
No One Size (PPM) Fits All:
Towards Privacy in Stream Processing Systems

Mikhail Fomichev∗
TU Darmstadt

mfomichev@seemoo.tu-
darmstadt.de

Manisha Luthra∗
TU Darmstadt & DFKI

manisha.luthra@dfki.de

Maik Benndorf
University of Oslo
maikb@ifi.uio.no

Pratyush Agnihotri
TU Darmstadt

pratyush.agnihotri@kom.tu-
darmstadt.de

ABSTRACT

Stream processing systems (SPSs) have been designed to process
data streams in real-time, allowing organizations to analyze and act
upon data on-the-fly, as it is generated. However, handling sensitive
or personal data in these multilayered SPSs that distribute resources
across sensor, fog, and cloud layers raises privacy concerns, as the
data may be subject to unauthorized access and attacks that can vio-
late user privacy, hence facing regulations such as the GDPR across
the SPS layers. To address these issues, different privacy-preserving
mechanisms (PPMs) are proposed to protect user privacy in SPSs.
Yet, selecting and applying such PPMs in SPSs is challenging, since
they must operate in real-time while tolerating little overhead. The
multilayered nature of SPSs complicates privacy protection because
each layer may confront different privacy threats, which must be ad-
dressed by specific PPMs. To overcome these challenges, we present
Prinseps, our comprehensive privacy vision for SPSs. Towards this
vision, we (1) identify critical privacy threats on different layers of
the multilayered SPS, (2) evaluate the effectiveness of existing PPMs
in addressing such threats, and (3) integrate privacy considerations
into the decision-making processes of SPSs.

CCS CONCEPTS

• Security and privacy → Privacy protections; • Information

systems → Stream management.

KEYWORDS

Stream processing, Privacy, Threat modeling, Access control, IoT
ACM Reference Format:

Mikhail Fomichev, Manisha Luthra, Maik Benndorf, and Pratyush Agnihotri.
2023. No One Size (PPM) Fits All: Towards Privacy in Stream Processing
Systems. In The 17th ACM International Conference on Distributed and Event-
based Systems (DEBS ’23), June 27–30, 2023, Neuchatel, Switzerland. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3583678.3596889

1 INTRODUCTION

Motivation. Can we create a world without a disease? This question
was posed by Max Welling—a renowned machine learning (ML)
scientist in his visionary talk.1 He underlined two requirements to
achieve this goal: (1) privacy-preserving systems analyzing human-
centric sensor data and (2) foundations in deep learning that enable
∗Both authors contributed equally to this work.
1TEDx talk: https://youtu.be/g9HA8A8tEUs [Accessed on 26.05.2023].

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in The 17th ACM
International Conference on Distributed and Event-based Systems (DEBS ’23), June 27–30,
2023, Neuchatel, Switzerland, https://doi.org/10.1145/3583678.3596889.

Bob wearables

(data producer)

HAR application

(data consumer)

IMU readings

(data stream)

“Bob exercises”
(complex event)

“Bob moves”
(simple event)

Query

Data

Figure 1: Typical workflow of an SPS based on our running example of a

human activity recognition (HAR) application enabled by wearable sensors.

better diagnosis and treatment of diseases. This work makes a step
to fulfill the first requirement towards this noble goal using stream
processing systems (SPSs). SPSs can serve as a core technology for
analyzing sensor data collected by Internet of Things (IoT) devices
in real-time. Recently, SPSs have adopted a multilayered approach
by distributing processing resources between sensor, fog, and cloud
layers to achieve lower processing latency and better utilization of
resources [29]. Hence, we focus on multilayered SPSs in this work.

The data streams that originate by sensing users or their environ-
ment inherently contain sensitive information, e.g., user’s lifestyle,
requiring SPSs that process such data to comply with privacy regu-
lations, like the GDPR [25]. As crucially, users start to increasingly
demand stricter control over the data collected by IoT applications
about them [13]. These points make privacy protection critical for
the success of SPSs in the future.
Running Example. To concertize our vision for privacy in multi-
layered SPSs, we pick a human activity recognition (HAR) applica-
tion enabled by wearable devices as our running example in this
work (cf. Figure 1). Specifically, a user: Bob carries wearable devices
(e.g., smartwatch), known as data producers, which collect inertial
measurement unit (IMU) data, i.e., accelerometer and gyroscope
readings. Utilizing these data, the HAR application, called the data
consumer, can monitor Bob’s activity, like exercising, for medical
and health insurance purposes. This happens as follows: the stream
of IMU data is input to an SPS which first classifies these data into
simple events (e.g., “Bob moves”) and then combines such simple
events to detect complex events, like “Bob exercises”. The HAR ap-
plication is mainly interested in monitoring these complex events,
hence it defines a continuous query to identify them in the ceaseless
stream of the IMU data.

Our running example exhibits that the SPS scrutinizes Bob’s data
on different granularity: from raw IMU data to complex events. This
clearly has privacy concerns, like the HAR application can detect
not only public complex events (or patterns) that are needed for its
functionality, e.g., “Bob exercises”, but also private complex events
(or patterns), like “taking medicine” by Bob, which is revealed as a
sequence of “swallow” → “drink” → “lay down” events.

ar
X

iv
:2

30
5.

00
87

1v
2

 [
cs

.C
R

]
 2

9
M

ay
 2

02
3

https://doi.org/10.1145/3583678.3596889
https://youtu.be/g9HA8A8tEUs
https://doi.org/10.1145/3583678.3596889

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Fomichev et al.

Contributions.The topic of privacy protection in SPSs has recently
emerged, yet the privacy issues stemming from SPS’s multilayered-
ness remain underexplored [19, 25]. As such, the privacy-preserving
mechanisms (PPMs) utilized in SPSs are typically adopted from the
database community, requiring a major redesign to satisfy the real-
time nature of SPSs [18], while several PPMs developed specifically
for SPSs are still not mature, which makes it difficult to holistically
apply them in SPSs [25]. We identify three challenges of using exist-
ing PPMs in multilayered SPSs: (1) threats to user privacy are not
systematically understood in these SPSs, complicating the selection
of appropriate PPMs; (2) PPMs must not only be applied holistically,
i.e., at each layer of the multilayered SPS to provide strong privacy
protection, but also satisfy real-time needs of SPSs, imposing little
overhead; (3) the PPMs, selected and applied in this fashion, should
enable a privacy-utility tradeoff (PUT), which is tunable depending
on SPS’s user privacy needs and application quality of service (QoS)
requirements. These challenges unfold two research questions that
we seek to answer in this work:
RQ1: What are the most critical threats to user privacy in multilay-
ered SPSs used in IoT applications?
RQ2: How to systematically select, customize, and apply PPMs that
address these threats while enabling a PUT?

Addressing the above questions and inspired by [19], we present
our vision for holistic privacy protection in multilayered SPSs called
Prinseps—Privacy in Stream Processing Systems. To pursue this vi-
sion, we (1) review the state of privacy protection in SPSs (Section 2);
(2) identify critical privacy threats and their conduct in multilayered
SPSs, which allows us to shape Prinseps’ design (Section 3); and (3)
provide the preliminary evaluation of Prinseps along with further
research opportunities (Section 4). Despite focusing on the IoT use
cases for SPSs to concretize our vision, we perform the above three
steps in a generic manner, making Prinseps generalizable to other
SPSs’ applications. Our results show that there is no one-size-fits-all
solution for privacy in SPSs, i.e., different PPMs have their up- and
downsides (which we investigate), while being applicable in various
parts of the multilayered SPS.

2 RELATEDWORK

Privacy in Stream Processing. The subject of privacy protection
in SPSs has started receiving attention from the research commu-
nity, yet existing works mainly focus on preserving privacy in one
of the following directions within SPSs: (1) raw data streams or (2)
private patterns, whereas a holistic view on privacy is still missing.
For raw data streams, prior research adopted PPMs from the data-
base community, like differential privacy (DP), k-anonymity, and
l-diversity [4, 5, 10]. Such PPMs seek to protect single events (e.g.,
“Bob moves” from Figure 1) by grouping them into clusters—within
which these events become indistinguishable for the data consumer
of an SPS, like a HAR application. There exist two issues with such
adopted PPMs: (1) they introduce extra overhead due to clustering,
harming the real-time operation of SPSs [8]; (2) most works assume
that sensitive events are revealed via simple count queries [4, 5, 20],
which does not reflect real-world SPSs—where both more complex
queries on raw data streams and access to such streams can become
attack vectors to violate user privacy [6, 14].

There exist a few PPMs protecting private patterns, e.g., “taking
medicine” by Bob. [18] presents a PPM leveraging event reordering

to conceal private patterns. In [6], a PPM that enforces access con-
trol (AC) on private patterns is proposed. This PPM estimates trust
among nodes within an SPS, allowing only trusted nodes to access
private patterns. While being important preliminary research, the
PPMs [18] and [6] lack robust privacy guarantees and rely on strong
assumptions, like the availability of trust information in an SPS.

A related line of work to privacy in raw data streams and private
patterns is privacy-preserving stream analytics, which enforces AC
on SPS’s queries by means of cryptography [3]. While these PPMs
protect against malicious attackers, they become less relevant under
our threat model (cf. Section 3), where such PPMs using encryption
and authentication are assumed to be in place. Similar to the stream
analytics, privacy preservation in publish/subscribe systems heavily
relies on AC-based PPMs to shield sensitive data flows [17]. Another
trend in privacy protection that benefits all of the described PPMs is
leveraging trusted execution environments (TEEs) to safeguard the
runtime of PPMs within an SPS against malicious components [24].
Privacy-utility Tradeoff. The above PPMs only loosely consider
a PUT when applied in SPSs, i.e., the impact of a PPM is, in the best
case, evaluated as an interplay between one privacy and one utility
metric in a specific scenario. Yet, the tradeoff between these metrics,
its fine-tuning, and generalizability to other scenarios receive little
attention. A few recent works present first systematic approaches
to balance a PUT, which can either be achieved via an optimization
problem [1] or through user input [7]. However, the applicability of
such approaches has not yet been explored in the context of SPSs.
Research Gap. As shown above, the privacy protection in SPSs has
been applied in an ad-hoc fashion, adopting existing or devising new
PPMs to address isolated privacy issues. This happens due to limited
understanding of critical privacy threats and their occurrence inside
SPSs. Thus, it is difficult to justify the selection, customization, and
application of PPMs addressing those threats while preserving the
utility of SPSs. Without such justification, it remains unclear where
and how to apply even the golden standard PPMs, like DP [21].

3 PRINSEPS: VISION FOR PRIVACY IN SPSs

To approach the vision of Prinseps, we take four steps: (1) identify
critical privacy threats and their conduct in a multilayered SPS; (2)
use this knowledge to select exemplary PPMs that we evaluate to
find their suitability for Prinseps; (3) show how to customize these
PPMs, leveraging user privacy policies, to facilitate a PUT; and (4)
formulate the principles of applying PPMs in Prinseps to enable a
holistic privacy protection in multilayered SPSs.

We envision the following success criteria for Prinseps: (1) simul-
taneous protection against critical privacy threats in a multilayered
SPS, allowing its users to control the protection granularity as well
as fine-tune the PUT; (2) seamless extendibility of Prinseps with
new PPMs to address existing and/or novel privacy threats.
Privacy Threats. To identify critical privacy threats and how they
occur within a multilayered SPS, whose architecture is shown in Fig-
ure 2, we use our running example. In Figure 2, the IMU data flows
from Bob’s wearables, e.g., a smartwatch (sensor layer), up into fog
nodes, like a smart hub, where these data are classified into simple
events, e.g., “Bob moves” (fog layer), that are pushed up to the cloud,
where complex events, like “Bob exercises”, are ultimately inferred
from such aggregated simple events (cloud layer). To monitor Bob’s
activity, the HAR application queries the SPS—we assume the query

No One Size (PPM) Fits All:
Towards Privacy in Stream Processing Systems DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

Query flow Data / event flow

S
e

n
s

o
r

C
lo

u
d

F
o

g






Figure 2: Multilayered SPS architecture used in Prinseps, consisting of nodes

placed on sensor (), fog (△), and cloud () layers; , , denote data

or simple events from different sensors, while is an inferred complex event.

1○ to 3○ mark the occurrence of critical privacy threats in this architecture.

flow can happen between the HAR application and any of the SPS’s
layers: sensor, fog, and cloud (cf. dotted arrow lines in Figure 2); this
gives flexibility to SPSs, e.g., in terms of query result granularity.

We use an honest-but-curious (HBC) adversary model to identify
critical privacy threats in multilayered SPSs, due to its realism: here,
we assume that an SPS node on each layer (sensor, fog, cloud) and
data consumer (HAR application) can be HBC [18, 20]. Such nodes
and data consumers conform to SPS’s functionality, i.e., they detect
expected events faithfully and do not compromise the correctness
of queries, but seek to learn extra information about Bob, like habits,
invading his privacy. We differentiate attack vectors between HBC
nodes and data consumers: the former scrutinize Bob’s sensor data
and events during their processing, while the latter craft queries to
reveal Bob’s sensitive events, e.g., “taking medicine”.

Based on our threat model, we conduct research utilizing related
work analysis, self-expertise, discussions with privacy practitioners,
and review of best privacy practices2 to determine generic privacy
threats in multilayered SPSs: (1) sensitive attributes, (2) private pat-
terns, and (3) invasive queries. Note that the found three threats are
not claimed to be exhaustive, and we presume the PPMs preventing
malicious attackers, like encryption (cf. Section 2), to be deployed—
such PPMs alone cannot thwart HBC adversaries which could, e.g.,
legitimately access encryption keys. In the following, we detail the
three privacy threats identified in multilayered SPSs, as they help
us to shape the design of Prinseps.

(1) Sensitive Attributes. The sensitive attributes, like Bob’s weight,
can be inferred from a few seconds of IMU data using deep learn-
ing [11]. Such amount of data is available on sensors and fog devices
(e.g., smartwatch and smart hub), whose hardware is performant to
carry inferences of sensitive attributes in real-time [11]. Hence, this
threat happens on HBC sensor- and fog-layer nodes, during process-
ing of Bob’s IMU data (cf. 1○ in Figure 2). When choosing the PPMs
to tackle the inference of sensitive attributes, we try to achieve low
latency as our primary utility metric of an SPS, since low latency is
the main advantage of processing data near its producers [29].

(2) Private Patterns.The private patterns, such as “taking medicine”
by Bob, are complex events detectable by an SPS via sequence match-
ing of (simple) events comprising this pattern. Hence, this threat
materializes on fog and cloud layers, where the chronological se-
quences of events are available (cf. 2○ in Figure 2). We concur with
prior research that issuing HBC queries to fog and cloud nodes is

2These steps follow the current state of the art on privacy threat modeling [2].

Table 1: Requirements for formulating privacy policies in Prinseps.

Requirement Explanation

R1: Transparency Users understand purposes for which their data are utilized.
R2: Accessibility Users configure their privacy in an easy and intuitive manner.
R3: Proactiveness Users are assisted in configuring their privacy.
R4: Awareness Users are made aware of privacy threats they did not consider.
R5: Granularity Users control their privacy in a fine-grained manner.

the most feasible strategy for revealing private patterns [18]. When
selecting the PPMs to conceal private patterns, we seek high accu-
racy of public complex events (e.g., “Bob exercises”), that should be
detectable by an SPS, as our main utility metric.

(3) Invasive Queries. The invasive queries aim to reveal sensitive
information about Bob, like lifestyle, going beyond private patterns.
Such threats happen during query processing by HBC nodes which
can, e.g., augment a query on Bob’s exercising with the simple filter
condition: time > 9am AND time < 6pm to disclose the fact of Bob’s
exercising during working hours to his employer. Because Prinseps
allows queries to be processed by sensor, fog, and cloud layers, this
threat can occur on any of them (cf. 3○ in Figure 2). When choosing
the PPMs to address invasive queries, we consider both low latency
and high accuracy of public (complex) events to be our target utility
metrics of an SPS.
Exemplary PPMs for Prinseps. After describing critical privacy
threats and their conduct in multilayered SPSs, we utilize (1) assets
that need protection, (2) target utility metrics, and (3) the computing
capabilities of SPS’s layers as our criteria to select exemplary PPMs
for Prinseps. We identify three types of PPMs that satisfy our criteria
while being frequently used by real-world applications [7, 11]: ma-
chine learning (ML)-, differential privacy (DP)-, and access control
(AC)-based PPMs. We showcase how these PPMs address sensitive
attributes, private patterns, and invasive queries threats in multilay-
ered SPSs (cf. Section 4), shedding light on which other information
can be utilized by Prinseps to select PPMs.
Privacy Policies: Customizing PPMs to Enable the PUT. There
exists clear evidence that PPMs can improve their PUT by protecting
the privacy of “what users care for” [7, 27]. Hence, identifying user
privacy needs can help Prinseps to customize PPMs, making their
parameterization and application selective. This enhances utility, as
protection levels of PPMs (e.g., amount of noise added to data) and
their usage frequency are limited to user privacy needs, which also
allows fine-tuning the PUT.

Prinseps captures users’ privacy needs in the form of a privacy
policy. The literature shows various requirements for a user-defined
privacy policy [13, 25]—we extract the most relevant for Prinseps
in Table 1. We create the privacy policy based on static and dynamic
rules [25], as explained using our running example. Respecting R1:

Transparency, a HAR application must brief Bob that IMU data from
his wearables is collected to monitor his exercise. Bob can also be
prompted to provide his weight for a better QoS—if he decides not to
disclose it, then such a privacy need must be intuitively expressive,
satisfying R2: Accessibility.

Prinseps utilizes policy rules to map Bob’s privacy needs, like
a static policy rule to conceal his weight. Such policy rules can be
predefined in Prinseps by domain privacy experts, e.g., in the form
of trigger-action statements. Prinseps finalizes Bob’s privacy policy
by clarifying and making suggestions to select best-matching policy
rules, as per R3: Proactiveness. Despite hiding his weight, Bob must

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Fomichev et al.

be alarmed that its inference is still feasible via IMU data, fulfilling
R4: Awareness. Hence, Prinseps offers Bob to either apply a PPM(-s)
against this threat or to accept it. In the first case, Bob gets informed
about PPM’s impact on utility, and he is guided towards tuning his
PUT, following R5: Granularity. For example: the used PPM can, by
default, reduce weight inference to 10% at the cost of recognizing
90% of Bob’s activity correctly; Bob can adjust this PUT to, e.g., 1%
weight inference vs. 80% of activity recognition accuracy.

Bob may need to change the usage of a specific PPM, like its PUT,
based on his context, e.g., time and location. Prinseps achieves this
via dynamic rules that override Bob’s static policy rules, relying on
his feedback in a situation, e.g., Bob allows the HAR application to
access his weight only if he is at a doctor’s office.
Principles of Applying PPMs. To enable holistic privacy protec-
tion in SPSs, the application of PPMs in a privacy-by-design manner
is as vital as PPMs’ privacy guarantees [25]. Prinseps follows three
such privacy-by-design principles: P1: the Principle of least privilege
(PoLP), P2: Applying a PPM “early on”, and P3: Complementarity of
PPMs. With P1, data minimization is enforced, like forbidding the
smart home apps to access raw sensor data, since they only require
high-level events for their functionality [13]. Using P2, we demand
that a PPM is applied as close towards the source of the threat as
possible, thus it will not propagate (e.g., to the next layer in an SPS)
or escalate. P3 stipulates that each known threat must, by default,
be treated by a PPM. Yet, complex threats may not be preventable by
a single PPM: in this case, the combination of PPMs that reinforce
each other should be applied to tackle the complex threats. To avoid
circumventing PPMs used in Prinseps via misconfiguration, we, on
top of P1–P3, demand such PPMs to be deployed as per best security
practices, like running PPMs inside TEEs and obfuscating them [2].

4 SHAPING PRINSEPS: RESULTS

Figure 3 shows an overview of Prinseps whose goal is to holistically
address critical privacy threats in multilayered SPSs while enabling
a PUT. Prinseps has the following workflow: the pool of (exemplary)
PPMs tackling these critical threats is maintained, i.e., novel PPMs
are included as new privacy threats appear, and outdated PPMs get
removed. From this pool, the Prinseps’ component called the PPM
evaluator picks a candidate PPM to address a specific privacy threat
based on criteria such as: privacy guarantees, runtime performance,
utility metrics, resource requirements, scalability, and ease of setup;
this list is nonexhaustive. Then, Prinseps customizes the candidate
PPM leveraging a user privacy policy to fulfill his/her privacy needs
while minimizing the impact on utility by restricting PPM’s usage to
such privacy needs and its level of protection—to user’s preferences.
Finally, the customized PPM is deployed at a specific SPS layer, i.e.,
sensor, fog, or cloud (cf. Figure 2).

The workflow of Prinseps is dynamic, i.e., each component can
receive updates and be rerun, like including a new PPM to the pool
can trigger the evaluator to reassess this PPM as a better candidate
to tackle a privacy threat, or adding a fresh privacy policy rule will
require Prinseps to recustomize the PPM(-s) already in use.

In the following, we report our findings on how Prinseps utilizes
state-of-the-art ML-, DP-, and AC-based PPMs to address sensitive
attributes, private patterns, and invasive queries threats (cf. Sec-
tion 3). We also discuss open challenges and research opportunities
to shape Prinseps and, more broadly, the privacy landscape in SPSs.

Sanitize Query

(DP-based)

ML-based

PPMs

Rewrite Query

(AC-based)

Privacy

policies

(e.g., sink

is Bob)

Privacy-preserving

mechanisms (PPMs)

ML-, DP-, and AC-based

Privacy

action rules

(e.g., add

sink)

Reduced

search space

for placement

P1&P2: PoLP and apply PPMs “early on” P3: Complementarity of PPMs

Sensitive Attributes

(§ 4.1)

Private Patterns (§ 4.2) Invasive Queries (§ 4.3)

𝝈⋈
𝒔𝒓𝒄𝟏 𝒔𝒓𝒄𝟐

𝝅
Operator

Placement

2. Select, customize, and apply PPMs to enable a PUT

1. PPM evaluator

@sink...

define stream...

from...

latency <...

Add Lap. noise:

M(t) = Q(t) +

Lap(.)

<ts1, head, IMU1>

<ts2, shin, IMU2>

...

<gender, age, ...>

X

Figure 3: Overview of Prinseps privacy-preserving architecture for SPSs.

Sections 4.1 through 4.3 cover each of the above privacy threats and
are structured as follows: we (1) justify the selection of most suitable
PPM(-s) against the threat, using our principles of applying PPMs
listed in Section 3, findings from related work, and self-expertise; (2)
report evaluation results for each PPM tackling the corresponding
privacy threat; and (3) present opportunities for future research.
4.1 Conceal Sensitive Attributes

PPM Selection. Among ML-, DP-, and AC-based PPMs, we see that
the former fits best to conceal sensitive attributes, as they: (1) work
directly on raw data streams (P2), minimizing the information on
the sensitive attribute, like weight (P1); and (2) show near real-time
performance [11], allowing Prinseps to meet the utility goal related
to this threat—low latency. Contrarily, DP-based PPMs target raw
data streams by adding noise to query results on such data (cf. Sec-
tion 2), violating P2, whereas injecting noise directly into raw data
either degrades its accuracy (and thus utility) or leads to significant
noise scalability issues [8]. The AC-based PPMs could, in principle,
conceal sensitive attributes by limiting access to parts of raw data,
satisfying P1 and P2. Yet, sensitive attributes are embedded in raw
data (e.g., gender in the IMU data of Bob) [11], making it difficult
to formulate such AC-rules.

To see how Prinseps can utilize ML-based PPMs, we review one
recent PPM—ObscureNet that uses the variational autoencoder (VAE)
neural network to transform IMU data, hiding sensitive attributes
in near real-time [11]. This PPM reduces the success of inferring a
sensitive attribute, like gender, from 90% to 50% while keeping the
accuracy of public HAR events, searched by an SPS, above 90%.
Results: ML-based PPMs. We seek to understand the (1) PUT and
(2) runtime performance of such PPMs in the real-world SPS case of
several wearable devices, as per our running example. Therefore, we
evaluate ObscureNet on the RealWorld (HAR) dataset that contains
IMU data from five devices located as such: head, upper arm, waist,
thigh, and shin [26]; originally, ObscureNet is validated on the IMU
data coming from a single thigh-worn device [11].

For comparability, we use ObscureNet3 with the same parameters
as in [11]; the sampling rate of IMU data from RealWorld (HAR) is
50 Hz. Table 2 shows the gender inference accuracy on the five body
locations (i.e., head to shin) for four HAR events: walking, standing,
jogging, and climbing upstairs, which must be detected by the SPS.
We see that gender inference drops from over 90% to below 20%
after applying ObscureNet, being in line with [11]. This behavior
is consistent across different body locations and HAR events; our
results for weight inference are similar. Nevertheless, we reveal that

3https://github.com/sustainable-computing/ObscureNet [Accessed on 26.05.2023].

https://github.com/sustainable-computing/ObscureNet

No One Size (PPM) Fits All:
Towards Privacy in Stream Processing Systems DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

Table 2: Gender inference accuracy on five body locations for four HAR events

before and after applying ObscureNet.

Location

Accuracy Event Walking
(b / a, %)

Standing
(b / a, %)

Jogging
(b / a, %)

Upstairs
(b / a, %)

Head 99.1 / 14.7 92.3 / 16.1 98.9 / 17.3 97.9 / 17.4
Upper arm 99.5 / 7.1 94.0 / 41.0 98.3 / 10.8 99.0 / 22.5

Waist 99.4 / 13.1 90.2 / 15.3 93.8 / 20.6 98.1 / 35.3
Thigh 95.0 / 6.2 80.0 / 31.2 91.3 / 12.0 95.5 / 16.8
Shin 92.1 / 20.1 73.0 / 45.2 93.1 / 28.7 92.6 / 22.1

Combined 97.0 / 29.4 85.9 / 33.6 95.2 / 36.7 94.7 / 36.9

(b / a, %) – inference accuracy in % before and after applying ObscureNet.

Table 3: Event inference accuracy on five body locations for four HAR events

before and after applying ObscureNet.

Location

Accuracy Event Walking
(b / a, %)

Standing
(b / a, %)

Jogging
(b / a, %)

Upstairs
(b / a, %)

Head 91.1 / 39.0 90.0 / 66.4 98.4 / 83.4 98.0 / 89.5
Upper arm 92.4 / 66.8 90.8 / 78.4 95.6 / 87.3 96.4 / 86.1

Waist 97.7 / 93.7 82.7 / 69.8 98.4 / 89.6 97.8 / 80.0
Thigh 92.0 / 75.8 92.9 / 66.1 95.5 / 88.7 97.6 / 95.1
Shin 92.6 / 60.5 94.3 / 92.8 94.7 / 87.9 96.6 / 94.4

Combined 90.5 / 37.3 82.1 / 62.4 93.7 / 87.6 93.5 / 83.5

(b / a, %) – inference accuracy in % before and after applying ObscureNet.

ObscureNet can lower the accuracy of HAR events by up to 50%
(cf. Table 3), harming the SPS’s utility, which was unseen in [11].

We assess the runtime of ObscureNet for several devices reusing
the benchmark of [11] carried on off-the-shelf hardware: Raspberry
Pi 3. From this benchmark, we calculate the time budget for running
ObscureNet on our IMU data to be 200 ms, while ObscureNet needs
around 100 ms to conceal sensitive attributes on these data. Hence,
for the IMU data of 50 Hz, ObscureNet can protect privacy of data
streams from two devices simultaneously in near real-time.
Research Opportunity. Our results indicate that ML-based PPMs,
like ObscureNet, favor privacy over utility in realistic SPS cases with
several wearables. Hence, utility—both in terms of accuracy of HAR
events and runtime performance (i.e., for lower latency)—needs to
be improved, which requires an in-depth study of such recent PPMs
to adjust their PUT. This twofold utility can be enhanced through
federated learning, leveraging data streams from different devices
[28]. The runtime performance of ObscureNet boosts by lowering
the data sampling rate, like by two times if we go from 50 to 25 Hz.
Thus, ML-based PPMs should be further explored towards utilizing
task-aware knowledge. Studying Prinseps’ generalizability, we spot
a research avenue—to investigate sensitive attributes in nonhuman-
centric environments (e.g., smart factories) and evaluate the efficacy
of existing ML-based PPMs in concealing such sensitive attributes.

4.2 Protect Private Patterns

PPM Selection. From ML-, DP-, and AC-based PPMs, we find that
the latter two are best suited to protect private patterns, like “taking
medicine” in our running example. The reasons are as follows: both
PPMs have been used on queries [12, 27] while satisfying P1 and P2.
Considering DP-based PPMs, they minimize private information in
the query result by adding noise to it (sanitization) after processing
the query, but before returning its response [27]. While AC-based
PPMs rewrite queries before processing them, restricting access to
sensitive data leaked by the query result [12]. Thus, these PPMs can
also be complementary, as per P3. We have not found any ML-based
PPMs that are applicable on queries to protect private patterns.

Table 4: Instantiating Swellfish privacy to conceal private patterns in Prinseps.

Day

Event Time
𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7

Bob’s Day 1 swallow drink lay d. drink swallow lay d. walk
Bob’s Day 2 walk swallow drink lay d. walk lay d. drink

...
Bob’s Day n swallow drink lay d. walk swallow drink lay d.

𝑄 (𝑡) – – 2 1 0 0 1

𝐿𝑎𝑝 (·) 𝑛 ·𝜖
3

𝑛 ·𝜖
3

𝑛 ·𝜖
3

𝑛 ·𝜖
3

𝑛 ·𝜖
2 𝑛 · 𝜖 0

0 – relevance interval; 0 – private pattern; small 𝐿𝑎𝑝 (·) means more noise, n – num. of days.

Results: DP-based PPMs. We (1) determine the most suitable class
of DP-based PPMs for protecting private patterns and (2) instantiate
one such PPM [27], exhibiting how it can be leveraged by Prinseps.

To date, there exist three classes of DP-based PPMs adding noise
at the granularity of: events, windows of events, and users—denoted
as event-level, w-event level, and user-level PPMs [21]. The first class
targets single events, e.g., “Bob drinks”, and not their relationships,
making these PPMs unsuitable for our purpose. As for the user-level
DP, it protects the entire data stream of a person but requires many
users to be involved, rendering such PPMs infeasible in single-user
cases (as our running example) due to a reduced PUT [21]. Instead,
we study w-event level PPMs that conceal a series of events within a
time window, allowing a better PUT for protecting private patterns.

We instantiate a novel w-event level PPM: Swellfish privacy [27],
for our running example to assess its impact on the PUT. This PPM
improves on existing w-event level DP methods by adding noise to
queries selectively, i.e., only within a relevance interval provided by
a user (e.g., Bob), and not universally to every window of length 𝑤

events occurring in the data stream. The relevance interval specifies
a timeframe inside which a private pattern can happen, like “taking
medicine” by Bob around mealtimes. Being selective in adding noise,
allows [27] to attain between one to three orders of magnitude better
PUT than the state of the art on w-event level DP. Swellfish privacy
is thus an exemplary PPM, showcasing how utilizing a user privacy
policy can facilitate the PUT, as advocated by Prinseps.

We determine that Swellfish privacy notably benefits the PUT in
Prinseps being instantiated to protect the private pattern of “taking
medicine” by Bob over multiple days. Thus, a HAR application that
is curious about Bob’s health condition cannot discern if Bob takes
medicine on a specific day. As in [27], the private pattern is revealed
via count queries over predefined Bob’s events, like [𝑤𝑎𝑙𝑘, 𝑠𝑤𝑎𝑙𝑙𝑜𝑤,

𝑑𝑟𝑖𝑛𝑘, 𝑙𝑎𝑦 𝑑𝑜𝑤𝑛], where each query returns the occurrences of such
events, e.g., [1, 0, 0, 0], performed by Bob at a point in time.

Table 4 shows how Prinseps hides the private pattern of “taking
medicine” utilizing the adapted DP-based PPM of Swellfish privacy.
The main idea is to inject Laplacian noise to the query result 𝑄 (𝑡)
only within the relevance interval inside which the “taking medicine”
pattern occurs (as a sequence of “swallow” → “drink” → “lay down”
events) to protect it, while adding no noise to the result outside the
relevance interval to preserve utility. This allows us to prevent the
detection of at least one simple event, like “drink”, hence concealing
the private pattern. Specifically,𝑀 (𝑡) = 𝑄 (𝑡)+𝐿𝑎𝑝 (·) is the sanitized
query result utilizing this PPM, where 𝐿𝑎𝑝 (·) shows the amount of
added Laplacian noise. We set the size of the relevance interval to
four timestamps to encompass the length of our private pattern (i.e.,
𝑤 = 3 in the w-event level DP terminology). Other parameters that

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Fomichev et al.

include global query sensitivity and privacy budget 𝜖 are chosen to
be one and the range 0.1–10, respectively, in accord with [27].

The noise reduction from the privacy budget of 𝜖
3 , equally dis-

tributed in the relevance interval [𝑡1, 𝑡4], to 0 outside this relevance
interval at 𝑡7 in [𝑡5, 𝑡7] improves utility (i.e., the detection accuracy
of public complex events, like “Bob exercises”) without comprising
privacy, leading to a better PUT. However, the rapid noise reduction
outside the relevance interval is not well-studied even in [27]—not
to mention the PUT behavior in various other SPS’s use cases.
Results: AC-basedPPMs.We exemplify howPrinseps can achieve
AC on private patterns. For this, it relies on a query rewriting com-
ponent that takes a query submitted by a data consumer (e.g., HAR
application) and enforces privacy action rules on the query by rewrit-
ing it if necessary. These privacy action rules define how the query
is rewritten, and they are instantiated from the user privacy policy
with respect to the PPM (cf. Figure 3). Note that the query rewriting
component is the entry point of the query in Prinseps, ensuring P2

and following best practices for query rewriting in databases [14].
We show how Prinseps enforces AC using our running example

count query, where “swallow” → “drink” → “lay down” events must
occur, e.g., within a window of two minutes, to reveal the private
pattern of “taking medicine” by Bob:4
d e f i n e s t ream T a k e M e d i c i n e S t r (t s long , cn t_swa l low int ,
c n t _ d r i n k int , c n t _ l a y d in t) ;
from every e1= T a k e M e d i c i n e S t r [u s e r _ a c t i v i t y == ' swal low ']

−> e2= T a k e M e d i c i n e S t r [u s e r _ a c t i v i t y == ' d r i n k ']
−> e3= T a k e M e d i c i n e S t r [u s e r _ a c t i v i t y == ' l a y ␣ down ']

w i t h i n 2 min

se l e c t e3 . t s , count (e1 . u s e r _ a c t i v i t y) as cnt_swal low ,
count (e2 . u s e r _ a c t i v i t y) as c n t _ d r i n k ,
count (e3 . u s e r _ a c t i v i t y) as c n t _ l a y d
in se r t into T a k e M e d i c i n e P a t t e r n ;

Upon seeing such a query—issued by the HAR application—the
query rewriting component of Prinseps first checks if there exist
privacy action rules related to this query. Imagine Bob has defined
a privacy policy rule demanding to forward the results of queries,
searching for the “taking medicine” pattern, only to himself. In this
case, the HAR application sends the query to detect these patterns,
violating Bob’s privacy policy. This violation is noticed by the query
rewriting component, triggering the action rule to rewrite the @sink
clause such that the query result is only presented to Bob:

@sink (p u b l i s h e r = ' Bob ')

With this, Bob’s private patterns become protected while preserving
utility, i.e., the detection accuracy of his public complex events, like
“Bob exercises”, improving the PUT.
Research Opportunity. We identify a few challenges to protection
of private patterns in Prinseps. First, both DP- and AC-based PPMs
need to be benchmarked on the set of private patterns to understand
PPMs’ efficiency and tradeoffs, e.g., in terms of protection levels and
runtime performance. Second, we see potential for these two PPMs
to complement each other to protect private patterns, materializing
our P3. While we are not aware of any exemplary architectures for
combining PPMs in SPSs, there exist some in databases [14]. Third,
we view generalizability of private patterns’ protection in Prinseps,
as another research avenue, like discovering and preserving private
patterns in enterprise environments, where such patterns can leak

4We use Siddhi query language syntax here: https://siddhi.io [Accessed on 26.05.2023].

intellectual property. This research opportunity is especially topical,
given a revived interest in the protection of private patterns [9].

4.3 Mitigate Invasive Queries

PPM Selection. We perceive invasive queries as a complex privacy
threat, hence it is unlikely to be addressed by any of the PPMs used
by Prinseps (i.e., ML-, DP-, and AC-based) in their traditional form
alone. Combining different PPMs as per P3 (e.g., DP and AC) should
help to tackle such complex threats, but it remains a difficult task (cf.
Section 4.2), with little research done in that direction [14]. Hence,
we explore how the operator placement in SPSs, defining where and
how the query operators are processed within the multilayered SPS
[15], can be leveraged as the AC-based PPM against HBC SPS nodes
(cf. Section 3), mitigating invasive queries close towards the source
of the threat, satisfying P2 and implicitly P1.
Results: AC-based PPMs. We sketch how the operator placement
can be utilized in Prinseps to address invasive queries. To date, the
operator placement algorithms focus only on utility-related metrics,
like latency and throughput, to decide which SPS nodes will process
the queries [15, 16]. There exists limited work that considers privacy
to inform the operator placement, e.g., [23] combines privacy and
utility goals in the placement decisions, but only from the viewpoint
of designing a query language for SPSs, while [6] incorporates user’s
trust into an SPS node to the cost model, however assessing trust of
resources in a multilayered SPS, whose properties are hidden from
end users, is infeasible. In contrast, Prinseps approaches the task of
operator placement from the point of balancing a PUT. Specifically,
we seek to reuse existing operator placement algorithms optimizing
utility and augment them with privacy by reducing the search space
for the operator placement to trusted nodes (cf. Figure 3). Prinseps
relies on privacy action rules derived from the user’s privacy policy
applied with respect to the PPM to decide on nodes’ trustworthiness,
like trusted sinks specified by AC-based PPMs (cf. Section 4.2) which
limit query processing to, e.g., Bob’s or his family member’s devices.
Research Opportunity. Whilst we outline the idea of reducing the
search space for the operator placement to address invasive queries,
the question of how to derive information on nodes’ trustworthiness
from the action rules and encapsulate it in existing placement algo-
rithms remains open. Thus, another research avenue is to explore
factors for determining trusted nodes in a multilayered SPS, like (1)
support of specific PPMs verifiable by SPS’s users, (2) capability of
running PPMs inside TEEs, (3) trust perception of an SPS node pro-
vided by its peers [22], and (4) levels of transparency, e.g., reliance
on open architectures as well as voluntary certification.

5 CONCLUSION

In this work, we introduce our vision for Prinseps, enabling holistic
privacy protection in multilayered stream processing systems (SPSs)
with a focus on balancing a privacy-utility tradeoff (PUT). Prinseps
utilizes critical privacy threats in multilayered SPSs that we identify
in order to systematically select, customize, and apply state-of-the-
art privacy-preserving mechanisms (PPMs) to address these critical
threats while promoting the PUT. Furthermore, we provide research
opportunities for the found privacy threats and PPMs tackling them,
outlining how such PPMs can interact with core SPS’s mechanisms,
like query rewriting and operator placement.

https://siddhi.io

No One Size (PPM) Fits All:
Towards Privacy in Stream Processing Systems DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

6 ACKNOWLEDGMENTS

We are thankful to Majid Lotfian Delouee, He Gu, Rana Tallal Javed,
and Espen Volnes for the initial discussions on this paper. We would
like to thank Christine Schäler and Martin Schäler for their input on
Swellfish privacy, and the anonymous reviewers for giving valuable
feedback. This work has been co-funded by the Research Council
of Norway as part of the project Parrot (311197), DFG Collaborative
Research Center (CRC) 1053–MAKI, and DFKI Darmstadt.
REFERENCES

[1] Sayan Biswas and Catuscia Palamidessi. 2022. PRIVIC: A Privacy-preserving
Method for Incremental Collection of Location Data. arXiv preprint
arXiv:2206.10525 (2022).

[2] Cara Bloom. 2022. Privacy Threat Modeling. https://www.usenix.org/conference/
pepr22/presentation/bloom.

[3] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand, Hossein Shafagh, and
Sylvia Ratnasamy. 2020. TimeCrypt: Encrypted Data Stream Processing at Scale
with Cryptographic Access Control. In Proceedings of the 17th USENIX Symposium
on Networked Systems Design and Implementation. 835–850.

[4] Jianneng Cao, Barbara Carminati, Elena Ferrari, and Kian-Lee Tan. 2010. Castle:
Continuously Anonymizing Data Streams. IEEE Transactions on Dependable and
Secure Computing 8, 3 (2010), 337–352.

[5] Yan Chen, Ashwin Machanavajjhala, Michael Hay, and Gerome Miklau. 2017.
PeGaSus: Data-adaptive Differentially Private Stream Processing. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1375–1388.

[6] Rahul Dwarakanath, Boris Koldehofe, Yashas Bharadwaj, The An Binh Nguyen,
David Eyers, and Ralf Steinmetz. 2017. TrustCEP: Adopting a Trust-based Ap-
proach for Distributed Complex Event Processing. In 2017 18th IEEE International
Conference on Mobile Data Management (MDM). 30–39.

[7] Ecenaz Erdemir, Pier Luigi Dragotti, and Deniz Gunduz. 2022. Active Privacy-
Utility Trade-off Against Inference in Time-Series Data Sharing. arXiv preprint
arXiv:2202.05833 (2022).

[8] Ferdinando Fioretto and Pascal Van Hentenryck. 2019. OptStream: Releasing
Time Series Privately. Journal of Artificial Intelligence Research 65 (2019), 423–456.

[9] He Gu, Thomas Plagemann, Maik Benndorf, Vera Goebel, and Boris Koldehofe.
2023. Differential Privacy for Protecting Private Patterns in Data Streams. arXiv
preprint arXiv:2305.06105 (2023).

[10] Kun Guo and Qishan Zhang. 2013. Fast Clustering-based Anonymization Ap-
proaches with Time Constraints for Data Streams. Knowledge-Based Systems 46
(2013), 95–108.

[11] Omid Hajihassnai, Omid Ardakanian, and Hamzeh Khazaei. 2021. ObscureNet:
Learning Attribute-invariant Latent Representation for Anonymizing Sensor
Data. In Proceedings of the International Conference on Internet-of-Things Design
and Implementation. 40–52.

[12] IBM Corporation. 2023. Query Rewrite. https://www.ibm.com/docs/en/
guardium/11.2?topic=protect-query-rewrite.

[13] Haojian Jin, Boyuan Guo, Rituparna Roychoudhury, Yaxing Yao, Swarun Kumar,
Yuvraj Agarwal, and Jason I Hong. 2022. Exploring the Needs of Users for
Supporting Privacy-Protective Behaviors in Smart Homes. In CHI Conference on
Human Factors in Computing Systems. 1–19.

[14] Noah Johnson, Joseph P Near, Joseph M Hellerstein, and Dawn Song. 2020.
Chorus: A Programming Framework for Building Scalable Differential Privacy

Mechanisms. In 2020 IEEE European Symposium on Security and Privacy (EuroS&P).
535–551.

[15] Manisha Luthra, Boris Koldehofe, Niels Danger, Pascal Weisenberger, Guido
Salvaneschi, and Ioannis Stavrakakis. 2021. TCEP: Transitions in Operator Place-
ment to Adapt to Dynamic Network Environments. J. Comput. System Sci. 122
(2021), 94–125.

[16] Matteo Nardelli, Valeria Cardellini, Vincenzo Grassi, and Francesco Lo Presti.
2019. Efficient Operator Placement for Distributed Data Stream Processing
Applications. IEEE Transactions on Parallel and Distributed Systems 30, 8 (2019),
1753–1767.

[17] Emanuel Onica, Pascal Felber, Hugues Mercier, and Etienne Rivière. 2016.
Confidentiality-preserving Publish/Subscribe: A Survey. ACM computing surveys
(CSUR) 49, 2 (2016), 1–43.

[18] Saravana Murthy Palanisamy, Frank Dürr, Muhammad Adnan Tariq, and Kurt
Rothermel. 2018. Preserving Privacy and Quality of Service in Complex Event
Processing through Event Reordering. In Proceedings of the 12th ACM International
Conference on Distributed and Event-based Systems. 40–51.

[19] Thomas Plagemann, Vera Goebel, Matthias Hollick, and Boris Koldehofe. 2022.
Towards Privacy Engineering for Real-time Analytics in the Human-centered
Internet of Things. arXiv preprint arXiv:2210.16352 (2022).

[20] Do Le Quoc, Martin Beck, Pramod Bhatotia, Ruichuan Chen, Christof Fetzer,
and Thorsten Strufe. 2017. PrivApprox: Privacy-Preserving Stream Analytics. In
Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference.
659–672.

[21] Xuebin Ren, Liang Shi, Weiren Yu, Shusen Yang, Cong Zhao, and Zongben Xu.
2022. LDP-IDS: Local Differential Privacy for Infinite Data Streams. In Proceedings
of the 2022 International Conference on Management of Data. 1064–1077.

[22] Mastooreh Salajegheh, Shashank Agrawal, Maliheh Shirvanian, Mihai Christodor-
escu, and Payman Mohassel. 2022. CoRA: Collaborative Risk-aware Authentica-
tion. Cryptology ePrint Archive (2022).

[23] Guido Salvaneschi, Mirko Köhler, Daniel Sokolowski, Philipp Haller, Sebastian
Erdweg, and Mira Mezini. 2019. Language-integrated Privacy-aware Distributed
Queries. Proc. ACM Program. Lang. 3, OOPSLA (2019), 167–1.

[24] Gianluca Scopelliti, Sepideh Pouyanrad, Job Noorman, Fritz Alder, Christoph
Baumann, Frank Piessens, and Jan Tobias Mühlberg. 2022. End-to-End Security
for Distributed Event-Driven Enclave Applications on Heterogeneous TEEs. arXiv
preprint arXiv:2206.01041 (2022).

[25] Christoph Stach, Clémentine Gritti, and Bernhard Mitschang. 2020. Bringing
Privacy Control Back to Citizens: DISPEL—A Distributed Privacy Management
Platform for the Internet of Things. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing. 1272–1279.

[26] Timo Sztyler and Heiner Stuckenschmidt. 2016. On-body Localization of Wearable
Devices: An Investigation of Position-aware Activity Recognition. In 2016 IEEE
International Conference on Pervasive Computing and Communications (PerCom).
1–9.

[27] Christine Tex, Martin Schäler, and Klemens Böhm. 2022. Swellfish Privacy:
Supporting Time-dependent Relevance for Continuous Differential Privacy. In-
formation Systems (2022), 102079.

[28] Xin Yang and Omid Ardakanian. 2022. Blinder: End-to-end Privacy Protec-
tion in Sensing Systems via Personalized Federated Learning. arXiv preprint
arXiv:2209.12046 (2022).

[29] Steffen Zeuch, Ankit Chaudhary, Bonaventura Del Monte, Haralampos Gavriilidis,
Dimitrios Giouroukis, Philipp M Grulich, Sebastian Breß, Jonas Traub, and Volker
Markl. 2020. The NebulaStream Platform for Data and Application Management
in the Internet of Things. In 10th Conference on Innovative Data Systems Research,
CIDR 2020.

https://www.usenix.org/conference/pepr22/presentation/bloom
https://www.usenix.org/conference/pepr22/presentation/bloom
https://www.ibm.com/docs/en/guardium/11.2?topic=protect-query-rewrite
https://www.ibm.com/docs/en/guardium/11.2?topic=protect-query-rewrite

	Abstract
	1 Introduction
	2 Related Work
	3 Prinseps: Vision for Privacy in sps
	4 Shaping Prinseps: Results
	4.1 Conceal Sensitive Attributes
	4.2 Protect Private Patterns
	4.3 Mitigate Invasive Queries

	5 Conclusion
	6 Acknowledgments
	References

