
Preventing EFail Attacks with Client-Side
WebAssembly: The Case of Swiss Post’s IncaMail

(Industry and Application Track)

Pascal Gerig
University of Bern
Bern, Switzerland

Jämes Ménétrey
University of Neuchâtel
Neuchâtel, Switzerland

Baptiste Lanoix
Swiss Post

Neuchâtel, Switzerland

Florian Stoller
Swiss Post

Neuchâtel, Switzerland

Pascal Felber
University of Neuchâtel
Neuchâtel, Switzerland

Marcelo Pasin
Haute École Arc, HES-SO
Neuchâtel, Switzerland

Valerio Schiavoni
University of Neuchâtel
Neuchâtel, Switzerland

Abstract
Traditional email encryption schemes are vulnerable to EFail
attacks, which exploit the lack of message authentication
by manipulating ciphertexts and exfiltrating plaintext via
HTML backchannels. Swiss Post’s IncaMail, a secure email
service for transmitting legally binding, encrypted, and veri-
fiable emails, counters EFail attacks using an authenticated-
encryption with associated data (AEAD) encryption scheme to
ensure message privacy and authentication between servers.
IncaMail relies on a trusted infrastructure backend and en-
crypts messages per user policy. This paper presents a re-
vised IncaMail architecture that offloads the majority of cryp-
tographic operations to clients, offering benefits such as
reduced computational load and energy footprint, relaxed
trust assumptions, and per-message encryption key policies.
Our proof-of-concept prototype and benchmarks demon-
strate the robustness of the proposed scheme, with client-
side WebAssembly-based cryptographic operations yielding
significant performance improvements (up to ~14×) over
conventional JavaScript implementations.

CCS Concepts
• Information systems→ Email; • Security and privacy;

Keywords
EFail, Email, WebAssembly, Cryptography, Mitigation

DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland
© 2023 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in The 17th ACM International Conference on Distributed and Event-based
Systems (DEBS ’23), June 27–30, 2023, Neuchatel, Switzerland, https://doi.or
g/10.1145/3583678.3596899.

ACM Reference Format:
Pascal Gerig, Jämes Ménétrey, Baptiste Lanoix, Florian Stoller, Pas-
cal Felber, Marcelo Pasin, and Valerio Schiavoni. 2023. Preventing
EFail Attacks with Client-Side WebAssembly: The Case of Swiss
Post’s IncaMail: (Industry and Application Track). In The 17th ACM
International Conference on Distributed and Event-based Systems
(DEBS ’23), June 27–30, 2023, Neuchatel, Switzerland. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3583678.3596899

1 Introduction
Secure messaging has become increasingly important in to-
day’s digital landscape, where privacy and security are para-
mount concerns. Encryption schemes are critical in ensuring
the confidentiality and integrity of messages transmitted
over untrusted networks. However, traditional email encryp-
tion approaches suffer from various vulnerabilities. EFail
attacks [18] exploit the lack of message authentication in
encrypted emails to manipulate ciphertexts and exfiltrate
plaintext data through maliciously crafted HTML backchan-
nels. To counter such threats and enhance the security of
email communication, Swiss Post introduced IncaMail [22],
a secure email service designed for transmitting legally bind-
ing, encrypted, and verifiable emails. IncaMail employs an
authenticated encryption with associated data (AEAD) encryp-
tion scheme to guarantee message privacy and authentica-
tion between servers. The current architecture offers a robust
solution against EFail attacks. However, it also presents cer-
tain limitations due to its centralised nature, such as high
computational load on the server, sustained network traffic
between clients and servers, and the need for a fully trusted
server that handles plaintext messages.
This paper presents an experimental IncaMail architec-

ture revision that offloads most cryptographic operations

ar
X

iv
:2

30
6.

13
38

8v
1 

 [
cs

.C
R

] 
 2

3 
Ju

n 
20

23

https://orcid.org/0000-0001-7826-9489
https://orcid.org/0000-0003-2470-2827
https://orcid.org/0009-0001-1736-0315
https://orcid.org/0009-0007-8417-2449
https://orcid.org/0000-0003-1574-6721
https://orcid.org/0000-0002-3064-5315
https://orcid.org/0000-0003-1493-6603
https://doi.org/10.1145/3583678.3596899
https://doi.org/10.1145/3583678.3596899
https://doi.org/10.1145/3583678.3596899


DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Gerig P. et al.

to clients’ browsers using WebAssembly (Wasm) [7], an in-
novative bytecode format for portable and efficient code
execution in web applications. Our proof-of-concept pro-
totype fully embeds the industry-standard OpenSSL cryp-
tographic library, compiled in Wasm and embedded in the
web browser. Our experimental evaluation shows signifi-
cant performance improvements over alternative approaches
based on JavaScript, while preserving linear time complexity
with respect to message and file attachment size. Client-side
encryption offers numerous performance and architectural
benefits, including reduced computational load and there-
fore lower energy footprint, relaxed trust assumptions, and
per-message encryption key policies. This work contributes
to the advancement of secure email communication services
and highlights the potential of Wasm to enhance the perfor-
mance and security of such systems.

2 Background
In this section, we first provide background notions on Web-
Assembly (§2.1), subsequently delving into specifics of the
EFail attacks, as well as existing countermeasures (§2.2).

2.1 WebAssembly Primer
WebAssembly (Wasm) [7] is a portable bytecode format de-
signed to provide optimal performance when compiled from
various programming languages. Wasm’s efficient binary
format and streamlined execution yield near-native perfor-
mance and faster execution times for web applications. It
facilitates the integration of libraries and functionalities from
other platforms into web applications, eliminating the need
for reimplementation. Its platform-agnostic nature enables
code to be written once and executed across various operat-
ing systems and browsers. Wasm supports compilation from
multiple programming languages, such as C, C++, Rust, and
more, granting developers to leverage their existing expertise
and codebases, employing compiler infrastructures such as
LLVM [11]. Additionally, Wasm supports multithreading and
SIMD instructions, enabling developers to take advantage
of modern hardware capabilities, optimising performance
for tasks like cryptographic operations. Lastly, Wasm’s sand-
boxed execution environment mitigates security vulnerabili-
ties by isolating them from the underlying system.
Wasm in web browsers.Wasm is supported across all

modern web browsers and serves as a complementary so-
lution to JavaScript rather than a replacement. Wasm lacks
access to contextual web page information, e.g., the Doc-
ument Object Model (DOM), and instead focuses on pro-
viding efficient computations for CPU-intensive tasks. This
complementary relationship allows developers to seamlessly
integrate Wasm with JavaScript, allowing for the incremen-
tal adoption of Wasm and leveraging the strengths of both
technologies. Emscripten [24], based on the LLVM toolchain,

offers a higher-level compiler toolchain for web application
development. Beyond compiling Wasm code, Emscripten fa-
cilitates seamless interaction between Wasm functions and
JavaScript, including function calls and data transfers.

2.2 EFail: attacks and counter-measures
EFail [18], a security vulnerability disclosed in 2018, com-
promises the confidentiality of email encryption protocols,
specifically OpenPGP and S/MIME, by exploiting implemen-
tation flaws and allowing adversaries to decrypt messages.

EFail Attack Overview. The EFail attack exploits weak-
nesses in the interaction between email clients and encryp-
tion plugins, as well as the properties of the encrypted mes-
sages themselves. The attack primarily targets HTML-rendering
email clients that utilise OpenPGP or S/MIME encryption.
Two distinct variants of the attack exist: the Direct Exfiltra-
tion attack and the CBC/CFB Gadget attack. Both variants
leverage the concept of malleability in encrypted messages,
allowing attackers to manipulate ciphertext without know-
ing the corresponding plaintext. In the Direct Exfiltration
attack, the adversary modifies the encrypted email by in-
jecting an image tag with a crafted URL that will contain
the decrypted content once the email client processes the
modified email. When the victim’s email client decrypts the
message and loads the injected image, the plaintext mes-
sage is inadvertently sent to the attacker-controlled server.
The CBC/CFB Gadget attack is more sophisticated and re-
lies on manipulating the block cipher modes of operation in
S/MIME and OpenPGP. By carefully crafting the ciphertext
and exploiting the lack of integrity protection, the attacker
induces specific plaintext patterns, which, combined with
HTML tags, can be used to exfiltrate the decrypted content
in a similar manner to the Direct Exfiltration attack.
Countermeasures. The EFail attack threat can be miti-

gated with countermeasures at the email client and protocol
levels. These include: (1) disabling HTML rendering: since
the EFail attack relies on the HTML rendering capabilities
of email clients to exfiltrate decrypted data, disabling HTML
rendering in the client settings can effectively prevent the
attack; (2) integrity protection: implementing cryptographic
mechanisms, such as authenticated encryption (AEAD) or
message authentication codes (MAC), can ensure the in-
tegrity of encrypted messages and thwart attempts to ma-
nipulate ciphertexts; and (3) secure implementations: email
client developers and encryption plugin providers should ad-
here to best practices for implementing encryption protocols,
such as proper handling of decryption errors and avoiding
leakage of plaintext data through external resources.
The EFail attack highlights the importance of proper im-

plementation and usage of encryption protocols in email
communications. This paper shows how authenticated en-
cryption at the client-side browser effectively addresses the



Preventing EFail Attacks with Client-Side WebAssembly DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

risks associated with EFail, while safeguarding the ongoing
confidentiality of encrypted email communications.

3 Related Work
In this section, we cover existing approaches to mitigate
EFail attacks (§3.1), how Wasm is used to mitigate other
security attacks (§3.2), and the current state of Wasm deploy-
ments in the wild for real-world application scenarios (§3.3).
To our knowledge, we are the first to leverage WebAssembly
in the context of efficient and secure web-based email clients.

3.1 Mitigations to EFail attacks
In [20], authors propose generic mitigations against different
variants of EFail attacks, such as Reply [9, 16], EFail-Md
or Efail-Mg [18]. They do so by checking the decryption
context, e.g., the SMTP headers and MIME structure during de-
cryption, implementing their solution into the Thunderbird
email client and OpenPGP with support for AEAD. Our so-
lution is not bound to a particular email client, and rather it
is designed for web-based senders and receivers, potentially
via mobile devices. Further, we aim to provide an Outlook
add-in as an extension of our approach.

3.2 Wasm as general protection technique
WebAssembly allows developers to integrate shielding mech-
anisms into their large codebase, by leveraging Wasm’s sand-
boxing approach for features such as memory isolation [12].
Wasm can also be formally verified [19]. However, given the
native execution speed of Wasm binaries [23], cybercrimi-
nals continuously try to abuse Wasm binaries to exfiltrate
sensitive data. Solutions exist to deploy a double-sandbox
approach to fully isolate the Wasm runtime from the host
and vice versa, for instance, leveraging off-the-shelf trusted
execution environments [13, 14]. To integrate such TEE-
based approaches in our revised IncaMail architecture, a
TEE-aware abstraction layer available across a variety of
devices (i.e., server, client, mobile) is currently missing.

3.3 Wasm in the wild
WebAssembly has increasingly been adopted by industry,
across several domains and contexts. Its native execution
speed and cross-platform portability facilitate its adoption
in the so-called cloud-edge continuum [15], spanning IoT de-
vices up to server-grade deployments. Wasm is the execution
runtime for several classes of systems, e.g., energy-efficient
blockchain systems [4], serverless platforms [6, 5].

4 Use-Case: IncaMail
The Swiss Post developed IncaMail, a service offering a se-
cure way of transmitting information via emails. Crucially,
this communication channel offers authenticated encryption
which mitigates the EFail attacks. Users can send messages

using three input channels: (1) aweb interface; (2) anOutlook
add-in; and (3) a dedicated web API.

Current workflow. When a customer of IncaMail sends
a secure email, the secure message is transmitted to Inca-
Mail’s backend servers for encryption using a symmetric
cipher (i.e., AES). The message is encrypted for each recipi-
ent. The ciphertexts are embedded within standard emails
as an attachment, and subsequently sent individually to the
respective recipients. The encryption keys are retained on In-
caMail’s premises, while the secure messages are not stored
within the Swiss Post infrastructure, except in some instances
for caching purposes. Upon reception of the email, one or
more recipients open the attachment. This attachment is
an HTML file containing an HTML form with predefined
hidden fields, which include the ciphertext, the MAC, and
other associated data. A given recipient submits the form to
the IncaMail server, which internally retrieves the encryp-
tion key, decrypts the submitted information, and displays
the plaintext of the secure message. Additionally, secure
messages may also include secure file attachments, which
are processed with a similar encryption mechanism. This
centralised architecture has the following limitations:
• all cryptographic operations happen solely on the server,
demanding additional computing resources of Swiss Post
than if the operationswould take place on the client premises;

• since all messages and corresponding ciphertexts are trans-
ferred from and to Swiss Post infrastructure, this approach
induces more network traffic than if the messages were
decrypted on the client;

• the IncaMail server must be a fully trusted entity, as all
messages are seen in plaintext. In case of errors or com-
promise, it could read and manipulate all messages;

• since all messages are encrypted with a private key bound
per recipient, group messages are encrypted several times
(one per each recipient).

4.1 Offloading Cryptographic Operations
In this work, we evaluate a revised architecture where some
cryptographic operations are offloaded to the customers’
browsers. This offers many advantages over the current ar-
chitecture, notably (1) reducing the CPU and volatile memory
usage, as the server no longer needs to encrypt and decrypt
the secure message, and (2) reducing the trusted computing
base (TCB), as only the endpoint that receives and delivers en-
cryption keys must be trusted, since plaintexts are no longer
sent to the IncaMail servers. Furthermore, we improved the
encryption scheme of IncaMail to share a common encryp-
tion key for all the recipients of a given message, which
would save non-volatile memory of IncaMail infrastructure.

Wasm as a generic solution. Although the W3C’s Web
Cryptography API [8] facilitates seamless access to various
cryptographic operations in modern browsers, we opted for



DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Gerig P. et al.

CLIENT

Capture
events Redirect

UI Integration

Input
events

Track
state

Handle
events

Msgs Encrypt
msgs

Kernel

Msgs
Functionality

SERVER

Encrypt
keys

Crypto API

Aggregate
info into
.html

IncaMail API

Encrypted msgs
and state

Send
msg as
.html

Figure 1: Workflow of sending secure messages.

Wasm as a comprehensive solution for managing crypto-
graphic computations, employing OpenSSL [17] as the cryp-
tography library, due to a number of considerations. Firstly,
Swiss Post maintains numerous technologies for servicing In-
caMail (e.g., web interface, Outlook add-in). Wasm facilitates
the use of well-established cryptography libraries across var-
ious platforms and browsers, ensuring compatibility even
when the native Web Cryptography API may not support
specific algorithms. As OpenSSL maintains a consistent API
across platforms, developers can leverage existing code and
knowledge when implementing cryptographic operations.
This consistency streamlines development and maintenance
in comparison to using different APIs for different platforms.
Secondly, Wasm is designed for efficiency and speed. While
it may not achieve the performance of native code, it signifi-
cantly surpasses JavaScript in terms of execution speed. This
paper demonstrates that employing OpenSSL yields supe-
rior performance compared to JavaScript-based alternatives.
Lastly, OpenSSL offers greater control and flexibility than
the Web Cryptography API, as it grants developers access to
a broader range of cryptographic primitives and fine-tunes
their implementations to satisfy specific requirements. This
advantage frees Swiss Post from being constrained by the
choices of browser implementations.
OpenSSL compilation. A challenge we faced was the

compilation of OpenSSL, which is required by the absence
of Wasm-compiled binaries in the official OpenSSL distri-
bution. For that purpose, we used Emscripten and disabled
certain features, including hardware acceleration due to the
inaccessibility of assembly instructions in Wasm, and multi-
threading, given their irrelevance to our use case.
Architecture.We adapted the IncaMail architecture by

implementing several modifications. The key generation op-
erations are now delegated to the client side, while a new
server-side RESTful API is responsible for managing the keys.
This API, i.e., Crypto API, serves as the trusted computing
base (TCB) for IncaMail. The encryption and decryption of
secure messages and file attachments are also offloaded to the
client side, ensuring that the plaintext of messages no longer
passes through the IncaMail infrastructure. Consequently,
we have improved the threat model of the IncaMail backend

CLIENT
UI Integration

Cipher
texts

& keys

Handle
events

Msgs Decrypt
msgs

Kernel

Keys
Functionality

SERVER

Decrypt
keys

Crypto API

Prepare
data for
client

IncaMail API
Encrypted msgs

and state

Render
interface

containing
form data

Msg (.html)

Load form data

Form
Form data

Store
form
data

Render
email

Extract
cipher
texts

& keys

Redirect

Plain
texts

Figure 2: Workflow of reading secure messages.

infrastructure, allowing it to adhere to an honest-but-curious
model in which the system can inspect exchanged informa-
tion without compromising the confidentiality of messages.

4.2 Proposed Workflow
We developed a proof-of-concept prototype of the adapted
architecture. We present next the new workflows for using
IncaMail with client-side encryption.
Figure 1 depicts the secure message-sending workflow.

The server-side software consists of the pre-existing IncaMail
API and the newly-developed Crypto API. The client-side
software includes three layers for seamless integration with
diverse clients: (1) the functionality layer, which contains
generic event handlers invoked by the integration layer; (2)
the kernel layer, which provides the essential cryptographic
functionality for message encryption and decryption; and (3)
the integration layer, responsible for linking the graphical
user interface to the functionality layer.
The sending encryption process involves the following

steps: (1) the user authenticates, composes a secure mes-
sage, optionally appends secure files, selects recipients, and
submits the form; (2) the kernel (i.e., OpenSSL compiled in
Wasm) generates an encryption key and encrypts the file
attachments and the message; (3) the encryption key is trans-
mitted to the Crypto API; (4) the ciphertexts are forwarded
to the IncaMail API, which embeds them in an HTML file for
assisted decryption; and (5) finally, the IncaMail API sends
a standard email to the recipient, notifying them that the
secure message is awaiting on the platform.
Figure 2 illustrates the process of a recipient reading a

secure message, which is described by the following steps:
(1) the recipient receives an email containing an HTML at-
tachment; (2) upon opening the HTML file, the recipient is
prompted to read the secure message by clicking a button,
which submits the ciphertext and associated data to the Inca-
Mail API; (3) the IncaMail API then serves a page that loads



Preventing EFail Attacks with Client-Side WebAssembly DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland

2 4 6 8 10 12 14 16 18 20
0

5

10

15

Size [MiB]

S
p
ee
d
u
p

H
ig
h
er

is
b
et
te
r
▶ (a) iPhone

2 4 6 8 10 12 14 16 18 20
0

5

10

15

Size [MiB]

(b) Pixel

Stanford: JavaScript (= 1) Our solution: Wasm (encryption) Wasm (decryption)

Figure 3: Speed up of the Wasm encryption and decryption, compared to a pure JavaScript implementation.

the client-side software; (4) the client-side software requests
the encryption key; and (5) the kernel decrypts the message
and files attachments. As the decryption is executed asyn-
chronously on the client side, the page remains unblocked,
and the file attachments are decrypted subsequent to process-
ing the secure message. This enhances the responsiveness of
the rendering compared to a former server-side approach.

5 Evaluation
In this section, we present an evaluation of our proposed
solution, aiming to address the following research questions:
• How does the performance of the encryption scheme im-
plemented in Wasm compare to plain JavaScript?

• Does the time complexity of the encryption cipher remain
linear when utilising Wasm?
To answer these questions, we employ a micro-benchmark

that measures the encryption and decryption times for pay-
loads of varying sizes (§5.2). In §5.3, we assess whether the
encryption scheme maintains linear time complexity.

5.1 Experimental setup and methodology
We conduct benchmarks on a range of mobile phones, in-
cluding Apple iPhone Pro 12/13/14 (running iOS 16) and
Google Pixel 5/Pro 6/Pro 7 (with Android 12 for the former
and Android 13 for the latter two). We leveraged the online
platform LambdaTest [10] to execute the benchmarks on ac-
tual devices. As the benchmarks solely operate on the client
side, we did not consider network latency. We note that Sa-
fari uses the WebKit [1] browser engine, whereas Chrome
uses Blink [2], a fork of WebKit. The use of different browser
engines is imposed by Apple policy, forcing iOS devices to
employ WebKit strictly [3]. We compiled OpenSSL v3.0.5
using Emscripten v3.1.34.

5.2 Microbenchmark: encryption scheme
We devise a micro-benchmark to assess the performance
of our Wasm implementation. We compare against a pure
JavaScript implementation by Stanford [21], which ex-
plored various optimisation strategies for executing crypto-
graphic operations within a JavaScript engine. The bench-
mark utilised the AES cipher with a key length of 128 bit

for encrypting and decrypting payloads generated by a
pseudorandom number generator (PRNG). Payload sizes
ranged from 1MiB to 20MiB, with the maximum corre-
sponding to IncaMail’s file size limit for email attachments.
We measured the time taken by the cryptographic library
to compute ciphertext and plaintext using the function
performance.now for the JavaScript implementation, and
the function clock_time_get with a monotonic clock for
Wasm. The benchmark disregarded the setup and teardown
time for individual runtimes. Results were aggregated by de-
vice type, specifically iPhone and Pixel, due to the negligible
differences observed among the models. Consequently, we
focused on the results obtained from the iPhone Pro 14 and
Google Pixel Pro 7 devices for this analysis. Each experiment
was executed ten times per device, with the mean value used
to determine the average outcome.

Figure 3a and 3b present the results obtained using iPhone
and Pixel devices, respectively. We first observe that the
speedup remains consistent, irrespective of the payload size
for encryption or decryption tasks. On an iPhone, the en-
cryption speedup using Wasm compared to JavaScript is
13.9×, while on a Pixel device, it is 6.9×. Although we did not
explore the precise cause of superior performance on Apple
devices, it is suspected to be due to a more optimised Wasm
runtime for executing OpenSSL. Indeed, the absolute time
taken by an iPhone to encrypt 20MiB of data using Wasm is
307.2ms, whereas on a Pixel device, it is 786.9ms, resulting
in a ratio of 2.6 between the two systems. In contrast, when
comparing the same operation using pure JavaScript, we
observe a ratio of 1.3 (4305.6ms on an iPhone and 5700.4ms
on a Pixel device). The decryption speedup using Wasm is
5.1× for both iPhone and Pixel devices.

The findings of this benchmark illustrate thatWasm signif-
icantly outperforms plain JavaScript code in cryptographic
operations, thereby enabling the efficient offloading of server-
side operations to Incamail’s clients.

5.3 Scalability of the encryption cipher
The deployment of novel technologies in constrained and
restricted environments, such as in web browsers, may be



DEBS ’23, June 27–30, 2023, Neuchatel, Switzerland Gerig P. et al.

2 4 6 8 10 12 14 16 18 20

5

10

15

20

Size [MiB]

S
ca
la
b
ili
ty

(n
or
m
al
is
ed

w
.r
.t

1
M
iB
) iPhone: enc. dec. Pixel: enc. dec.

Figure 4: Scalability of the encryption cipher using
Wasm, with respect to the size of the plaintext.

subject to additional overheads and performance penalties.
We further analysed the results of our benchmark to assess
the scalability of cryptographic operations, specifically ex-
amining whether the time complexity of the implementation
increases with larger payload sizes. In this experiment, we
selected the execution time to encrypt and decrypt payloads
ranging from 1MiB to 20MiB, subsequently dividing the
obtained measurements by the time taken to encrypt 1MiB.

Figure 4 depicts the scalability of the previously-conducted
benchmark for encryption and decryption operations by de-
vice type. The results reveal that the time complexity of these
cryptographic operations is linear when utilising Wasm, i.e.,
the complexity can be expressed as O(𝑛), where 𝑛 denotes
the number of bytes to process. Given that the execution
time of the AES algorithm is linear, our strategy of offload-
ing these cryptographic operations to the client side does
not compromise the user experience, as the implementation
remains efficient and performant.

6 Conclusion
This work presents a proof-of-concept that demonstrates the
offloading of cryptographic operations from IncaMail’s cen-
tralised architecture to clients’ browsers usingWebAssembly.
By implementing OpenSSL compiled in Wasm, we achieved
a significant speedup in encryption and decryption tasks
compared to JavaScript implementations, while maintaining
a linear time complexity relative to secure message and file
attachment sizes. Furthermore, the implementation shares
a common encryption key for all recipients of a given mes-
sage, resulting in non-volatile memory savings. The new
architecture reduces Swiss Post’s resource usage, minimises
client-server traffic, and strengthens the security posture by
minimising the trusted computing base. Our findings indi-
cate thatWasm is a viable and efficient solution for offloading
cryptographic operations to the client side, improving the
performance and security of secure email communication
services such as IncaMail. Future work involves integrating
this proof-of-concept into a production-ready solution.

Acknowledgments.This publication incorporates results
from the VEDLIoT project, which received funding from the
European Union’s Horizon 2020 research and innovation
programme under grant agreement number 957197.

References
[1] Apple. 2023. WebKit. https://webkit.org.
[2] Chromium project. 2023. Blink. https://www.chromium.org/blink/.
[3] Chromium project. 2017. Open-sourcing Chrome on iOS. https://blo

g.chromium.org/2017/01/open-sourcing-chrome-on-ios.html.
[4] DFINITY. 2022. The internet computer for geeks. Cryptology ePrint

Archive, Paper 2022/087.
[5] P. Gackstatter et al. Pushing serverless to the edge with Web-

Assembly runtimes. In CCGRID ’22.
[6] P. K. Gadepalli et al. Sledge: a serverless-first, light-weight Wasm

runtime for the edge. In Middleware ’20.
[7] A. Haas et al. Bringing the web up to speed with WebAssembly. In

PLDI ’17.
[8] H. Halpin. The W3C web cryptography API: motivation and

overview. InWWW’14.
[9] J. Katz et al. A chosen ciphertext attack against several e-mail en-

cryption protocols. In USENIX Security 2000.
[10] LambdaTest. 2023. Devices testing. https://www.lambdatest.com.
[11] C. Lattner et al. LLVM: A compilation framework for lifelong pro-

gram analysis & transformation. In CGO ’04.
[12] D. Lehmann et al. Everything old is new again: binary security of

WebAssembly. In USENIX Security ’20.
[13] J. Ménétrey et al. Twine: an embedded trusted runtime for Web-

Assembly. In ICDE ’21.
[14] J. Ménétrey et al.WaTZ: A trusted WebAssembly runtime environ-

ment with remote attestation for TrustZone. In ICDCS ’22.
[15] J. Ménétrey et al.WebAssembly as a common layer for the cloud-edge

continuum. In FRAME ’22.
[16] J. Müller et al. Re: what’s up Johnny? - covert content attacks on

email end-to-end encryption. In ACNS ’19.
[17] OpenSSL. 2023. Cryptography library. https://www.openssl.org.
[18] D. Poddebniak et al. Efail: breaking S/MIME and OpenPGP email

encryption using exfiltration channels. In USENIX Security ’18.
[19] J. Protzenko et al. Formally verified cryptographic web applications

in WebAssembly. In Symposium on Security and Privacy ’19.
[20] J. Schwenk et al. Mitigation of attacks on email end-to-end encryp-

tion. In CCS ’20.
[21] E. Stark et al. Symmetric cryptography in Javascript. In ACSAC ’09.
[22] Swiss Post. 2023. IncaMail: encrypt confidential e-mails. https://ww

w.post.ch/en/business-solutions/e-mail-encryption.
[23] W. Wang. Empowering web applications with WebAssembly: are we

there yet? In ASE ’21.
[24] A. Zakai. Emscripten: an LLVM-to-JavaScript compiler. In OOP-

SLA ’11.

https://webkit.org
https://www.chromium.org/blink/
https://blog.chromium.org/2017/01/open-sourcing-chrome-on-ios.html
https://blog.chromium.org/2017/01/open-sourcing-chrome-on-ios.html
https://www.lambdatest.com
https://www.openssl.org
https://www.post.ch/en/business-solutions/e-mail-encryption
https://www.post.ch/en/business-solutions/e-mail-encryption

	Abstract
	1 Introduction
	2 Background
	2.1 WebAssembly Primer
	2.2 EFail: attacks and counter-measures

	3 Related Work
	3.1 Mitigations to EFail attacks
	3.2 Wasm as general protection technique
	3.3 Wasm in the wild

	4 Use-Case: IncaMail
	4.1 Offloading Cryptographic Operations
	4.2 Proposed Workflow

	5 Evaluation
	5.1 Experimental setup and methodology
	5.2 Microbenchmark: encryption scheme
	5.3 Scalability of the encryption cipher

	6 Conclusion

