
FORTE: An Extensible Framework for Robustness and Efficiency
in Data Transfer Pipelines

Martin Hilgendorf
Vincenzo Gulisano

Marina Papatriantafilou
martin.hilgendorf@chalmers.se
vincenzo.gulisano@chalmers.se

ptrianta@chalmers.se
Chalmers University of Technology, CSE Dept.

Gothenburg, Sweden

Jan Engström
Binay Mishra

jan.engstrom.4@consultant.volvo.com
binay.mishra@volvo.com

Volvo Group Trucks Technology
Gothenburg, Sweden

ABSTRACT
In the age of big data and growing product complexity, it is common
to monitor many aspects of a product or system, in order to extract
well-founded intelligence and draw conclusions, to continue driving
innovation. Automating and scaling processes in data-pipelines be-
comes essential to keep pace with increasing rates of data generated
by such practices, while meeting security, governance, scalability
and resource-efficiency demands.

We present FORTE, an extensible framework for robustness and
transfer-efficiency in data pipelines.We identify sources of potential
bottlenecks and explore the design space of approaches to deal with
the challenges they pose. We study and evaluate synergetic effects
of data compression and in-memory processing as well as task
scheduling, in association with pipeline performance.

A prototype implementation of FORTE is implemented and stud-
ied in a use-case at Volvo Trucks for high-volume production-level
data sets, in the order of magnitude of hundreds of gigabytes to
terabytes per burst. Various general-purpose lossless data compres-
sion algorithms are evaluated, in order to balance compression
effectiveness and time in the pipeline.

All in all, FORTE enables to deal with trade-offs and achieve
benefits in latency and sustainable rate (up to 1.8 times better),
effectiveness in resource utilisation, all while also enabling addi-
tional features such as integrity verification, logging, monitoring
and traceability, as well as cataloguing of transferred data. We also
note that the resource efficiency improvements achievable with
FORTE, and its extensibility, can imply further benefits regarding
scheduling, orchestration and energy-efficiency in such pipelines.

CCS CONCEPTS
• Information systems → Data management systems; • Ap-
plied computing→ Enterprise datamanagement; •Computer
systems organization → Distributed architectures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0122-1/23/06. . . $15.00
https://doi.org/10.1145/3583678.3596892

KEYWORDS
Data pipelines, Internet of Things, distributed processing, edge
computing, data transfer efficiency, resource utilization.

ACM Reference Format:
Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan En-
gström, and Binay Mishra. 2023. FORTE: An Extensible Framework for
Robustness and Efficiency in Data Transfer Pipelines. In The 17th ACM Inter-
national Conference on Distributed and Event-based Systems (DEBS ’23), June
27–30, 2023, Neuchatel, Switzerland. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3583678.3596892

1 INTRODUCTION
Complex systems with advanced sensing capabilities produce large
quantities of data at increasingly higher rates. This data needs to
be transferred and analysed, often with certain time constraints,
through data pipelines [7, 19]. Often, data is generated at remote
locations by edge devices with constraints in processing capacity,
far away from data centres with abundant resources, while to enable
processing and analytics for a holistic view of a system, larger
volumes of data need to be consolidated in the latter. To this end,
data transfer pipelines are required to automate the reliable and
efficient transfer of large data volumes. For the latter, besides data
transmission, some amount of processing becomes necessary for
automating the work, as well as for managing data aspects such as
integrity and confidentiality.

Scaling to meet the aforementioned demands requires efficient
use of available resources [6], tominimise the latency of the pipeline.
Hence, data transfer pipelines should be deployed spanning the
whole system, from where data is sensed/generated (edge) to where
(centralised) processing/decision-making takes place. Limited re-
sources at the edge should therefore also be leveraged, to e.g., per-
form data compression in preparation for a transfer with limited
throughput to gain an overall improvement in pipeline latency.

Challenges in the problem area. Let us consider an example for
context, a real use-case scenario from Volvo Trucks, illustrating
key aspects of the challenges [8]. Data from a fleet of development
vehicles is sensed at distant locations, such as test tracks and cus-
tomer sites, to support data-driven product development. Capture
rates on the order of 1GB/min per vehicle are common during
such tests. To analyse data in a timely manner, the data must be
made available to engineers at a remote data centre, providing them

139

https://orcid.org/0009-0008-6333-3503
https://orcid.org/0000-0002-2136-9179
https://orcid.org/0000-0001-9094-8871
https://orcid.org/0009-0004-5134-1144
https://orcid.org/0009-0004-3093-0193
https://doi.org/10.1145/3583678.3596892
https://doi.org/10.1145/3583678.3596892
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583678.3596892&domain=pdf&date_stamp=2023-06-27

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan Engström, and Binay Mishra

with storage systems and processing clusters. These require per-
formant and scalable automated data transfer pipelines, to support
growing data volumes within existing hardware systems. Latency,
throughput and sustainable rates are performance metrics used to
demonstrate and argue about efficiency, particularly with respect
to constrained resources [6, 7]. A challenge is that contention for
such resources increases with growing data volumes and additional
processing steps required to both manage automation as well as
complement with associated data management qualities, such as
integrity, confidentiality, logging, traceability. There is therefore
need to capitalise on available concurrent computational power,
avoiding slowdowns from dependencies, essentially exploiting data
and task parallelism possibilities. Due to the complexity of such a
system, a large number of design choices must be made, resulting
in multiplicative growing combinations of parameter choices to
optimise pipeline performance and resource utilisation, as well as
balance trade-offs.

Contributions. To address these challenges, this industry ex-
perience article proposes FORTE, an extensible framework for
robustness and transfer-efficiency in data pipelines. We identify
sources of potential bottlenecks (e.g., network bandwidth and node-
bandwidth) and explore the design space of approaches to deal with
several of the challenges they pose. The framework alleviates trans-
mission bandwidth bottlenecks by transferring compressed data
and balances the trade-offs between compression time (which adds
latency to the overall pipeline) and transfer-effectiveness (which
reduces latency, increasing throughput and sustainable rates for
transfers). Furthermore, we explore combined effects of such loss-
less data compression with in-memory processing, as well as task
scheduling, in association with pipeline performance.

An implementation of a pipeline based on FORTE is carried out
on Apache Airflow [2], a workflow management platform, and
is studied using high-volume production-level data sets available
through a large-scale use-case of Volvo Trucks. The data amounts
to the order of magnitude of hundreds of gigabytes to terabytes
per burst (corresponding to the aforementioned capture rates). The
detailed experiment study focuses on latency, throughput and sus-
tainable rates, scalability, as well as resource utilisation monitoring,
to expose imbalances that are addressed. FORTE enables to deal
with trade-offs and to achieve a significant uplift in sustainable rate
over the existing baseline, while also providing previously miss-
ing desired functionality, such as integrity verification, logging,
monitoring and traceability, as well as cataloguing of handled data.

Building on the extensibility properties of the framework, the
work also shows:
(1) a variation of the pipeline design using in-memory processing,

alleviating an identified hardware bottleneck, and supporting
real data rates exceeding 1.4 TB per period with bursty data
arrival. This is up to 1.8 times higher than the baseline in repre-
sentative highly demanding data loads, using identical infras-
tructure and hardware resources.

(2) an integration with an alternative task scheduling approach,
shedding light on trade-offs between average batch throughput
and pipeline parallelism.

Additionally, we show resource utilisation metrics for the diverse
pipeline designs and resources used by pipeline, motivating the

design decisions in FORTE as well as getting insights on their effects
on balancing resource usage, alleviating bottlenecks, and improving
the overall pipeline performance.

In this article, § 2 introduces preliminaries and describes the
problem in some more detail, § 3 motivates and overviews the
design decisions in FORTE, § 4 presents the main use-case and
subsequent evaluation, while § 5 discusses related work, and § 6
concludes the paper.

2 PRELIMINARIES AND PROBLEM
DESCRIPTION

2.1 System model and general problem
As mentioned in the previous section, we focus on data transfer
pipelines; for simplicity, we omit the term “transfer” and simply
refer to “(data) pipelines”.

A straightforward approach for transferring the data from a point
A to a point B is to use existing tools for copying data over networks.
This direct approach can be considered as a point of reference,
particularly in an industrial setup in which practitioners do not
have access to dedicated frameworks and platforms to develop and
execute pipelines — instead opting for a more basic solution using
well-known and established tools. As such, the baseline focuses
purely on the essential requirement to mirror all arriving data to
the destination, without supporting additional desired properties
of an industrial data pipeline, such as reliability, security, data
governance, and observability.

An automated data transfer pipeline consists of a sequence of
tasks, which data passes through in order, towards a given des-
tination. Data items are pushed through the tasks of a pipeline
either individually or in batches. To simplify the discussion, we
use the term batch throughout this work, although the batch may
just be a single data item, or a set of items, e.g. files. Each pipeline
task has a service rate, measured in MB/s, describing the sustained
rate at which it can operate on data. Some tasks are purely trans-
mitting data, while other user-defined ones can be responsible for
functionality such as creating batches, computing and comparing
checksums for data integrity verification, or encrypting data before
transfers over unprotected channels. Each pipeline task operates
on a single batch at once, but different tasks may operate on differ-
ent batches in parallel. Figure 2 illustrates the processing of three
data batches by a pipeline consisting of three tasks. Batches may
experience queuing delay when a preceding data batch is still being
processed by a task.

As the data volumes grow, resource requirements for operating
on them grow as well. Network bandwidth is a common limiting
factor in big data transfers, so introducing compression and decom-
pression tasks, while not serving the ultimate goal of transferring
data or meeting industrial requirements, can be seen as yet an-
other kind of task for the purpose of improving overall pipeline
performance. By having further tasks, the overall resource require-
ments of such a pipeline change, thus leading to more parameters
to consider in the problem.

Figure 1 illustrates an industrial setup target example, derived
from the motivating use-case and running example application for
this work. Large volumes of data from a fleet of field test vehicles

140

FORTE: An Extensible Framework for Robustness and Efficiency in Data Transfer Pipelines DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

Use case

General
Architecture

FORTE

Data Pipeline

S T T D...

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Upload station
(Edge)

Internet DMZ Data centre Destination

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Preparation Transfer Processing Transfer

Vehicles Upload station Internet DMZ Processing Storage

Figure 1: Overview of a typical data flow for which a data pipeline is desired. The industrial use-case is illustrated at the top,
and a general architecture for a data pipeline for this application is shown, using S to denote the data source, T for pipeline
tasks, and D as the destination. FORTE is used to structure a sequence of abstract processing tasks and allocate them to the
system components to instantiate a functional data pipeline.

at remote test sites are recorded and placed on a local upload sta-
tion, from where they are transferred to a final destination, the
production zone; there, they are made available to engineers to
analyse them, after integrity verification and data quality checks
are performed.

The aforementioned baseline would handle all data files as a sin-
gle batch, excluding possibilities both for embedding these checking
tasks in the process, as well as for exploiting data parallelism in
the system. The approach is performance-limited by bandwidth
and sequential task bottlenecks when transferring data across the
Internet and cannot scale with increasing data volumes.

To summarise, the requirements for an automated industrial data
pipeline include:

(1) Timely delivery of data — desire for short lead times between
data capture and analysis;

(2) Scaling with increasing load — this requires studying various
trade-offs in the system, to e.g. balance processing and trans-
mission times and identify ways to do latency hiding.

2.2 Metrics of interest
In order to evaluate pipeline transfer timeliness, we identify key
metrics of interest, also referred to as Key Performance Indicators
(KPIs). These include batch latency of a batch 𝑏, measured as the
time for the batch to traverse the complete pipeline; e.g., see the
“Batch b2 start” and “Batch b2 end” markers in Figure 2. Batch la-
tency, denoted 𝑙𝑏 , is thus equivalent to the sum of queuing delay
and processing time for all tasks in the pipeline:

𝑙𝑏 = BatchEnd − BatchStart =
𝑁∑︁
𝑖=1

𝑞𝑖 (𝑏) +
𝑁∑︁
𝑖=1

𝑡𝑖 (𝑏)

Ta
sk

t1

t2

t3

TimePipeline
start

Pipeline
end

Batch b2
start

Batch b2
end

b1

b2

b3

Batch

Figure 2: Execution schedule of a pipeline with three tasks,
processing three batches from the same burst.

where 𝑞𝑖 (𝑏) is the queuing delay experienced by batch 𝑏 before
beginning processing by task 𝑖 , of a pipeline consisting of 𝑁 tasks.
Similarly, 𝑡𝑖 (𝑏) is the time taken for batch 𝑏 to be handled by task 𝑖
(recall that the task can involve processing and/or transmission).

Batch latency in a transfer pipeline is directly related to the batch
size, the total size of data in a batch. As batches may vary in size,
we define batch throughput 𝑅𝑏 of a batch 𝑏 (measured in MB/s), as:

𝑅𝑏 =
Size(𝑏)

𝑙𝑏

which is used as a normalised metric to enable comparison between
batches of different sizes.

141

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan Engström, and Binay Mishra

Similarly, pipeline throughput, denoted 𝑅𝑃 , is a KPI that describes
the average rate at which the pipeline transfers data during a spe-
cific time interval. Consider a period of continuous pipeline opera-
tion of duration𝑇 during which 𝐵 batches transferred. The real time
duration 𝑇 starts as the first batch begins processing by the first
pipeline task, and ends when the final batch completes processing
by the final pipeline task (Figure 2). The total data volume is the sum
of the sizes of all 𝐵 data batches handled by the pipeline during the
interval 𝑇 . Pipeline throughput for this period is then defined as:

𝑅𝑃 =
Total data volume

PipelineEnd − PipelineStart
=

∑𝐵
𝑖=1 Size(𝑏𝑖)

𝑇

To evaluatewhether the performance of a pipeline is sufficient for
a given application, we also consider the nominal data rate, the rate
at which input data is generated (measured in MB/s) and compare
it to the real data rate (also in MB/s), the rate at which the pipeline
can accomplish transferring data, i.e. the pipeline throughput.

If data batches arrive in several bursts, for example at the end of
each of two 8-hour working shifts on a customer site, the effective
transfer rate for each batch is 𝑅𝑃 , as in the preceding formula. Note
that deriving the real data rate of the pipeline over a larger interval
(e.g. a 24 h one) from this 𝑅𝑃 provides a pessimistic estimate of the
real data rate for automated pipelines (as this calculation does not
account for actual latency hiding that can happen across bursts of
batches). In the baseline, the latter is the actual real data rate, due
to the way that the data is transferred.

In order to systematically identify and address pipeline perfor-
mance bottlenecks, the underlying causes for bottlenecks need
to be identified. Resource utilisation measurements of the various
hardware resources used by the pipeline give important insight
when diagnosing performance limitations that may lead to bottle-
necks. Hence, additional relevant metrics include utilisation levels
of CPU cores, system memory, disk bus bandwidth, and network
bandwidth.

3 OVERVIEW OF THE PROPOSED APPROACH
3.1 Problem insights
Data pipelines place high demands on system performance. For
example, in the context of the case study that we also use as a
running example, the baseline approach poses hard limitations on
performance in terms of how much data per day it can handle,
given that more field test vehicles are introduced and produce data.

Commonly, there are two complementary approaches to im-
proving system performance: hardware scaling and performance
tuning. Hardware scaling addresses a lack of resources by procur-
ing and deploying more systems and resources for a process to
use. In the context of data transfer processes, this could entail in-
creasing network bandwidth by upgrading hardware or provider
services. Performance tuning, on the other hand, aims to reduce re-
source requirements of an existing system for performing the same
amount of work. By optimising resource utilisation by a system
to be more efficient, the system can perform more work using the
same quantity of resources. This requires a detailed understanding
of the system and the intricate inter-dependencies between its com-
ponents. Identifying and addressing bottlenecks requires studying
the various trade-offs that arise in complex systems.

In face of limited bandwidth, especially when performing long-
distance transfers across the Internet, hardware upgrades such as
high-bandwidth fibre-optic connections can be economically in-
feasible. Instead, we consider the possibility of compressing data
at the source before transferring it across such a bottleneck link.
However, adding such auxiliary tasks in an attempt to improve
performance places even higher demand on the limited computing
resources at the edge, which are already loaded with the encryp-
tion and checksum computation tasks necessary for the automated
pipeline.

This trade-off requires the preparatory processing at the source
to be performed in a particularly efficient manner, to utilise the
resources well while avoiding introducing another, potentially more
severe, throughput bottleneck to the pipeline. If a data pipeline
is bottlenecked by hardware limitations, such as Internet upload
bandwidth, this limited resource should be utilised to the highest
possible extent — as long as there is data yet to pass this bottleneck
in a pipeline, this limited resource should not be idle. To facilitate
this, all preceding processing must be fast enough, which becomes
a major challenge due to the limited processing resources available.

To summarise, extra tasks such as encryption and integrity verifi-
cation — which do not directly support the primary goal of transfer-
ring the data but are valuable nonetheless — need to be performed
carefully to avoid increasing pipeline latency further. Besides, pro-
cessing and transmission times need balancing, and options for
latency hiding are desirable; i.e., a large number of design choices
must be made, resulting in multiplicative growing combinations of
parameter choices, for such optimization and balancing. With the
challenges and these thoughts in mind, we propose the key ideas
in this work, described in the following subsections.

3.2 The proposed framework
The architecture of the proposed framework FORTE for big data
transfer pipelines is illustrated in the lower half of Figure 1. Three
main sections can be identified, which consist of sets of correspond-
ing tasks:
Preparation: Data to be processed by the pipeline arrives on the
remote upload station at the edge of the network. To support ob-
servability and traceability, all data files are indexed into a metadata
catalogue so that they can be tracked. Then, data is compressed
and encrypted to prepare it for secure transfer across the Internet.
Transfer: The compressed and encrypted data files are transferred
across the Internet from the upload station to the data centre. This
pipeline section faces performance challenges due to bandwidth
limitations during the network transfer.
Delivery & Storage: The arriving data is unpacked, recovering the
original data files. Checksums are calculated and compared to guar-
antee data integrity. Then, data files are transferred to storage
servers for access by various downstream consumers. Compute
resources are more abundant than at the edge, and these tasks may
be performed in parallel for the files contained in the batches.

Each batch of data passes through dedicated instances of this
pipeline — there are no data dependencies or communication re-
quirements between steps of different batches, and as such, they
may run in parallel. The degree of parallelism that is achievable
in practice depends on the available resources, which are limited

142

FORTE: An Extensible Framework for Robustness and Efficiency in Data Transfer Pipelines DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

Hash

D ISK

Compress Encrypt Hash Transfer

(a) Read andwrite operations when intermediate results are written
to and read from disk by each task.

Hash

D ISK

Compress Encrypt Hash Transfer

(b) Read and write operations performed with in-memory process-
ing. Dashed arrows indicate in-memory data transfers between
tasks, which do not involve the disk.

Figure 3: In-memory processing for reducing the amount of
disk I/O operations. Vertical arrows indicate data travelling
between disk and various processing tasks in a pipeline.

on thin edge devices. Further, performance of data transfers may
suffer with too high parallelism as contention and collisions on the
communication link increase. The framework therefore needs to
provide control over the degree of parallelism at various identified
points in the pipeline to allow tuning for efficient operation in vari-
ous environments. Further, scheduling of the tasks is significant to
avoid bottlenecks resulting from convoy effects.

A subsequent consideration is the following: When processing
large volumes of data, local disk I/O throughput on a host can quickly
become a limiting factor when reading and writing large volumes
in parallel. This problem is exacerbated when spinning storage
media devices are used for cost-effective bulk storage of big data, as
concurrent access to various physical locations incurs significant
overhead. The main option for counteracting these effects is to
reduce the number of accesses to the data stored on the disk. To ad-
dress this, we propose the use of in-memory processing to avoid the
potential bottleneck. In-memory processing aims to avoid reading
and writing intermediate results to and from the disk, and instead
passes data between parallel processing steps via shared memory.
A significant amount of disk I/O operations can be avoided, as
illustrated in Figure 3.

3.3 Implementation aspects
Following these ideas, a pipeline is implemented to transfer data
from a remote upload station host with limited hardware resources,
across the Internet, to a data centre. As shown in Figure 1 and Ta-
ble 1, the pipeline architecture is composed of a sequence of steps.
This type of workflow can effectively be modelled as a directed
acyclic graph (DAG). In this workflow DAG, tasks correspond to
nodes and dependencies between tasks induce the edges and an
execution schedule for the workflow can be determined. To this

end, our implementation uses Apache Airflow [2], an open-source
orchestration platform for implementing and executing workflows.
Various workflow tools exist in the open-source software ecosys-
tem, such as Apache Oozie1, Azkaban2, Luigi3, or ArgoWorkflows4.
However, Oozie, Azkaban, and Luigi all focus purely on orches-
trating data processing workflows within Apache Hadoop clusters,
limiting their applications outside this environment. Similarly, the
Argo suite of tools, which includes Argo Workflows, specialises in
orchestration of containerised workloads in Kubernetes environ-
ments [1]. As such, Airflow is selected for the implementation of
the pipeline due to its flexibility (it integrates with a wide variety of
systems and protocols), and scalability due to its modular architec-
ture. Airflow further facilitates the operation of the pipeline via a
graphical user interface, monitoring of workloads, and traceability
via detailed task logs.

Regarding scheduling, the implementation platform does not
provide explicit support for priorities. However, by explicitly main-
taining the tasks in priority queues/heaps, it is possible to enforce
other policies too. The next section explores aspects of the schedul-
ing influences, by studying such an example, following a Shortest
Task/Job First approach, known to optimise the system through-
put and the average waiting time per task in common scheduling
systems. However as this system is a multi-stage pipeline, the total
effect may differ. The next section gives more insights on these
aspects.

4 EMPIRICAL STUDY
In this section, we present the case-study used for the experimental
evaluation of FORTE. First, we describe the evaluation environment
in which the measurements were carried out, including infrastruc-
ture systems and the evaluation data set. Then, we describe the
process of selecting a suitable data compression technique, which
may vary by the type of data to be processed by the pipeline. This
is followed by a detailed study of the various performance metrics
of a transfer pipeline.

4.1 Use-case and experiment setup
The evaluation is performed in a target environment at Volvo
Trucks, using the same components that will later be used by a
production deployment of FORTE for the data transfer needs of
the case-study. Here, we describe the various components of this
system and how the previously identified pipeline tasks map to
theses. Then, a suitable evaluation data set for use in performance
benchmarks is sampled from real development data.

Systems and infrastructure. The evaluation environment consists
of multiple systems and network links, geographically and logi-
cally spread out over a variety of regions. Figure 4 illustrates the
geographical layout of the full system.

The pipeline begins at the remote upload station at the customer
site 850 km away. This system is equipped with an Intel® Xeon®
E-2236 12-core CPU operating at 3.40GHz, 64GB RAM, a 1Gbit/s
network link to its gateway router, running Ubuntu 20.04.4 LTS.

1https://oozie.apache.org/
2https://azkaban.github.io/
3https://github.com/spotify/luigi
4https://argoproj.github.io/workflows/

143

https://oozie.apache.org/
https://azkaban.github.io/
https://github.com/spotify/luigi
https://argoproj.github.io/workflows/

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan Engström, and Binay Mishra

Pipeline task Description

𝑡1 Calculate the SHA256 checksum of each file in the batch.
𝑡2 Using the selected compression strategy, compress each data file in the batch.
𝑡3 Encrypt all data files in the batch.
𝑡4 Calculate the SHA256 checksum of each encrypted file in the batch.
𝑡5 Transfer the batch from the edge system to the DMZ.
𝑡6 Transfer from the DMZ relay to the internal network.
𝑡7 Verify integrity of inbound data files by comparing SHA256 checksums before any processing begins.
𝑡8 Decrypt all data files in the batch.
𝑡9 Decompress data files.
𝑡10 Compare SHA256 checksum to verify integrity after processing is completed.
𝑡11 Transfer data to a network attached storage for archiving.
𝑡12 Transfer data to a network attached storage for usage by analysts and engineers.

Table 1: The tasks comprising the pipeline in the case-study implementation.

Figure 4: Systems present in the evaluation environment.

From the upload station, data is transferred over the Internet to
Volvo networks. Data protection during this transfer is guaranteed
by common network security techniques, such as VPN tunnelling
and SSH for remote authentication and access. These protocols in-
troduce additional, but unavoidable, communication and processing
overhead, which further reduces data rates.

The next host in the pipeline sequence is the relay host in the
demilitarised zone. This is a virtualised host which functions as a
buffer for inbound data on the way to hosts on the internal network,
and does not perform any processing tasks itself. Disk capacity (at
over 20 TB) is abundant for the expected data volumes. As such,
network bandwidth is the most significant resource at this node
in the pipeline, though with a connection speed of 10Gbit/s, the
pipeline will not be bottlenecked here.

A dedicated physical server is used for any processing tasks after
data has been pulled from the relay host to the internal network.
This processing node has an Intel® Xeon® E5-2690 28-core CPU
running at 2.60GHz, 256GB of RAM, and runs Red Hat Enterprise
Linux Server 7.9. Data is stored on a network-attached storage

cluster to enable access from anywhere within the data centre with
high speed over a 10Gbit/s network link. This design simplifies
scaling out the processing steps to multiple servers in the future.

To implement and operate FORTE on this infrastructure, Apache
Airflow version 2.1.2 and Python 3.8 are used. The Airflow deploy-
ment consists of the scheduler, web server, and a single worker
instance, alongside a dedicated PostgreSQL database for persis-
tent metadata storage and a Redis® instance for message broker-
ing between the scheduler and worker processes. Further, a Post-
greSQL 12.9 instance is used for storing FORTEs file metadata
catalogue.

Evaluation data set. The controlled test data set consists of 337GB
authentic development data from the project in which the case-
study is performed. The availability of such data allows for more
accurate evaluation and conclusions, as it reflects attributes of the
real data that could be missing in a synthetic data set.

In the case-study at hand, each start-up of a vehicle generates
a new unique directory into which data for the following test run
is placed. This directory structure provides the separation of data
into batches required by FORTE without further pre-processing.

Batches in this application contain two types of data files: a
constant set of plain-text log files, and a series of large data files,
referred to as "bag files", storing sequences of timestamped signals.
These bag files are continuously written while data is recorded,
and each bag file contains data for a tumbling window of 60 s of
vehicle operation, producing files between 500MB to 1 000MB in
size. The log files are considerably smaller, with an average size
around 350 kB each.

The benchmark data set contains 14 batches of such data. Batch
sizes in the data set vary, proportional to the time the vehicle was
running, which reflects a variation in size of data batches seen
in the project. This allows examining pipeline performance and
behaviour under realistic loading conditions. Figure 5 illustrates
the distribution of batch sizes in the input data set.

We measure the overall performance of four designs for the data
transfer pipeline:

144

FORTE: An Extensible Framework for Robustness and Efficiency in Data Transfer Pipelines DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

0.9 2.7

30 24.3

5.9

29.5 21.2

27.4

94.8

39.7

43.5

4.5 3.1 9.2

A B C D E F G H I J K L M N
0

20

40

60

80

Batch

Si
ze

 (G
B)

Figure 5: Evaluation data set batch sizes (labelled A–N). Sev-
eral very small batches (A, B, E, L, M, N) are seen, as well as a
particularly large batch I.

Baseline The baseline approach as described in § 2, used as a point
of reference for comparisons. Recall that this solution purely focuses
on moving data, without any auxiliary processing.
Compression-based (CB) The basic batched streaming pipeline in
FORTE, as implemented on the Airflow platform, including addi-
tional functionality (e.g., encryption, integrity verification, trace-
ability) and data compression.
Compression-based with in-memory processing (CB-IM) The en-
hancement of the CB pipeline, utilising in-memory processing.
Integration with shortest-task-first scheduling (CB-IM-SJF)
Shortest-job-first scheduled adaptation of the CB-IM pipeline5.

Before discussing the outcomes for the empirical study, in the
following subsection we describe an overview of the compression
benchmarking, that led to the choice adopted in the experiments.

4.2 Compression benchmarks

Type Count Size Proportion
by count (%)

Proportion
by size (%)

Log 252 89.59MB 27.85 0.03
Bag 653 336.92GB 72.15 99.97

Total: 905 337.01GB 100.00 100.00
Table 2: Evaluation data set composition by data file type.

The distribution of file types in the test data set is shown in
Table 2. Based on these statistics, a compression algorithm that
is effective for bag files can act on 99% of the overall data. This
observation is at the basis of our first experiment, which aims to
find a suitable compression strategy.

5Note that in this case the results are derived from the execution of CB-IM.

For this, four compression algorithms (Bzip26, LZ47, Gzip8, and
Zstandard9) are evaluated at each available compression level setting
on a subset of 100 bag data files (54GB) from the evaluation data
set. The compression level is a tunable parameter, expressed as an
integer, which allows tuning the trade-off between compression
time and resource demand vs compression effectiveness to match
the requirements of the application. To quantify compression ef-
fectiveness, compression ratio is defined as the ratio of original size
against the compressed size; e.g., a compression ratio of 2 means
that the compressed output is half the size of the input.

The sampled data files are compressed sequentially using ev-
ery combination of algorithm and its possible compression level
settings. To determine compression speed and effectiveness, the
elapsed time for compression of all files and the total size of the com-
pressed output were recorded, shown in Figure 6a and Figure 6b,
respectively.

A distinct cluster of high-throughput compression performance
is seen with the newer LZ4 and Zstandard algorithms at low com-
pression levels. While these LZ4 strategies are particularly fast, the
achieved compression ratio of 1.84 (Figure 6b) is the lowest of any
strategy. Both Gzip and Bzip2 achieve a compression ratio between
2.2 to 2.3, which is consistently higher than LZ4 at any level. Zs-
tandard is the only algorithm able to exceed a compression ratio of
2.5, but later plateaus until extremely high compression levels with
low throughput are used. Lower compression levels of Zstandard
achieve compression speeds in excess of 200MB/s and compress
the test data set in 3 to 5 minutes, while the highest levels slow
down to levels similar to Bzip2 at less than 10MB/s and require
over 2 hours to complete.

As the compression speed of Zstandard decreases significantly
beyond level 4 while achieving only minor gains in compression
effectiveness despite the significant additional time investment,
Zstandard at low compression levels appears to be a promising
strategy. Detailed performance data for the 4 lowest compression
levels is shown in Table 3, along with relative performance com-
pared to the highest speed and ratio amongst these strategies.

Strategy Speed
(MB/s)

Delta from
best speed (%)

Compression
ratio

Delta from
best ratio (%)

zstd -1 297.1 2.330 −28.35
zstd -2 275.1 −7.41 2.648 −18.58
zstd -3 230.0 −22.59 3.054 −6.10
zstd -4 211.2 −28.94 3.252

Table 3: The compression strategies with best expected per-
formance in the transfer pipeline application. The final deci-
sion is to select a balance point between speed and compres-
sion ratio.

For implementation of the proposed transfer pipeline, Zstandard
with compression level 3, the default, is selected as it exhibits a
good balance between compression speed and effectiveness.

6https://sourceware.org/bzip2/
7https://lz4.github.io/lz4/
8https://www.gnu.org/software/gzip/
9https://facebook.github.io/zstd/

145

https://sourceware.org/bzip2/
https://lz4.github.io/lz4/
https://www.gnu.org/software/gzip/
https://facebook.github.io/zstd/

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan Engström, and Binay Mishra

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

100

200

300

Tool
LZ4
Zstandard
Gzip
Bzip2

Compression level

Co
m

pr
es

si
on

 s
pe

ed
 (M

B/
s)

(a) Compression speed of every strategy. The rate at which uncom-
pressed input data is processed by the compression tool at the given
compression level setting.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 Tool
LZ4
Zstandard
Gzip
Bzip2

Compression level

Co
m

pr
es

si
on

 r
at

io

(b) Compression ratio achieved on the test data set by each strategy.
Higher compression ratio implies better compression effectiveness.

8 16 32 64 128 256

2

2.5

3

3.5

4

4.5 Tool
LZ4
Zstandard
Gzip
Bzip2

Compression rate (MB/s)

Co
m

pr
es

si
on

 r
at

io

(c) Compression rate versus ratio for all strategies.

Figure 6: Comparing compression effectiveness and process-
ing rate.

Transfer step Duration (s)

To DMZ 5 779
To landing zone 3 272
To storage 3 491

Full pipeline 12 542
Table 4: Latency for transfer of 337GB test data set using
baseline solution.

Pipeline design 𝑙𝑃 (s) 𝑅𝑃 (MB/s) Real data rate
(TB per 24h)

Baseline 12 542 26.87 2.32
CB 9 002 37.44 3.23
CB-IM 6 842 49.26 4.26
CB-IM-SJF 7 465 45.15 3.90

Table 5: Performance for transfer of 337GB data set with the
various pipeline designs. Nominal data rate in the application
is 3.36 TB per 24 h.

4.3 Evaluation results
Pipeline performance. Using each pipeline design, the full evaluation
data set is transferred. For the baseline, which operates on the
full data set as a single batch and processes files sequentially in
each step, we record the duration of each of the three transfer
steps. The execution of the parallelised pipelines is visualised as
timeline diagrams in Figure 7a and Figure 7b. Based on the CB-IM
execution timeline, we also simulate the execution of a shortest-
job-first scheduling policy (shown in Figure 7c), as opposed to the
FIFO ordering used by Airflow.

Pipeline latency. Table 5 lists the measured pipeline latency 𝑙𝑃 for
each pipeline design to process the data set, and the corresponding
pipeline rate 𝑅𝑃 . From this, we make a pessimistic estimate of the
real data rate of each design, which can the be compared to the
nominal data rate in the application (up to 3.4 TB per 24 h for 7
vehicles operating for up to two 8-hour shifts each day). Both the
baseline and CB do not sustain the required data rates to keep up
with the data volumes, while the further adjustments made to CB-
IM and CB-IM-SJF allow them to achieve significant performance
uplifts over the baseline (+83 % and +68%, respectively).

Per-batch performance. As data batches vary in size, large batches
create a convoy effect as subsequent batches need to queue and
wait under the FIFO scheduling policy. This is clearly visible in the
execution timeline diagrams (Figure 7a and Figure 7b), where batch
I significantly delays the processing of batches J–N. This leads to
inefficient use of the following pipeline tasks and the associated
system resources, which are idle for extended periods of time while
the pipeline is blocked further upstream, and degrades per-batch
performance metrics for the subsequent smaller batches.

Due to FIFO scheduling in Airflow, smaller batches which ar-
rive for processing after a large batch will experience significantly

146

FORTE: An Extensible Framework for Robustness and Efficiency in Data Transfer Pipelines DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

0 2000 4000 6000 8000
t12

t11

t10

t9

t8

t7

t6

t5

t4

t3

t2

t1

Batch A B C D E F G H
I J K L M N

Elapsed time (s)

Ta
sk

(a) Execution timeline of CB pipeline for all batches (A–N) of the test
data set. Note the queuing (convoy effect) following batches C and I.

0 2000 4000 6000

t12

t11

t8+t9+t10

t7

t6

t5

t1+t2+t3+t4

Elapsed time (s)

Ta
sk

(b) Execution timeline of CB-IM pipeline for all batches (A–N) of
the test data set. The preparation steps, which appeared as separate
tasks in the CB pipeline, have been merged into a single task. Simi-
larly, decryption, decompression, and integrity verification on the
processing side have been grouped into a single task. The convoy
effect, particularly following batch I, is still present.

0 2000 4000 6000

t12

t11

t8+t9+t10

t7

t6

t5

t1+t2+t3+t4

Batch A B M L E N G
D H F C J K I

Elapsed time (s)

Ta
sk

(c) Execution timeline of CB-IM-SJF, a simulated shortest-job-first
reordering of the in-memory pipeline execution seen in Figure 7b.
Batches have the same label and colour as in the figures above, but
are now processed ordered by size. The convoy effect is no longer
present.

Figure 7: Execution timelines for transferring the evaluation
data set using various pipeline designs.

higher batch latency relative to their size. Figure 8a and Figure 8b
show batches J–N spending 60 % to 97 % of their total batch latency
queuing rather than being processed.

CB-IM alleviates the impact of this by improving processing
latency and data rates in the preparation and processing stages of
the pipeline. However, the relative waiting times for the last batches
remain the same, and the suboptimal resource utilisation patterns
with later pipeline tasks being idle for extended periods of time are
still present.

To alleviate this further, we explore how shortest-job-first (SJF)
as an alternative scheduling strategy impacts pipeline performance
in CB-IM-SJF based on the measurements collected with the CB-
IM pipeline. Batch size is now used to determine the processing
order of batches, and the resulting execution schedule, effectively a
reordering of Figure 7b, is shown in Figure 7c.

Although the total makespan (at 7 465 s) is now longer than for
CB-IM10 and sustained pipeline rate 𝑅𝑃 is lower at 45.15MB/s, the
per-batch latency is now much more consistent and predictable,
illustrated in Figure 9. By processing smaller batches early sooner,
they suffer less queuing due to preceding large batches (the convoy
effect), which can also be seen in Figure 8c. Larger batches, on
the other hand, are subject to compulsory queuing behind smaller
batches, but this does not penalise them as heavily relative to their
processing time in comparison to small batches. In particular, no
batch has to wait for the slowest (biggest) batch to be processed.
This behaviour is visible as the large spread of 𝑅𝑏 for CB and CB-IM
in Figure 9, compared to the more consistent values for CB-IM-SJF.

Resource utilisation on the edge. The study here is to quantify the
motivating arguments and validate the design choices in FORTE,
as well as to illustrate the effect of the possibilities and constraints
when involving edge devices in the pipeline steps. To complete
the evaluation of the explored design parameters, we visualise
utilisation metrics for a selection of hardware resources at the edge
system during each pipeline run in Figure 10.

In the baseline, the single transfer workload task on the edge
system consistently utilises disk and network bandwidth to a high
degree, while leaving CPU largely unused. Attempting to utilise the
available CPU resources for processing tasks in the Compression-
based pipeline design leads to higher CPU utilisation and better
pipeline performance, but fully saturates the disk bandwidth due
to the previously described access patterns (Figure 3a). The impact
of this on pipeline performance becomes clear when the CB-IM
pipeline reduces the amount of data I/O operations in favour of
in-memory processing to perform identical processing work sig-
nificantly faster (improving 𝑅𝑃 by 31% over CB). CPU utilisation
during this work is more consistent with CB-IM than in CB, while
memory usage has increased minimally. The fluctuating behaviour
seen in the network bandwidth utilisation is more frequently oper-
ating at a higher performance state with the CB-IM pipeline, as the
(identical) preceding preparatory tasks now complete faster and
supply ready-for-transfer data at a faster rate.

10In fact, the makespan is now maximally long for this set of tasks and pipeline con-
figuration, assuming that tasks immediately begin execution once their dependencies
are met and they are not blocked.

147

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan Engström, and Binay Mishra

16%
14%

2%
20%
81%

19%
46%

35%
13%

61%
66%
96%
97%
93%

0 2000 4000 6000 8000
N
M
L
K
J
I

H
G
F
E
D
C
B
A

Processing
Waiting

Elapsed time (s)

Ba
tc

h

(a) CB: Time spent executing tasks or queuing for each batch. Queu-
ing times are collapsed into a single block for clarity.

10%
23%

6%
30%
83%

37%
56%

48%
32%

68%
70%
96%
97%
93%

0 2000 4000 6000
N
M
L
K
J
I

H
G
F
E
D
C
B
A

Processing
Waiting

Elapsed time (s)

Ba
tc

h

(b) CB-IM: Time spent executing tasks or queuing for each batch.
Even though the pipeline processes data much faster than the CB
pipeline, the last 5 smaller batches are still queuing for significant
portions of their total batch latency.

0%
17%

27%
35%

41%
41%

26%
36%

37%
51%

55%
52%

58%
45%

0 2000 4000 6000
I

K
J

C
F
H
D
G
N
E
L

M
B
A

Processing
Waiting

Elapsed time (s)

Ba
tc

h

(c) CB-IM-SJF: Batches are now processed in order of increasing size,
so smaller batches never wait for larger batches. Queuing is only
experienced before the first task of the pipeline, and is overall less
extreme.

Figure 8: Processing vs queuing times across designs.

CB CB-IM CB-IM-SJF
0

5

10

15

Pipeline
CB
CB-IM
CB-IM-SJF

Ba
tc

h
ra

te
 (M

B/
s)

Figure 9: Distribution of batch rate 𝑅𝑏 for CB, CB-IM, CB-IM-
SJF pipelines.

More details about the use-case, the pipeline implementation,
and additional data, particularly regarding the service rate of each
task in a pipeline, are contained in the master’s thesis report [8].

4.4 Discussion
The presented results for FORTE show clear improvements to
pipeline latency and sustainable data rates, providing more timely
delivery as well as increased pipeline data transfer capacity. By
benchmarking compression strategies, a suitable balance of speed
and effectiveness is found to address the network bandwidth bot-
tleneck of a purely transfer-focused baseline. Further processing,
such as integrity verification and data encryption, is also intro-
duced, and, by exploiting available data independence between
batches, can be pipelined to better hide the additional latency from
these tasks. Additionally, modern x86 CPU hardware, as used in the
evaluation here, includes instruction sets to accelerate workloads
such as SHA256 computation or AES encryption, giving important
efficiency improvements for a big data pipeline.

Depending on the requirements of the application, and the under-
lying scheduling framework used for the pipeline implementation,
the trade-off of using FORTE in combination with SJF schedul-
ing improves the average performance for batches compared to
FIFO scheduling. SJF scheduling also allows the pipeline to exhibit
more predictable delivery times relative to batch size, where smaller
batches complete in less time than larger ones. Although this comes
at the cost of somewhat higher 𝑙𝑃 , i.e. time until the biggest batch of
a burst is completed, the benefit for smaller batches is substantial;
both in terms of absolute and relative batch latency while also be-
ing more consistent. Additionally, SJF scheduling introduces a risk
of starving particularly large data batches from being transferred
if there is insufficient time between data bursts containing large
amounts of new smaller batches.

5 RELATEDWORK
Efficient transfer of large data volumes is key for modern cyber-
physical systems, and various techniques have been developed to
enhance performance by reducing data volumes through compres-
sion [6, 20]. These techniques are sometimes discussed within the
context of prototypes of general-purpose frameworks for managing,

148

FORTE: An Extensible Framework for Robustness and Efficiency in Data Transfer Pipelines DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

Baseline CB CB-IM
0

20

40

U
til

is
at

io
n

(%
)

(a) Distribution of CPU utilisa-
tion on the upload station with
each pipeline.

Baseline CB CB-IM

7

7.5

U
til

is
at

io
n

(%
)

(b) Distribution of RAM usage
on the upload station with each
pipeline.

Baseline CB CB-IM
0

50

U
til

is
at

io
n

(%
)

(c) Distribution of network band-
width utilisation on the upload
station while transferring data
using each pipeline. 100% corre-
sponds to the maximum achiev-
able bandwidth on the route be-
tween the remote site and the
DMZ (68MB/s). The median for
both CB and CB-IM is 0.01, but
note the higher frequency of
high utilisation by the CB-IM
pipeline.

Baseline CB CB-IM
0

50

U
til

is
at

io
n

(%
)

(d) Distribution of disk bus utili-
sation. Corresponds to the pro-
portion of time that the disk
is busy servicing requests. At
100 % utilisation, the disk is never
idle and additional incoming re-
quests beyond the maximum ser-
vice rate of the disk will need to
wait in queue.

Figure 10: Distribution of utilisation level for hardware re-
sources on the upload station during transfer of the test data
set for each pipeline. The box within each violin illustrates
the span of Q1 and Q3 quantiles (25th and 75th percentile) of
the data; the line bisecting the box designates the median
value.

aggregating, and processing data in applications such as vehicular
networks or the Internet of Things (IoT) [6, 9, 10]. In many of these
applications, raw data or summarisation of preprocessed data is
continuously transmitted in a streaming or micro-batch fashion,
whereas bulk transfer of raw data is less common as it hinders the
potential for real-time analysis.

Existing compression techniques can be categorised as either
lossless or lossy. In our specific setup, lossy compression is not
feasible, as the raw data cannot undergo approximations in rele-
vant applications. However, it is worth noting related work that
has employed Piecewise Linear Approximation (PLA), which ap-
proximates time series as sequences of segments, and achieves a
significantly higher reduction in data volumes compared to loss-
less techniques such as ZIP, while still offering a guaranteed and
configurable bounded error [6]. In order to apply PLA in fog/edge
distributed systems, where data is processed in a streaming fash-
ion, efficient online generation of the segments is crucial, while
considering trade-offs between achieved compression, latency, and
approximation error as studied by Duvignau et al. [4].

Other relevant research has focused on the communication as-
pects of data transfer pipelines in the context of 5G technology [15,
17], where opportunities for data-intensive applications have in-
creased significantly. For example, the ERAIA framework [7] estab-
lishes a flexible and scalable basis for implementing data pipelines
in the IoT domain. It is important to note that these aspects are
complementary to those discussed in our paper: despite the im-
proved latency and bandwidth provided by 5G, effective utilisation
of computational power at the edge remains critical for reducing
latency in Cloud-Edge pipelines [13]. One such case is discussed in
connection with autonomous vehicles [5], where the timeliness of
task execution is crucial for safe operation.

Efforts to optimise high-volume data transfer also highlight the
challenge of dealing with the large parameter space and propose
various techniques to address this issue. Yildirim et al. [18] identify
pipelining, parallelism, and concurrency as important parameters
for improving data transfer throughput by hiding latency. They
develop models of the complete data transfer system, including
data set characteristics, and optimisation algorithms to determine
optimal parameter values. Similarly, Arslan et al. [3] study parame-
ters related to I/O throughput and parallelism to improve transfer
throughput, as well as propose adaptive tuning to adjust param-
eters in real time. Liu et al. [12] explore the possibility of more
efficient integrity verification in high-volume transfers, achieved
through parallelising and overlapping transfer and integrity verifi-
cation to better hide the introduced latency. Furthermore, work on
pipelines that involve processing interleaved with data transfers, is
contributed through the AMESoS framework [16]; the framework
facilitates pipelines to meet latency requirements, through resource
provisioning based on predictive load-estimations and elastic scal-
ing in the presence of overloads, facilitated by methodologies as
in [19].

6 CONCLUSIONS
This industry experience article discusses challenges and possi-
bilities in conjunction with automating data transfer pipelines
and trade-offs that arise within the context of such pipelines. The
leveraging of composable data handling tasks within data transfer
pipelines alleviates bottlenecks in network bandwidth but also in-
troduces trade-offs with respect to e.g., latency, throughput, and re-
source efficiency. In addition, such tasks can introduce in-node bot-
tlenecks, especially in resource-constrained environments. More-
over, scheduling possibilities need to balance local, task/batch-
latency, and throughput optimisation with end-to-end metrics for
the whole pipeline. The work proposes the extensible FORTE frame-
work and instantiates the study with a real-world demanding use
case. The discussed trade-offs advocate for holistic, cross-layer ap-
proaches in the software stack, as proposed in FORTE, showing the
interplay between latency and resource efficiency. For continued
work in such contexts, instance-based scheduling and adaptation
in orchestration in general, such as in [11, 14], can form the basis
for more advanced orchestration methods toward balancing the
aforementioned trade-offs and implications in energy efficiency.
Further, by identifying data of higher importance already at the
edge and source of the pipeline, transfers can be prioritised and

149

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Martin Hilgendorf, Vincenzo Gulisano, Marina Papatriantafilou, Jan Engström, and Binay Mishra

scheduled accordingly to yield lower latencies for such important
data.

ACKNOWLEDGMENTS
This work is supported by the Swedish Research Council (Veten-
skapsrådet) project “EPITOME" 2021-05424, by theMarie Skłodowska-
Curie Doctoral Network project RELAX-DN, funded by the Eu-
ropean Union under Horizon Europe 2021-2027 Framework Pro-
gramme Grant Agreement number 101072456 (www.relax-dn.eu/)
and by Chalmers Un. AoA frameworks Energy and Production, proj.
INDEED, and WP “Scalability, Big Data and AI", respectively. The
implementation of this work was conducted at Volvo Group Trucks
Technology as part of the master’s thesis of the first author.

REFERENCES
[1] 2022. Kubernetes - Production-Grade Container Orchestration.
[2] Apache Software Foundation. 2021. Apache Airflow.
[3] Engin Arslan, Bahadir A. Pehlivan, and Tevfik Kosar. 2018. Big Data Transfer

Optimization through Adaptive Parameter Tuning. J. Parallel and Distrib. Comput.
120 (Oct. 2018), 89–100. https://doi.org/10.1016/j.jpdc.2018.05.003

[4] Romaric Duvignau, Vincenzo Gulisano, Marina Papatriantafilou, and Vladimir
Savic. 2019. Streaming Piecewise Linear Approximation for Efficient Data Man-
agement in Edge Computing. In Proceedings of the 34th ACM/SIGAPP Symposium
on Applied Computing. Association for Computing Machinery, New York, NY,
USA, 593–596.

[5] Ionel Gog, Sukrit Kalra, Peter Schafhalter, Joseph E. Gonzalez, and Ion Stoica. 2022.
D3: A Dynamic Deadline-Driven Approach for Building Autonomous Vehicles.
In Proceedings of the Seventeenth European Conference on Computer Systems. ACM,
Rennes France, 453–471. https://doi.org/10.1145/3492321.3519576

[6] Bastian Havers, Romaric Duvignau, Hannaneh Najdataei, Vincenzo Gulisano,
Marina Papatriantafilou, and Ashok Chaitanya Koppisetty. 2020. DRIVEN: A
Framework for Efficient Data Retrieval and Clustering in Vehicular Networks.
Future Generation Computer Systems 107 (June 2020), 1–17. https://doi.org/10.
1016/j.future.2020.01.050

[7] Aitor Hernandez, Bin Xiao, and Valentin Tudor. 2020. ERAIA - Enabling Intelli-
gence Data Pipelines for IoT-based Application Systems. In 2020 IEEE International
Conference on Pervasive Computing and Communications (PerCom). IEEE, Austin,
TX, USA, 1–9. https://doi.org/10.1109/PerCom45495.2020.9127385

[8] Martin Hilgendorf. 2022. Efficient Industrial Big Data Pipeline for Lossless Transfer
of Vehicular Data. Master’s thesis. Chalmers University of Technology, Gothen-
burg, Sweden.

[9] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, and Philippas
Tsigas. 2021. Mad-c: Multi-stage Approximate Distributed Cluster-Combining for

Obstacle Detection and Localization. J. Parallel and Distrib. Comput. 147 (2021),
248–267.

[10] Amir Keramatian, Vincenzo Gulisano, Marina Papatriantafilou, and Philippas
Tsigas. 2023. PARMA-CC: A Family of Parallel Multiphase Approximate Cluster
Combining Algorithms. J. Parallel and Distrib. Comput. 177 (2023), 68–88.

[11] Tim Kraska. 2021. Towards Instance-Optimized Data Systems. Proceedings of
the VLDB Endowment 14, 12 (July 2021), 3222–3232. https://doi.org/10.14778/
3476311.3476392

[12] Si Liu, Eun-Sung Jung, Rajkumar Kettimuthu, Xian-He Sun, and Michael Papka.
2016. Towards Optimizing Large-Scale Data Transfers with End-to-End Integrity
Verification. In 2016 IEEE International Conference on Big Data (Big Data). 3002–
3007. https://doi.org/10.1109/BigData.2016.7840953

[13] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.
Edge Computing for Autonomous Driving: Opportunities and Challenges. Proc.
IEEE 107, 8 (2019), 1697–1716.

[14] Dimitris Palyvos-Giannas, Vincenzo Gulisano, and Marina Papatriantafilou. 2019.
Haren: A Framework for Ad-Hoc Thread Scheduling Policies for Data Stream-
ing Applications. In Proceedings of the 13th ACM International Conference on
Distributed and Event-based Systems (DEBS ’19). Association for Computing Ma-
chinery, New York, NY, USA, 19–30. https://doi.org/10.1145/3328905.3329505

[15] Murtaza Ahmed Siddiqi, Heejung Yu, and Jingon Joung. 2019. 5G Ultra-Reliable
Low-Latency Communication Implementation Challenges and Operational Issues
with IoT Devices. Electronics 8, 9 (Sept. 2019), 981. https://doi.org/10.3390/
electronics8090981

[16] Michail Tsenos, Aristotelis Peri, and Vana Kalogeraki. 2022. AMESoS: A Scalable
and Elastic Framework for Latency Sensitive Streaming Pipelines. In Proceedings
of the 16th ACM International Conference on Distributed and Event-Based Systems
(DEBS ’22). Association for Computing Machinery, New York, NY, USA, 103–114.
https://doi.org/10.1145/3524860.3539642

[17] Gorka Velez, Edoardo Bonetto, Daniele Brevi, Angel Martin, Gianluca Rizzi, Oscar
Castañeda, Arslane Hamza Cherif, Marcos Nieto, and Oihana Otaegui. 2022. 5G
Features and Standards for Vehicle Data Exploitation. https://doi.org/10.48550/
arXiv.2204.06211 arXiv:2204.06211 [cs]

[18] Esma Yildirim, Engin Arslan, Jangyoung Kim, and Tevfik Kosar. 2016. Application-
Level Optimization of Big Data Transfers through Pipelining, Parallelism and
Concurrency. IEEE Transactions on Cloud Computing 4, 1 (Jan. 2016), 63–75.
https://doi.org/10.1109/TCC.2015.2415804

[19] Nikos Zacheilas, Vana Kalogeraki, Yiannis Nikolakopoulos, Vincenzo Gulisano,
Marina Papatriantafilou, and Philippas Tsigas. 2017. Maximizing Determin-
ism in Stream Processing under Latency Constraints. In Proceedings of the 11th
ACM International Conference on Distributed and Event-Based Systems (DEBS
’17). Association for Computing Machinery, New York, NY, USA, 112–123.
https://doi.org/10.1145/3093742.3093921

[20] Hongbo Zou, Yongen Yu, Wei Tang, and Hsuanwei Michelle Chen. 2014. Improv-
ing I/O Performance with Adaptive Data Compression for Big Data Applications.
In 2014 IEEE International Parallel & Distributed Processing Symposium Workshops.
1228–1237. https://doi.org/10.1109/IPDPSW.2014.138

150

www.relax-dn.eu/
https://doi.org/10.1016/j.jpdc.2018.05.003
https://doi.org/10.1145/3492321.3519576
https://doi.org/10.1016/j.future.2020.01.050
https://doi.org/10.1016/j.future.2020.01.050
https://doi.org/10.1109/PerCom45495.2020.9127385
https://doi.org/10.14778/3476311.3476392
https://doi.org/10.14778/3476311.3476392
https://doi.org/10.1109/BigData.2016.7840953
https://doi.org/10.1145/3328905.3329505
https://doi.org/10.3390/electronics8090981
https://doi.org/10.3390/electronics8090981
https://doi.org/10.1145/3524860.3539642
https://doi.org/10.48550/arXiv.2204.06211
https://doi.org/10.48550/arXiv.2204.06211
https://arxiv.org/abs/2204.06211
https://doi.org/10.1109/TCC.2015.2415804
https://doi.org/10.1145/3093742.3093921
https://doi.org/10.1109/IPDPSW.2014.138

	Abstract
	1 Introduction
	2 Preliminaries and problem Description
	2.1 System model and general problem
	2.2 Metrics of interest

	3 Overview of the proposed approach
	3.1 Problem insights
	3.2 The proposed framework
	3.3 Implementation aspects

	4 Empirical study
	4.1 Use-case and experiment setup
	4.2 Compression benchmarks
	4.3 Evaluation results
	4.4 Discussion

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

