodes with IDs (′ ⊆ � ′ such that none of these
nodes receives or sends any messages if event �� ′ happens, and we can also identify such a subset
(′′ ⊆ � ′, conditioned on �� ′′ . We define the random variables !(′ and !(′′ in exactly the same way as
we did for (.
Since we have 3 ID assignments, it follows that there must be two of them, say � and � ′, such that

Pr[!(=1 | �] > 1
2 and Pr[!(′ =1 | �] > 1

2 , for some 1 ∈ {0, 1}. Consider first the case that that 1 = 1.
Now consider the execution of the algorithm on the ID assignment (∪ (′. Since this execution is

indistinguishable for nodes with IDs in (and (′ from the executions with IDs � and � ′, respectively, it
follows that the state transitions of every node have the same probability distribution in both execu-
tions. Consequently, the event that neither the nodes with IDs in (nor the ones with IDs in (′ send
or receive any messages has nonzero probability to occur. Moreover, the events !(= 1 and !(′ = 1
are independent, and thus the algorithm elects 2 leaders with nonzero probability, which provides a
contradiction.
A similar argument yields a contradiction when 1 = 0, here, this argument shows that the event

where there is no leader in the execution (∪ (′ has nonzero probability. �

4 THE SYNCHRONOUS CLIQUE UNDER ADVERSARIAL WAKE-UP

We now consider the synchronous clique under adversarial wake-up, which means that the adversary
chooses a nonempty subset of nodes that start the execution in round 1. At any later round, the ad-
versary may choose additional nodes that are not awake (if such exist) and wake them up too. Any
node not woken up by the adversary is asleep initially, and only wakes up at the end of a round if it
received a message in that round. To make the proofs easier to read, we actually make the additional
unnecessary assumption that the adversary only wakes up nodes in round 1. For the specific algorithm
we present in this section, it is easy to get rid of this assumption. For the lower bound, since it holds
under the unnecessary assumption, it certainly holds without it.
We first give a simple randomized 2-round leader election algorithm that succeeds with probability

1−n− 1
=
, has$

(

=3/2 log
(

1
n

))

message complexity in expectationand never sendsmore than$
(

=3/2 log=
)

messages with high probability. Then, we show that this bound is tight, by proving that Ω
(

=3/2
)

is a
lower bound on the message complexity for randomized 2-round algorithms that succeed with suffi-
ciently large probability. In fact, this lower bound holds not only for leader election, but even just for
the problem of waking-up every node in the network.

18 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

4.1 An Optimal 2-Round Algorithm with $ (=3/2 log=) Message Complexity

Fix some parameter n > 1
poly(=) ; the resulting algorithmwill succeedwith probability at least 1−n− 1

=
. A

node that is awoken by the adversary sends ⌈√=⌉ messages over uniformly at random sampled ports
(without replacement). In round 2, any node that was awoken by the receipt of a round-1 message

(i.e., not by the adversary) becomes a candidate with probability
log(1/n)
⌈
√
=⌉ ,whereas non-candidate nodes

immediately become non-leaders. Every candidate samples a random rank from [=4] and sends its rank
to all other nodes in round 2. At the end of round 2, a candidate becomes leader if and only if all rank
messages that it has received carried a lower rank than its own.

Theorem 4.1. Consider the synchronous clique under adversarial wake-up and fix any small n >
1

poly (=) . There is a 2-round randomized leader election algorithm that succeeds with probability at

least 1 − n − 1
= and has an expected message complexity of $

(

=3/2 log
(

1
n

))

. Moreover, it sends at

most $ (=3/2 log=) messages (whp).

Proof. Since the adversary wakes up at least one node at the start of round 1, at least ⌈
√
=⌉ nodes

will be awoken by a message and hence try to become candidate at the start of round 2. The probability
that none of the nodes becomes a candidate is at most

(

1 − log(1/n)
⌈
√
=⌉

) ⌈
√
=⌉
6 exp

(

− log

(

1

n

))

= n.

Consider some candidate D. The probability that all of the at most = − 1 other candidates sample a

rank different than D’s is at least
(

1 − 1
=4

)=

> 4 (−2/=
3)
> 1 − 2

=3 . Taking a union bound implies that all

candidates have distinct ranks with probability at least 1− 2
=2 > 1− 1

=
. Thus, the probability that there

is at least one candidate and that all candidates have unique ranks is at least 1− n − 1
=
. Conditioned on

these two events, it is clear that each candidate learns the ranks of all candidates by the end of round
2, and hence there is exactly one leader.
For the message complexity bound, we observe that, in the worst case, every node is awake in

round 1 and sends $ (
√
=) messages. In round 2, the expected number of candidates is

√
= log

(

1
n

)

, and
each of these candidates sends = − 1 messages, which shows that the expected message complexity is
$

(

=3/2 + =3/2 log
(

1
n

))

.

Since n > 1
poly(=) and hence log

(

1
n

)

= $ (log=), a standard Chernoff bound shows that the number

of candidates is$ (log=), and hence we obtain the claimed high-probability bound of$ (=3/2 log=) on
the message complexity. �

4.2 A Tight Lower Bound for Randomized Algorithms

We now prove a lower bound that holds not only for leader election, but even just for the problem of
waking-up every node in the network. In the proof, we assume that nodes are anonymous and do not
have IDs. However, recall that it is straightforward for a randomized algorithm to generate IDs that
are unique with high probability, by instructing each node to independently sample a random ID from
the range [=4] (see the proof of Theorem 4.1 for a detailed argument).

Improved Tradeoffs for Leader Election • 19

Theorem 4.2. Consider the synchronous clique, where an arbitrary nonempty subset of nodes is

awoken by the adversary at the start of round 1. Any randomized 2-round algorithm that wakes

up every node with probability at least 1 − n, has an expected message complexity of Ω(=3/2), for
any positive constant n < 1.

We point out that Theorem 4.2 extends to algorithms in the asynchronous clique that terminate
within 2 units of time. Moreover, it improves significantly even over the previously-best lower bound
ofΩ(=5/4)messages [1] for deterministic 2-round algorithms under adversarialwake-up; see Section 1.2
for more details about their result.

4.2.1 Proof of Theorem 4.2. Since the proof is somewhat involved, let us first explain its highlights
informally. The proof exploits the fact that limiting the time to 2 rounds, makes it difficult for a node
to learn how many other nodes are awake, and hence it may need to send as many messages (on
average) as it would in an execution where it is the only one who was woken up. Intuitively, this is
why we are able to demonstrate a gap between the message complexity for a small constant time and
the case of a large constant time. That is, for say, 9 rounds algorithms,$ (=) messages are possible [14].
This gap stands in contrast to the results shown by Afek and Gafni [1] for deterministic algorithms.
There, for any constant time complexity of C rounds, the messages complexity was Ω(=1+C/2) messages.
(Recall also that we have shown in Subsection 4.1 above an optimal $ (=3/2) messages randomized
algorithm even for the 2-rounds case.) The source of the high complexity in the randomized case of 2
rounds algorithms seems different than the one exploited in the lower bound proof of [1]. (Moreover,
formalizing the argument for randomized algorithms that may fail with some small probability turns
out to bemore involved.) Our high-level strategy is as follows:We call the nodes that are awake initially
roots and any node that receives a message from a root becomes a child of that root (and also of any
other root that sent it a message). We first show that root nodes cannot afford to send more than
> (
√
=) messages, and then use this fact to show that many root nodes and child nodes will operate

“undisturbed”, in the sense that they do not receive any additional message on top of what they would
have received in an execution where only a single root was awake. We show that, in expectation, this
requires the child nodes to send at least Ω(=3/2) messages to ensure every other node wakes up by the
end of round 2.
We now present the formal argument. Assume towards a contradiction that there exists a 2-round

algorithm with a message complexity of =3/2

5 (=) , for some function 5 (=) = l (1).

Events and Notation: Our proof relies on the occurrence of certain probabilistic events for which we
introduce some notation.

• For any node D, let random variable" (D, A) denote the set of round A messages sent by D annotated
by the respective port numbers, and let<(D, A) = |" (D, A) |. We define<(A) = ∑

D<(D, A) to be the
total number of ports over which a message is sent in round A .

• Suppose that the adversary wakes up a set of nodes ' = {D1, . . . , Dℓ }. We say that each D8 is a root,
and define D8 ’s children to be the set of nodes {E8,1, . . . , E8," (D8 ,1)} that were asleep until receiving a
message from D8 in round 1. Note that it is possible that E8, 9 is the child of multiple roots.

20 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

• FewD captures the event that nodeD sends few messages in round 1. Formally, FewD happens iff node

D is a root and sends at most
√
=

6 (=) messages, for a function 6(=) = l (1), where 6(=) > 5 (=). We also

define Few' =
∧

D∈' FewD , for the set of nodes '.
• Event UndistE (“E is undisturbed”) occurs iff one of the following cases is true:

(1) E is a root and does not receive any messages in round 1.
(2) E is a child of some root D8 and only receives a message in round 1 from D8 .

Let us start the proof of Theorem 4.2 by showing several bounds on the probability of the events
introduced above. Throughout this section, we define Λ to be an execution in which the adversary
awakens a set of ⌈√=⌉ root nodes ', and '′ ⊆ ' the subset of roots that remain undisturbed in round
1 of Λ, i.e.,

∧

D8 ∈'′ UndistD8 .

Lemma 4.3. Let ' be the set of roots and suppose that |' | = Θ(√=). There exists a function 6(=) = l (1)
such that Pr[Few'] > 1 −$

(

1
6 (=)

)

.

Proof. Let Γ be the execution where every node is a root, i.e., awoken in round 1. Since " (D8, 1)
only depends on D8 ’s private coin flip and, in particular, is independent of the round-1 computation of
other nodes, it follows that Pr

[

FewD8

]

= Pr
[

FewD 9

]

for all nodes D8 and D 9 , and for both executions Λ

and Γ. Assume towards a contradiction that Pr
[

¬FewD8
]

>
2√
=
, for some constant 2 > 0. Since = nodes

are awake, it follows that the expected value of<(1) is Ω
(

=3/2
)

in both executions Γ and Λ, which is
a contradiction.
So far, we have shown thatPr[¬Few'] 6 1√

= 6 (=) , for some function6(=) = l (1) and, as argued above,
this also holds in the execution Λ where only the nodes in ' are roots. It follows that, in execution Λ,

Pr[Few'] = 1 − Pr[∃D ∈ ' : ¬FewD] > 1 − |' |√
= 6 (=) > 1 −$

(

1
6 (=)

)

.

�

Lemma 4.4. Let '′ ⊆ ' be the set of undisturbed roots, i.e., it holds that
∧

D8 ∈'′ UndistD8 . Then,

(A) Pr
[

UndistD8

�

� Few'
]

> 1 −$
(

1
6 (=)

)

, and

(B) Pr
[

|'′ | > 1
2 |' |

�

� Few'
]

> 1 −$
(

1
6 (=)

)

.

Proof. Since we condition on event Few' , we know that every root sends at most
√
=/6(=) messages

in round 1, and thus the total number of messages sent in round 1 is at most
|' |

√
=

6 (=) . Consider any root

D8 ∈ '. Since the port connections are chosen uniformly at random, the probability that any message
of another root D 9 reaches D8 is at most 1√

= 6 (=) . Thus,

Pr
[

UndistD8

�

� Few'
]

>

(

1 − 1
√
= 6(=)

) |' |
> exp

(

− 2|' |
√
= 6(=)

)

> 1 −$

(

1

6(=)

)

,

which proves (A). For (B), note that E[|' | − |'′ | | Few'] 6 $
(

|' |
6 (=)

)

, and, by applying Markov’s Inequal-

ity, we derive that Pr
[

|' | − |'′ | > 1
2 |' |

]

6 $
(

1
6 (=)

)

. �

Improved Tradeoffs for Leader Election • 21

We are now ready to derive a lower bound on the message complexity of the assumed algorithm.
To this end, we lower-bound the total expected message complexity by only counting the number of
messages sent by the children of each undisturbed root D8 ∈ '′ in round 2. We have

E[<(2)] > E

[

∑

D8 ∈'′

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
]

> Pr[Few'] E
[

∑

D8 ∈'′

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

Few'

]

.

(by Lemma 4.3) > (1 − > (1)) E
[

∑

D8 ∈'′

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

Few'

]

.

Next, we condition on the event that |'′ | > 1
2 |' | and, without loss of generality, assume that '′

=

{D1, . . . , Dℓ}, where ℓ = ⌊|' |/2⌋. We get

E[<(2)] > (1 − > (1)) Pr
[

|'′ |> 1
2 |' |

�

� Few'
]

·
ℓ

∑

8=1

E

[

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

|'′ |> 1
2 |' |, Few', UndistD8

]

.

(by Lem. 4.4) > (1 − > (1))

·
ℓ

∑

8=1

E

[

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

|'′ |>
√
=
2 , Few', UndistD8

]

. (5)

Note that the conditioning on UndistD8 is implied by the fact that the outer sum ranges only over
undisturbed roots. Let�′

8 be the set of undisturbed child nodes of rootD8 . We make use of the following
lemma, whose proof we postpone to Section 4.2.2:

Lemma 4.5. Consider execution Λ. For every root D8 ∈ ', we have

Pr
[

|�′
8 |> 1

2<(D8 , 1),<(D8 , 2)=> (=)
�

�

� |'′ |>
√
=
2 , Few', UndistD8

]

> 1 − > (1).

Let E8 denote the event

(

|�′
8 |> 1

2<(D8 , 1)
)

∧ (<(D8 , 2)=> (=)) ∧ (|'′ |>
√
=
2) ∧ Few' ∧ UndistD8 (6)

22 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

where we assume (w.l.o.g.) that �′
8 = {E8,1, . . . , E8,:}, for some : > 1

2<(D8 , 1). By restricting the inner-
most summation to range only over the undisturbed children in (5), we get

E[<(2)] > (1 − > (1))

· Pr
[

|�′
8 |>

< (D8 ,1)
2 ,<(D8 , 2)=> (=)

�

�

� |'′ |>
√
=
2 , Few'

]

·
ℓ

∑

8=1

E

[

:
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

E8

]

(by Lem 4.5) > (1 − > (1))
ℓ

∑

8=1

E

[

:
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

E8

]

. (7)

Let Corr be the event that the algorithm succeeds in waking up all nodes. Notice that

Pr[Corr | E8] > Pr[Corr] − Pr[¬E8]
> (1 − n) − > (1). (8)

Continuing from the right-hand side of (7), we get

E[<(2)] > (1 − > (1))

· Pr[Corr | E8]
ℓ

∑

8=1

E

[

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

Corr, E8

]

,

(by (8)) > (1 − n − > (1))
ℓ

∑

8=1

E

[

< (D8 ,1)
∑

9=1

<(E8, 9 , 2)
�

�

�

�

�

Corr, E8

]

. (9)

Let Γ be the execution where only D8 is awake in round 1. Due to conditioning on E8 (defined in (6)), it
holds that

<(D8, 1) +<(D8 , 2) 6
√
=

6(=) + > (=) = > (=),

and hence, conditioned on Corr, we know that

:
∑

9=1

<(E8, 9 , 2) > = − > (=) > =

2
(10)

in Γ, i.e., the children of D8 become responsible for waking up Ω(=) nodes in round 2. Since D8 ∈ '′,
we know that D8 is undisturbed, and thus the distribution of <(D8 , 2) is the same in both executions
Γ and Λ (in which there are Θ(

√
=) roots). Furthermore, the summation in (10) ranges only over the

undisturbed child nodes, which means that<(E8, 9 , 2) has the same distribution in Γ and Λ. Therefore,
the bound (10) must also hold in Λ, for the children of each D8 ∈ '′. Plugging (10) into (9) and recalling
that ℓ = Θ

(√
=
)

, we conclude that

E[<(2)] > (1 − n − > (1)) ℓ =
2

= Ω

(

=3/2
)

.

Improved Tradeoffs for Leader Election • 23

4.2.2 Proof of Lemma 4.5.

Lemma 4.5 (restated). Consider execution Λ. For every root D8 ∈ ', we have

Pr
[

|�′
8 |> 1

2<(D8 , 1),<(D8 , 2)=> (=)
�

�

� |'′ |>
√
=

2 , Few', UndistD8

]

> 1 − > (1).

The following Lemmas 4.6 and 4.7 together with a simple application of the chain rule will complete
the proof of Lemma 4.5.

Lemma 4.6. Let D8 ∈ ' be a root in execution Λ. Then,

Pr
[

<(D8 , 2) = > (=)
�

�

� |'′ | >
√
=

2 , Few', UndistD8

]

> 1 − > (1).

Proof. Let event F8 = (|'′ | >
√
=
2) ∧ Few' ∧ UndistD8 . Note that

Pr
[

(|'′ |>
√
=

2) ∧ Few' ∧ UndistD8

]

= Pr
[

|'′ |>
√
=

2

�

�

� UndistD8 , Few'

]

Pr
[

UndistD8

�

� Few'
]

Pr[Few']

> Pr
[

|'′ |>
√
=
2

�

�

� Few'

]

Pr
[

UndistD8

�

� Few'
]

Pr[Few'],

where the last inequality follows because removing the conditioning on UndistD8 can only decrease

the probability that we have at least |'′ | >
√
=
2 many undisturbed roots. By applying Lemmas 4.4 and

4.3, it follows that

Pr
[

(|'′ |>
√
=

2) ∧ Few' ∧ UndistD8

]

> 1 −$

(

1

6(=)

)

. (11)

To complete the proof, we argue that D8 must send many messages in round 2, if F8 happens. Let

? = Pr[<(D8 , 2)=Ω(=) | F8],

and note that our goal is to show that ? = > (1). By assumption, all nodes in '′ are undisturbed in
round 1 of Λ, and hence the distribution<(D8 , 2) is the same for allD8 ∈ '′. It follows that the expected
message complexity is at least

E[<(2) | F8] > E

[

∑

D8 ∈'′
<(D8 , 2)

�

�

�

�

�

F8

]

>

∑

D8 ∈'′
E[<(D8 , 2) | F8]

> ? ·
∑

D8 ∈'′
E[<(D8 , 2) |<(D8 , 2) = Ω(=),F8]

= Ω(? = |'′ |)

= Ω

(

? =3/2
)

. (12)

24 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

It follows that

E[<(2)] > Pr[F8] E[<(2) | F8]

(by (11) and (12)) >

(

1 − 1

6(=)

)

Ω

(

? =3/2
)

= Ω

(

? =3/2
)

,

and since the algorithm has an assumed message complexity of >
(

=3/2
)

, this implies ? = > (1), as
required. �

Lemma 4.7. Let �′
8 be the set of undisturbed child nodes of root D8 . It holds that

Pr
[

|�′
8 | > 1

2<(D8, 1)
�

�

�<(D8 , 2) = > (=), |'′ | >
√
=

2 , Few', UndistD8

]

> 1 −$
(

1
6 (=)

)

.

Proof. Let E8, 9 be a child of root D8 ∈ '′ in execution Λ. We first show that

Pr
[

¬UndistE8,9
�

�

�<(D8 , 2) = > (=), |'′ | >
√
=
2 , Few', UndistD8

]

6 $
(

1
6 (=)

)

. (13)

Recall that any root node in '′ does not receive messages in round 1. To account for the conditioning
on the event |'′ | > 1

2 |' |, we pessimistically assume that |'′ | = |' |, which means that all messages sent

in round 1 must go to =− |' | = =−Θ(√=) > 1
2= non-root nodes, one of which is E8, 9 , as this assumption

can only decrease the probability of UndistE8,9 . It follows that the probability that some root sends a

round-1 message to E8, 9 is at most
2
√
=

= 6 (=) . Thus the probability of ¬UndistE8,9 is at most

1 −
(

1 − 2
√
=6(=)

) |' |

(since 1 − G > 4−2G , for G <
1
2) 6 1 − exp

(

− 4|' |
√
= 6(=)

)

(since 1 − G 6 4−G) 6 1 −
(

1 − 4|' |
√
= 6(=)

)

= $
(

1
6 (=)

)

,

which proves (13). It follows that the expectednumber of disturbed children ofD8 is atmost<(D8, 1)
(

1 −$
(

1
6 (=)

))

,

and Markov’s Inequality ensures that the probability of

<(D8, 1) − |�′ | > 1
2<(D8 , 1)

is at most $
(

1
6 (=)

)

. Conversely, we have |�′ | > 1
2<(D8 , 1) with probability at least 1 −$

(

1
6 (=)

)

. �

5 A COMMUNICATION-TIME TRADEOFF IN THE ASYNCHRONOUS CLIQUE

In this section, we present a randomized leader election algorithm that achieves the first trade off
between messages and time in the asynchronous model.

Improved Tradeoffs for Leader Election • 25

Indeed, in addition to the adversarial delay of messages, we also allow an adversarial wake up.3

(Note that the lower bound of Section 4 applies here too, since this section deals with adversarial wake
up too). We assume that the adversary must choose the port mapping obliviously, i.e., before the first
node is awoken and hence the port connections are independent of the random bits used by the nodes.
However, the adversary may adaptively schedule the steps taken by the nodes: in fact, after fixing the
port mappings, we allow the adversary to inspect all random bit strings before deciding which node
takes the next step and at what time. Equivalently to the synchronous model, the message complexity

of an asynchronous algorithm is the worst-case total number of messages sent during its execution.
Note that we assume that each communication link guarantees FIFO message delivery. We follow the
standard of defining the asynchronous time complexity as the worst-case total number of time units
since the first node was awoken until the last message was received, whereas a unit of time refers to
an upper bound on the transmission time of a message.
When a nodeD wakes up, either by the adversary or due to receiving a message, it samples uniformly

at random Θ(=1/:) ports for sending its wake-up message, where : is a parameter that controls the
tradeoff between messages and time. Then, D becomes a leader candidate with probability Θ(log=/=),
and, if it is a candidate, chooses a number called rank from a range of a polynomial size that is, a

rank that is unique with high probability. If D is a candidate, it samples Θ(
√

= log=) ports (without
replacement) uniformly at random and sends a compete message that carries its rank; the receiving
nodes will serve as D’s referees. Each node E keeps track of the “winning” candidate’s rank dwinner that
E has seen so far: if E is a candidate, it will store its own rank in its variable dwinner (which is empty
initially) upon becoming candidate. Had this been a synchronous network, the referee would have
known when all the compete messages arrived, and would have been able to reply “you win!” to
the highest ranked node (possibly itself). Due to the asynchronous arrival of the compete messages,
each referee responds “you win!” already to the very first compete message it receives from some
node D, if E is not a candidate; in that case, E also stores the rank of D in dwinner. However, the above
“winnings” may be revoked later. That is, whenever E receives a compete message with rank d from
D when dwinner is not empty, node E immediately replies with a you lose!-message if d 6 dwinner.
Otherwise, E consults with the node F whose current rank E stores in dwinner to see whether F has
already decided to become leader. (Node F may be E itself.) Assuming that F has not become elected
(for instance, becauseF is still waiting to hear back from its other referees), thenF itself drops out of
the competition upon receiving E ’s message. Node E , in turn, will consider D to be the current winning
candidate, update the value in dwinner accordingly, and send a you win! message to D. Eventually, the
candidate that receives you win! messages from all its referees and has not yet dropped out of the
competition becomes leader. We provide the full pseudo code in Algorithm 2.

Theorem 5.1. For any integer : where 2 6 : 6 $
(

log=
log log=

)

, there exists an asynchronous leader

election algorithm that, with high probability, elects a unique leader in at most : + 8 units of time

and sends at most$
(

=1+1/:
)

messages.

3Recall that in the synchronous case we addressed the two kinds of wake up separately—we assumed simultaneous wake-

up in Section 3 since this made our lower bounds harder to show, and addressed the synchronous clique with adversarial

wake-up in Section 4 since this allowed for an even higher lower bound.

26 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

Algorithm 2 An asynchronous leader election algorithm that takes a tradeoff parameter : , where
2 6 : 6 $ (log=/log log=).
1: Initially, every node is undecided and eventually may decide to either become leader or non-leader.
2: Each node D has a variable called winner-rank dwinner, which is empty initially, and is used to store

the rank of received messages (explained below). In addition, it keeps track of the corresponding
node that sent the rank currently stored in winner-rank.

3: if an asleep node D receives a message or is awoken by the adversary then

4: D sends a message 〈wake up!〉 over Θ(=1/:) ports chosen uniformly at random.

5: D becomes a candidate with probability
4 log=
=

.
6: if node D is a candidate then
7: Node D chooses a rank dD uniformly at random from [=4] and stores it in dwinner.

8: D samples a set 'D of ⌈4
√

= log=⌉ ports uniformly at random (without replacement).
9: D sends 〈dD, compete〉 over the ports in 'D , and considers the nodes in 'D its referees.
10: if D has received 〈you win!〉 from all its referees and is still undecided then
11: D decides to be leader and informs all nodes, who change their statuses to non-leader.
12: ⊲ A node responds to received 〈d, compete〉-messages even if it has already decided.

13: if D receives a 〈you lose!〉 message then
14: D decides to become non-leader.
15: Every (decided or undecided) node E processes a received 〈dD, compete〉 message as follows:
16: if E ’s winner-rank dwinner is empty then

17: E stores dD in dwinner, sends 〈you win!〉 to D, and E becomes non-leader.
18: else if dD is not larger than E ’s winner-rank dwinner then

19: E sends 〈you lose!〉 to D, causing D to become non-leader.
20: else ⊲ dD is larger than E ’s current value of dwinner

21: LetF be the node associated with the value in dwinner of E .
22: E asksF whether it is already a leader.
23: if F has not yet become leader at the time it receives E ’s request then
24: F becomes non-leader and informs E .
25: Upon receivingF ’s answer, E responds to D by sending 〈you win!〉.
26: E stores D’s rank in dwinner.
27: else

28: F informs E that it has already become leader.
29: Upon receivingF ’s answer, E sends 〈you lose!〉 to D, causing D to become non-leader.

Let us illustrate the tradeoff achieved by Theorem 5.1 by considering the two extremes: For: = 2, the
algorithm terminates in at most 10 units of time and sends$ (=3/2) messages, thus matching the lower
bound of Theorem 4.2, whereas for : = Θ(log=/log log=), we obtain a time complexity of $ (log=)
and a message complexity of $ (= log=).
In the remainder of this section, we prove Theorem 5.1. For the analysis, we consider the execution

as being split into two phases: a wake-up phase, where the goal is to wake up every node in the net-
work eventually and an election phase, in which the nodes determine the leader. Since the network

Improved Tradeoffs for Leader Election • 27

is asynchronous, it can happen that some nodes enter (or even complete) their election phase, while
other nodes are still asleep.

5.1 Analysis of the Wake-Up Phase

Lemma 5.2. Assume that 2 6 : = $
(

log=
log log=

)

and consider the asynchronous model. If each node sends

W=1/: messages initially over uniformly at random sampled ports, where W is a sufficiently large constant,

then each node wakes up within : + 4 units of time with high probability.

In the remainder of this section, we prove Lemma 5.2. We call a point in time C8 a wake-up step of

node D8 , if D is awoken by the adversary at time C8 , or, because D received a message from another node
at time C8 . Without loss of generality, we assume that exactly one node wakes up in each wake-up step
and that the adversary wakes up only one node initially. It is straightforward to verify that our analysis
also holds for the case where the adversary wakes up multiple nodes simultaneously, since every node
behaves the same way upon wake-up.

Definition 5.3 (Covered Nodes). For any given point in time C , we define �C to be the set of covered
nodes, which contains every node D that is either awake at time C or, if D is still asleep, then D must
be the destination of some in-transit message that was sent at some time C ′ < C . We use �̄C8 to denote
the complement of �C8 , which contains every node that is still asleep and does not have any in-transit
message addressed to it at time C8 .

Lemma 5.4. Suppose that the 8-th wake-up step occurs at time C8 . There exists a constant 2 > 1 such

that, with high probability, for all 8 > 1, if |�C8 | 6 =
16 , then,

|�C8+1 | > |�C8 | + 2 =1/: . (14)

Proof. Let D8 be the node that woke up at time C8 , which means that D8 sends W=
1/: messages over

uniformly at random chosen ports, where W is a sufficiently large constant. Fix some enumeration
<1, . . . ,<W=1/: of D8 ’s messages, and, for each <8 , define the indicator random variable /8 such that
/8 = 1 if and only if<8 is sent to �C8 . Since D8 sends<8 over a port that is distinct from the ports used
for<1, . . . ,<8−1 and there are = − 1 ports in total, it follows that

Pr
[

ℓ
∧

8=1

/8 = 1
]

=

ℓ
∏

8=1

Pr
[

/8 = 1
�

�

8−1
∧

9=1

/ 9 = 1
]

6

ℓ
∏

8=1

|�C8 | − (8 − 1)
= − 1 − (8 − 1)

(since 8 − 1 6 W=1/:) 6

ℓ
∏

8=1

|�C8 |
= − 1 − W=1/:

(since |�C8 | 6 =/16 and W=1/: + 1 6 =/16) 6

(

1

15

)ℓ

(15)

We make use of the following generalized Chernoff bound:

28 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

Lemma 5.5 (implicit in Theorem 1.1 in [10]). Let-1, . . . , -# be (not necessarily independent) Boolean

random variables and suppose that, for some X ∈ [0, 1], it holds that, for every index set (⊆ [#],
Pr[∧8∈(-8] 6 X |(| . Then, for any V ∈ [X, 1], we have Pr

[
∑#

8=1-8 > V#
]

6 4−2# (V−X)2 .

According to (15), we can instantiate Lemma 5.5 for the random variables /1, . . . , /W=1/: by setting

X =
1
15 and V =

1
2 , which ensures that V − X > 1

4 . It follows that

Pr
[

W=1/:
∑

8=1

/8 >
W

2
=1/:

]

6 4−2W (V−X)
2=1/:

6 4−
W=1/:

8 .

Since =1/: = Ω(log=), it holds with high probability that at least
W

2=
1/: nodes in �̄C8 will receive a

message from D8 and hence are added to �C8+1. Finally, we take a union bound over the at most $ (=)
wake-up steps for which the premise |�C8 | 6 =/16 holds, which shows that (14) holds for all of them,
thereby completing the proof of Lemma 5.4. �

So far, we have shown that the number of nodes that eventually wake up grows by an additive
Θ(=1/:) factor at each wake-up step. We now leverage this result to show that the growth is indeed
geometric as expected. To this end, consider the time C∗ of the latest wake-up step such that |�C∗ | 6 =

16
holds. We define the cover tree TC∗ on the nodes in�C∗ , which has as root the node that was awoken by
the adversary and a node D is the parent of node E in TC∗ if and only if E is woken up by a message sent
by D at some time C ′ < C∗.

Lemma 5.6. Each node in the network appears at most once in TC∗ , and + (TC∗) = �C∗ . The edges of TC∗
form a directed tree where each non-leaf node has at least 21=

1/: and at most W=1/: children. Moreover,

any node that has not yet awoken by time C∗, but to which a message was sent before time C∗, is a leaf in
TC∗ .

Proof. By definition, each node in TC∗ (except the root) is awoken due to a message sent at some
time before C∗, and linearity of time ensures that the tree is acyclic. Thus, every node in the network
shows up at most once in TC∗ . Moreover, if a node E is a leaf, then it must be woken up by a message

that was sent but not yet received before time C∗, as otherwise E itself would have added (at least) 21=1/:

children to TC∗ according to Lemma 5.4. From Definition 5.3 is straightforward to verify that a node is
in TC∗ if and only if it is in �C∗ . The upper bound on the degree is immediate from the fact that a node

sends W=1/: messages upon wake-up, whereas the lower bound follows by applying Lemma 5.4 to each
non-leaf node in T . �

Lemma 5.7. With high probability, every node in the tree TC∗ is woken up by a messages that was sent

before time : + 2.

Proof. Let D1 be the root of the tree. Assume towards a contradiction that there exists a path ? =

D1, D2, . . . , Dℓ in TC∗ such that the message that wakes up the leaf Dℓ is sent at time Cℓ > : + 2, and
suppose that path ? is chosen such that Cℓ is the latest time for all paths satisfying the property. Since
each message takes at most 1 unit of time, it follows that ℓ > : + 3. (Note that we assume that the
root D1 is awoken at time 0.) Now consider any path @ starting from the root D1 and continuing over a
distinct child D′2 ≠ D2. Let D

′
< be the last node on path @, i.e., D′< is a leaf.

Improved Tradeoffs for Leader Election • 29

We first argue that the message that wakes up D′< must be sent at some time

C ′ > Cℓ − 1 > : + 1.

Recall that TC∗ contains all nodes that are either awake or to which a message is in-transit at any time
before C∗, which, in particular, includes time Cℓ , and assume towards a contradiction that C ′ < Cℓ − 1. By
assumption, D′< must wake up by time

C ′ + 1 < Cℓ 6 C∗.

Since Cℓ 6 C∗, it follows that |�Cℓ | 6 |�C∗ | 6 =
16 , and hence Lemma 5.4 ensures that D′< sends messages

to previously asleep nodes by time C ′ + 1 < C∗, contradicting the assumption that D′< is a leaf.
Thus, we can assume that C ′ > Cℓ − 1 > : + 1, which implies that @ contains at least : + 2 nodes,

and : + 1 of them must be non-leaf nodes. Therefore, any path from the root consists of at least : + 1

non-leaf nodes that have a minimum degree of 21=
1/: , according to Lemma 5.6. Overall, this means

that there are at least 2:+11 =1+1/: > = nodes in TC∗ , since 21 > 1, thus providing a contradiction. �

To complete the proof of Lemma 5.2, we show that, once we have reached a “critical mass” of =
16

nodes that are either awake (or about to wake up), the remaining nodes wake up within 2 additional
time steps, resulting in a time complexity of C∗ + 2 6 : + 4, as claimed.

Lemma 5.8. With high probability, all nodes wake up by time C∗ + 2.

Proof. Recall the cover treeTC∗ for time C∗ defined above, whichwas the latest wake-up step atwhich

|�C∗ | 6 =
16 . Since |�C∗ | > =

16 − 1 > =
32 , it follows that TC∗ contains at least |TC∗ | −

| TC∗ |
21=1/: >

=
32 −

=1−1/:

21
>

=
64

leafs. According to Lemma 5.6, a leaf is a node that has not yet woken up by time C∗, which means that
there are at least =

64 nodes that will wake up due to messages sent before time C∗, all of which must
arrive at some point in the time interval [C∗, C∗ + 1].
Let " be the set of the messages sent by these nodes during their wake-up steps and note that

|" | > W=1+1/:

64 . The probability that a node D ∈ �̄C∗ is not the destination of at least one of the messages
in" is at most

(

1 − 1

=

)W=1+1/: /64
6 4

(

− W=1+1/:
64

)

6 =−4,

where the last inequality follows from the assumption that =1/: = Ω(log=) and that W is a sufficiently
large constant. Observing that all messages in" must arrive by time C∗ + 2, and taking a union bound
over the at most 31

32= nodes that are not in �C∗ , ensures that every node will be awoken by time C∗ + 2
with high probability. �

5.2 Analysis of the Election Phase

Lemma 5.9. Suppose that every node wakes up eventually. Then there is exactly one leader with high

probability.

Proof. Since each node becomes candidate with probability 4 log=/=, it follows that the probability
there is a candidate is at least 1 −

(

1 − 4 log=
=

)=

> 1 − 4−4 log= = 1 − 1
=4 . By a simple calculation that is

analogous to the one in the proof of Theorem 4.1 in Section 4, it follows that every candidatewill have a

30 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

unique IDwith high probability. For the remainder of the proof, we condition on these high-probability
events.
Now, assume towards a contradiction that there exist two candidates D and E that both become

leaders. Let 'D and 'E be the set of referees chosen by D respectively E . Since it holds that

Pr['D ∩ 'E = ∅] 6
(

1 −
4
√

log=
√
=

)4
√
= log=

6
1

=2
,

we know that D and E will share some common refereeF . By the code of the algorithm, we know that
F sends a winner-message at most once to each node that contacts it. By the code of the algorithm, any
undecided node becomes non-leader upon receiving a 〈you lose!〉message, which tells us thatF sent
a message 〈you win!〉 to both D and E . Without loss of generality, assume thatF sent the 〈you win!〉
first toD and later on to E . It follows thatF must have processed themessage 〈dD〉 before 〈dE〉. However,
by the code of the algorithm, F stores D’s rank in its winner-rank variable upon sending 〈you win!〉
to D at some time C1. Moreover, sinceF sent a 〈you win!〉 also to E at some later time C2 > C1, it follows
that D cannot have elected itself as a leader before C2, as otherwiseF would have sent 〈you lose!〉 to
E upon receiving D’s reply. This implies that D must have already decided to become non-leader upon
being contacted by E . We have arrived at a contradiction. �

Lemma 5.10. Each node decides in at most 4 units of time after its wake-up step.

Proof. Suppose node D wakes up at time C . If D does not become a candidate, it decides instantly;
thus, assume thatD does become a candidate and contacts a set of referees. Upon receivingD’s message,
a referee may need to confirm the status of the current winner, which takes one additional round-trip
before it sends its response to D. Thus, it takes at most 4 units of time until D receives a response
from each of its referees and decides. Note that D may also serve as referee for other nodes, however,
responding to these messages does not slow down its own decision process. �

5.3 Pu�ing Everything Together

We have now assembled all the ingredients for completing the proof of Theorem 5.1.We first argue cor-
rectness: With high probability, the algorithmwill elect exactly one node as the leader since Lemma 5.2
shows that every node wakes up and, in that case, Lemma 5.9 guarantees that exactly one of them will
become leader.
For the claimed time complexity of : + 8, we observe that Lemma 5.2 ensures that every node wakes

up within : + 4 units of time, and Lemma 5.10 tells us that everyone decides to become leader or
non-leader within 4 additional time units.
Finally, note that each node sends Θ(=1+1/:) messages upon wake-up. We have Θ(log=) candidates

(whp), and each of them communicateswithΘ(
√

= log=) referees. Upon being contacted by a candidate,
a refereemay need to communicatewith its currently storedwinner node, which requires an additional

2 messages. Thus, we have an overall message complexity of $
(

=1+1/:
)

+$
(√

= log3/2=
)

= $
(

=1+1/:
)

with high probability.

Improved Tradeoffs for Leader Election • 31

5.4 Asynchronizing the Trade-off of Afek and Gafni under Simultaneous Wake-up

The following algorithm can be viewed as an asynchronous version of the synchronous algorithm of
Afek and Gafni [1]. However, Afek and Gafni argue that their algorithm would not work in asynchro-
nous networks, and thus suggested three asynchronous algorithms where the $ (= log=) messages
were obtained at the cost of Ω(=) time. We managed to make their original algorithm asynchronous
without increasing their original time, assuming that we count only from the last spontaneous (adver-
sarial) wake up of a node. Alternatively, for the sake of this algorithm only, we can assume that all the
nodes wake up simultaneously. The algorithm works as follows: Each surviving candidate E (initially
everybody) is at a level in [0, 1, 2, ... log=] (initially zero). It sends 28 request messages to its first 28

neighbors (E is its own neighbor number 1; we also assume that the ports are numbered 2, 3, ...=). If E
gets acks for all the messages it sends (and has not meanwhile been killed) then it climbs to level 8 + 1.
If it sent messages to all the nodes and received acks, then it terminates as a leader.
A node E that gets a request message for level 8 and has not sent an ack yet, now sends an ack. If E

did send an ack to some D and now receives a request in (level i) from F > D (w.r.t. to their IDs) then
E sends a conditional cancel message to D. If D is already in a level higher than i, then D refuses, and
E kills F . Otherwise, D is killed and E sends an ack to F (unless E meanwhile received a request from
some I > F).

Analysis.

Lemma 5.11. If 28 < = and there was a (live) candidate at level 8, then there is a candidate at level 8 + 1.
Proof. Consider the highest candidate F to reach level 8. Suppose that F never reaches level 8 + 1.

SinceF is the highest, the only way it can get killed is if it sent a request to some node E , and E sent as
a result a cancel message to F because some node D (with a smaller ID thanF) already reached level
8 + 1. This proves the lemma. �

Lemma 5.12. No more than =
28
candidates reach level 8.

Proof. Consider a candidate E who reached level 8+1. Then E received an ack from 28 nodes. Among
above mentioned 28 nodes, consider some node D. If D had sent an ack to some other node F before
sending an ack to E , then D had also sent a cancel message toF and has verified thatF stopped being
a candidate, before D sent an ack to E . Moreover, if D has not sent an ack to any node after sending to E ,
since otherwise, this would have meant that E accepted a cancel request and ceased being a candidate
before reaching level 8 + 1. Hence, for every candidate E who reached level 8 + 1 there exist a set of 28

nodes who supported E at the time it increased its level to 8 + 1, and none of them supported any other
node F whenF increased its own level to 8 + 1. The lemma follows. �

Corollary 5.13. The number of levels is at most$ (log=), the total number of messages sent by nodes

on each level is $ (=), and the time duration of each level is constant.

The above lemmas and corollary establish the following theorem:

Theorem 5.14. There exist a leader election algorithm for asynchronous networks under simulta-

neous wake-up that uses $ (log=) time and $ (= log=) messages, if the time is counted from the

last spontaneous (adversarial) wake up of a node.

32 • Shay Ku�en, Peter Robinson, Ming Ming Tan, and Xianbin Zhu

6 CONCLUSION

The problem of leader election has been introduced a long time ago, and has been heavily investigated
ever since. Yet, quite a few significant new results have been discovered very recently. At the time some
of the classic results were obtained, it may have seemed that these issues were very well understood.
This suggests that it does makes sense to look again even at classic results such as the those of Afek
and Gafni (for tradeoffs), Afek and Matias (for randomized algorithms), and Frederikson and Lynch
(for methods of generalizing lower bounds from comparison to general algorithms), which are some of
the papers that we revisited in this work (and improved some of their results, even though they may
have appeared to be tight at the time). It will be interesting to know whether some additional classic
results can do with a refresh.
An interesting open question raised by our work is the precise impact of the size of the node ID

space on the message complexity of deterministic algorithms for leader election and other problems.
As elaborated in Section 1.1, showing lower bounds for an ID space of polynomial size is necessary in
order to make the lower bound applicable to the standard CONGEST model. For instance, the work
of Awerbuch, Goldreich, Peleg, and Vainish [4] proved that solving single-source broadcast in general
networks has a message complexity of Ω(<), (where < is the number of edges) when assuming an
exponentially large ID space, whereas the subsequent work of King, Kutten, and Thorup [11] showed

that a message complexity of $̃ (=) is indeed possible for smaller ID spaces. Another open problem is
whether we can show a tradeoff lower bound in the asynchronous model, similar in spirit to our result
in Section 3.2.

ACKNOWLEDGMENTS

Shay Kutten was supported in part by grant 2070442 from the ISF.
Xianbin Zhu is a full-time PhD student at the City University of Hong Kong. The work described

in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China [Project No. CityU 11213620].

REFERENCES
[1] Yehuda Afek and Eli Gafni. 1991. Time and message bounds for election in synchronous and asynchronous complete

networks. SIAM J. Comput. 20, 2 (1991), 376–394.

[2] Yehuda Afek and Yossi Matias. 1994. Elections in anonymous networks. Information and Computation 113, 2 (1994),

312–330.

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J Fischer, and René Peralta. 2004. Computation in networks of pas-

sively mobile finite-state sensors. In Proceedings of the twenty-third annual ACM symposium on Principles of distributed

computing. 290–299.

[4] Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. 1990. A trade-off between information and com-

munication in broadcast protocols. Journal of the ACM (JACM) 37, 2 (1990), 238–256.

[5] Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W Richa, and Christian Scheideler. 2015.

Leader election and shape formation with self-organizing programmable matter. In International Workshop on DNA-

Based Computers. Springer, 117–132.

[6] Greg N Frederickson. 1983. Tradeoffs for selection in distributed networks (Preliminary Version). In Proceedings of the

second annual ACM symposium on Principles of distributed computing. 154–160.

[7] Greg N Frederickson and Nancy A Lynch. 1987. Electing a leader in a synchronous ring. Journal of the ACM (JACM)

34, 1 (1987), 98–115.

Improved Tradeoffs for Leader Election • 33

[8] Saurabh Ganeriwal, RamKumar, and Mani B Srivastava. 2003. Timing-sync protocol for sensor networks. In Proceedings

of the 1st international conference on Embedded networked sensor systems. 138–149.

[9] Pierre A Humblet. 1984. Selecting a leader in a clique in 0 (N log N) messages. Laboratory for Information and Decision

Systems, Massachusetts Institute of

[10] Russell Impagliazzo and Valentine Kabanets. 2010. Constructive proofs of concentration bounds. In Approximation,

Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer, 617–631.

[11] Valerie King, Shay Kutten, and Mikkel Thorup. 2015. Construction and impromptu repair of an MST in a distributed

network with o (m) communication. In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing.

71–80.

[12] Ephraim Korach, Shay Kutten, and Shlomo Moran. 1990. A modular technique for the design of efficient distributed

leader finding algorithms. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 1 (1990), 84–101.

[13] EphraimKorach, ShlomoMoran, and Shmuel Zaks. 1984. Tight lower and upper bounds for some distributed algorithms

for a complete network of processors. In Proceedings of the third annual ACM symposium on Principles of distributed

computing. 199–207.

[14] Shay Kutten, William K Moses Jr, Gopal Pandurangan, and David Peleg. 2020. Singularly Optimal Randomized Leader

Election. In 34th International Symposium on Distributed Computing.

[15] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. 2015. On the complexity of

universal leader election. Journal of the ACM (JACM) 62, 1 (2015), 1–27.

[16] Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. 2015. Sublinear bounds for

randomized leader election. Theoretical Computer Science 561 (2015), 134–143.

[17] Gérard Le Lann. 1977. Distributed Systems-Towards a Formal Approach.. In IFIP congress, Vol. 7. Toronto, 155–160.

[18] Nancy A Lynch. 1996. Distributed algorithms. Elsevier.

[19] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The akamai network: a platform for high-performance

internet applications. ACM SIGOPS Operating Systems Review 44, 3 (2010), 2–19.

[20] David Peleg. 2000. Distributed computing: a locality-sensitive approach. SIAM.

[21] Murali Krishna Ramanathan, Ronaldo A Ferreira, Suresh Jagannathan, Ananth Grama, andWojciech Szpankowski. 2007.

Randomized leader election. Distributed Computing 19, 5 (2007), 403–418.

[22] Gurdip Singh. 1992. Leader election in complete networks. In Proceedings of the eleventh annual ACM symposium on

Principles of distributed computing. 179–190.

[23] Yong Yao and Johannes Gehrke. 2002. The cougar approach to in-network query processing in sensor networks. ACM

Sigmod record 31, 3 (2002), 9–18.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 The Synchronous Clique under Simultaneous Wake-up
	3.1 Communication Graphs
	3.2 A Lower Bound on the Communication-Time Tradeoff in the Synchronous Clique
	3.3 An Improved Deterministic Algorithm
	3.4 An Extreme Point of the Trade-off
	3.5 Las Vegas Algorithms

	4 The Synchronous Clique under Adversarial Wake-up
	4.1 An Optimal 2-Round Algorithm with O(n3/2n) Message Complexity
	4.2 A Tight Lower Bound for Randomized Algorithms

	5 A Communication-Time Tradeoff in the Asynchronous Clique
	5.1 Analysis of the Wake-Up Phase
	5.2 Analysis of the Election Phase
	5.3 Putting Everything Together
	5.4 Asynchronizing the Trade-off of Afek and Gafni under Simultaneous Wake-up

	6 Conclusion
	Acknowledgments
	References

