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ABSTRACT
Sensor data often contain private information that requires proper
protection. Most existing privacy-preserving mechanisms (PPMs)
for data streams undermine the utility of the entire data stream and
limit the performance of data-driven applications. We attempt to
break the limitation and establish a new foundation for PPMs by
proposing novel pattern-level differential privacy (DP) guarantees
and pattern-level PPMs that fulfill pattern-level DP. They operate
only on data that correlate with private patterns rather than on the
entire data stream, leading to higher data utility. We first describe
results for sequence operator based patterns in a centralized system
and outline future work to generalize it for other operators and to
local solutions.
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1 INTRODUCTION
Sensor data analytics and data-driven applications are a force to
be reckoned with in the modern world. However, while they be-
come increasingly ubiquitous and reliable, the risk of data misuse
also increases. Sensor data in many cases can reveal information
that individuals regard as private. Several studies have investigated
privacy-preserving mechanisms (PPMs) for sensor data and have
proposed reliable privacy guarantees. Most of them protect pri-
vacy by operating on raw data tuples in a given data stream [8].
These protections are usually universal for all privacy scenarios
and treat all data tuples equally. However, certain data tuples may
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contain more important or private information than others. There-
fore, specific measures targeting them can become more profitable.
Consider the example of taxi services. The GPS locations of taxis
are required to find nearby waiting passengers and predict nearby
traffic jams. However, some taxi passengers want to keep their
locations private when traveling to certain sensitive places, such
as their homes. Typical state-of-the-art PPMs would add sufficient
noise to the GPS records of an entire trip to hide the proximity to
these places. It reduces the precision of all GPS records and the
utility of all location-based services. Considering that passengers
only want to hide information about traveling to sensitive places, it
is more efficient to protect only the data that reveal these patterns
and to avoid adding noise to all other data. This maintains a higher
utility of the entire data stream and enhances the usefulness of all
services that use this stream. As such actions only protect specific
private patterns, we name them pattern-level PPMs.

This PhD project aims to formulate the foundation of pattern-
level PPMs by introducing appropriate definitions and pattern-level
privacy guarantees based on differential privacy (DP). Given the
theoretical foundation, we propose pattern-level PPMs that protect
any private pattern against most queries based on data streams.
We first design a centralized private architecture in which pattern-
level PPMs can be deployed and will also propose a solution for
local privacy models. In detail, our work is expected to make the
following contributions:

• We will establish the theoretical foundation of pattern-level
privacy guarantees, provide complete definitions, and pro-
pose a novel pattern-level DP guarantee, which is named
pattern-level 𝜖-DP (pattern-level DP);

• Wewill propose a pattern-level PPM that satisfies the pattern-
level DP guarantee, which extends the upper performance
boundary of privacy-aware data-driven applications from
non-pattern-level PPMs;

• We will quantify the advantages of pattern-level PPMs com-
pared to non-pattern-level state-of-the-art PPMs;

• Wewill design a centralized and a local architecture to deploy
our proposed PPMs.

The early-stage work has been presented in the ASTRIDE work-
shop in conjunctionwith ICDE 2023 [5]. This paper is organized into
seven sections. Section 2 introduces the related work, and in Section
3, we present the problem statement and the research methodology.
Section 4 presents the system settings and assumptions. Section 5
formulates the DP guarantee for patterns, and Section 6 proposes
the corresponding PPMs. In Section 7, we propose the evaluation,
and Section 8 concludes this paper.
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2 RELATEDWORK
Multiple novel theories and PPMs have been proposed for continu-
ous data observation and data streams. For example, some works
[1, 11] focus on adapting traditional PPMs from static databases to
infinite dynamic data streams, while others [8] utilize the unique
properties of data streams and their applications, e.g., reordering
detected events to protect private patterns.

A well-known set of approaches is rebuilding the bases for DP
based on data streams[3, 7, 10]. Although these approaches de-
liver satisfactory results, they rarely emphasize the different char-
acteristics of distinct data streams, which can be utilized to pro-
vide dedicated solutions and even superior performance. Landmark
privacy[6] makes a move in this direction. It claims that, in reality,
not all timestamps and data should be treated equally because some
may contain significantly more private or valuable information.
The privacy protection of less important information can therefore
be reduced to improve data utility. Although it may seem similar to
our approach, it does not take into account the connections between
different data tuples, which makes it distinct from our work.

3 PROBLEM STATEMENT AND RESEARCH
METHODOLOGY

Our research goal is to provide optimal privacy protection under
the required data utility. We believe that pattern-level PPMs can
reach even superior performance than non-pattern-level PPMs.
However, the existing pattern-level PPMs only provide dedicated
solutions for limited usage, e.g., limited types of operators, and their
theoretical basis is still in its infancy. We, therefore, aim to break the
limitation and deliver a universal solution for pattern-level privacy
protections.

Our first research objective is to establish a solid foundation for
pattern-level PPMs. The main research problem at this stage is the
formulation of fundamental definitions, terminologies, and pattern-
level privacy guarantees based on DP.We also aim to design optimal
pattern-level PPM and quantify its advantage against non-pattern-
level solutions. The main challenges during this procedure are the
distribution of the privacy budget of pattern-level PPMs, the choice
of metrics for evaluation, and the design of practical experiments.
We begin with simplified assumptions, i.e., a centralized solution for
the sequence operator, and extend the corresponding early-stage
outcomes to reach our final objectives and goals. Both formal and
empirical approaches are employed during this research procedure.

4 SYSTEM SETTINGS AND ASSUMPTIONS
Wepropose a centralized privacymodel and a local privacymodel as
our system settings. The centralized system model consists of three
components, i.e., data subjects, a trusted Complex Event Processing
(CEP) engine, and data consumers. According to the definitions of
the General Data Protection Regulation (GDPR) [9], we detail the
requirements of these components as follows:

• Data subjects supply data to the CEP engine and expect their
privacy to be protected according to their requirements;

• The trusted CEP Engine provides privacy protections to data
subjects and delivers the required data to data consumers;

• Data consumers query certain data from the CEP engine.
They follow the honest-but-curious threat model.

Figure 1: The centralized privacy architecture. The execution
consists of a setup phase and a service provision phase.

Figure 1 illustrates the execution procedure of our system model
in a centralized privacy model. In the setup phase, data subjects
define private patterns, and data consumers define data utility re-
quirements and queries. In the service provision phase, data sub-
jects send raw data to the CEP engine, and data consumers receive
responses to their queries with privacy protection from the CEP
engine. For the centralized privacy model, we assume that:

• The CEP engine is trusted by data subjects so that it has
access to raw data streams, including private data;

• The CEP engine is trusted by data consumers and provides
answers to their queries;

• The queries to identify private patterns and target patterns
are provided by data subjects and consumers to the CEP
engine. The required data utility is defined by the data con-
sumers.

The centralized privacy model requires a trusted CEP engine
deployed on an independent server apart from data subjects and
consumers. However, providing a separate CEP may not be favor-
able, considering computing resources and economic revenue. We
therefore also aim to propose a local privacy model as a comple-
ment in which privacy can be preserved on each data subject’s
local device. As the centralized CEP engine is removed under this
assumption, data subjects will directly respond to data consumers’
queries. Most functions of the CEP engine are achieved on data sub-
jects’ local devices. However, unlike the CEP engine, data subjects
usually cannot be fully trusted by data consumers. For example,
consider a mobile phone application. Developers rarely share all
details of their queries with application users. We are able to protect
private patterns based on DP in such situations. However, without
knowing the target patterns, privacy budgets cannot be properly
distributed and will harm data utility. Therefore, we aim to investi-
gate some form of supervision from data consumers that neither
reveals target patterns nor harms privacy.

5 DP GUARANTEE FOR PATTERNS
We aim to propose a pattern-level DP and a PPM capable of han-
dling most data stream queries and operators. We first present the
basic definitions. Given an infinite data stream 𝑆𝐷 = (𝑑1, 𝑑2, ...),
any data tuple 𝑑 of our interest is considered an event 𝑒 , which
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can be either numerical or categorical. A sequence of events can
form a pattern 𝑃 = opr (𝑒1, 𝑒2, ..., 𝑒𝑚), and a data stream can then
be abstracted into a pattern stream 𝑆𝑃 = (𝑃1, 𝑃2, ...). Among the
detected patterns, some contain private information. These pat-
terns are defined as private patterns, while all others are public
patterns. Data consumers are interested in the patterns that we
call target patterns.

Pattern-level DP should guarantee that a private and a public pat-
tern are sufficiently indistinguishable concerning the responses af-
ter applying the PPM to them. For clarification, we first distinguish
pattern instances and pattern types, and then define in-pattern
neighbors and pattern-level neighbors as follows.

Definition 5.1. A pattern type P is a group of patterns specified
by a given query 𝑞. All elements in P can be identified by 𝑞, and any
pattern instance 𝑃𝑖 identified by 𝑞 is an element of P, i.e., 𝑃𝑖 ∈ P.

Definition 5.2 (in-pattern neighbors). Two patterns 𝑃 = 𝑜𝑝𝑟 (𝑒1, 𝑒2,
..., 𝑒𝑚), and 𝑃 ′ = 𝑜𝑝𝑟 (𝑒′1, 𝑒

′
2, ..., 𝑒

′
𝑚), of the same pattern type P

and of the same length are in-pattern neighbors of P if and
only if (1) there exists a unique 𝑖 such that 𝑒𝑖 ≠ 𝑒′

𝑖
, (2) for all

𝑗 ≠ 𝑖 , 𝑒 𝑗 = 𝑒′
𝑗
holds, and (3) if 𝑒𝑖 and 𝑒′𝑖 are numerical and if there

exists 𝑒′′
𝑖

such that (𝑒′′
𝑖

− 𝑒𝑖 ) (𝑒′′𝑖 − 𝑒′
𝑖
) < 0, then for a pattern

𝑃 ′′ = 𝑜𝑝𝑟 (𝑒1, 𝑒2, ..., 𝑒𝑖−1, 𝑒′′𝑖 , 𝑒𝑖+1, ..., 𝑒𝑚) of pattern type P, either
𝑃 ′′ = 𝑃 or 𝑃 ′′ = 𝑃 ′ holds.

Definition 5.3 (pattern-level neighbors). Given a predefined pat-
tern type P, and two infinite pattern streams 𝑆𝑃 = (𝑃1, 𝑃2, ...) and
𝑆𝑃

′
= (𝑃 ′1, 𝑃

′
2, ...), then 𝑆𝑃 and 𝑆𝑃

′
are pattern-level neighbors

with respect to P if and only if for any integer 𝑖 such that 𝑃𝑖 ∈ P,
(1) 𝑃𝑖 and 𝑃 ′𝑖 are in-pattern neighbors of P, and (2) for 𝑗 ≠ 𝑖 , 𝑃 𝑗 = 𝑃 ′

𝑗

holds.

In-pattern neighboring indicates that two patterns only differ by
a basic event 𝑒𝑖 , while pattern-level neighboring indicates that two
pattern streams only differ by a pattern of a given pattern type P.
The pattern-level 𝜖-DP can then be defined as follows.

Definition 5.4. Assume that M is a mechanism that takes a pat-
tern stream 𝐷 as input and outputs a response 𝑅 that belongs to the
group of all possible responses R. Then we claim thatM satisfies
pattern-level 𝝐-DP of a given type of patterns P (pattern-level
DP of P) if and only if for any pattern-level neighbors 𝑆𝑃 and 𝑆𝑃

′

of P and any sets of response R𝑖 ⊆ R,
Pr[M(𝑆𝑃 ) ∈ R𝑖 ] ≤ 𝑒𝜖 · Pr[M(𝑆𝑃

′
) ∈ R𝑖 ]

holds, where Pr denotes the probability function, and 𝜖 is the privacy
budget.

This definition indicates that neighbor patterns should be of
the same pattern type and one of the most similar patterns to
each other. These requirements set a limit not only to the distance
between the events of neighboring patterns but also between these
patterns themselves. Our definition controls the upper bound of the
intensity of privacy protection to a realistic level while attempting
to maximize the output data utility for DP mechanisms.

These definitions are valid for any pattern made by any data
stream operators. However, as they have formed a strict privacy
guarantee and a complicated framework, the design of correspond-
ing PPMs is also challenging. We therefore verify our methods on

a simplified scenario, where we only involve patterns that made
by sequence operators. We have presented this early-stage work
in [5]. Here, the sequence operator is defined as an ordered set of
information items [2]. For sequence operators, the definitions of
pattern-level neighbors and pattern-level DP are still appropri-
ate. Therefore, we are only required to simplify Definition 5.2, i.e.,
in-pattern neighbors. There are three conditions to formulate
in-pattern neighbors. For sequence operators, the existence of
conditions (1) and (2) are still compulsory, since they stipulate the
smallest possible difference between in-pattern neighbors. However,
condition (3) is redundant for sequence operators. It only controls
the largest possible difference between in-pattern neighbors, which
for a sequence operator is equivalent to the smallest difference, i.e.,
a basic event 𝑒𝑖 .

6 PRIVACY-PRESERVING MECHANISMS
Given a well-defined pattern-level DP, we can then design pattern-
level PPMs. A typical approach is to take existing mechanisms [4]
as a basis, e.g., the randomized response, the Laplace mechanism,
or the exponential mechanism. We can modify these mechanisms,
combine them, and eventually adapt them to our own DP guarantee.

The simplest among them would be the randomized response.
It is usually employed for categorical responses to a query, e.g.,
whether a pattern is detected or to which category the detected
pattern belongs. Although there exist algorithms to transform nu-
merical responses, e.g., the age of a person, into categorical re-
sponses such that randomized mechanisms can also be applied to
numerical responses, these transformations usually lead to huge
redundancy in computing resources. Therefore, other mechanisms
can be more favorable selections for numerical query responses.
We combine the randomized mechanism with other mechanisms to
establish our own PPM framework. We assign categorical responses
to a modified randomized mechanism while applying an adapted
Laplace mechanism to numerical responses. We see the potential to
optimize this combination further so that the application of PPMs is
determined by both response types and the estimated performance.

For an 𝜖-DP mechanism, the most crucial procedure is the dis-
tribution of its privacy budget 𝜖 . A trivial approach is to evenly
distribute the privacy budget to each related data tuple. Our previ-
ous work [5] attempts to apply an adaptive approach that optimizes
its distribution of privacy budgets based on historical data. How-
ever, the amount and variety of historical data are usually limited,
and the corresponding budget distribution can hardly be fully opti-
mized. In such cases, we may seek help from synthetic data. As data
stream applications are usually built upon known scenarios, the
corresponding synthetic data also have the potential to precisely
simulate real-world cases and strengthen our approach. Combining
both types of data, we first utilize synthetic data to build a pre-
trained budget distribution model and further optimize it using
real-world historical data.

However, such an approach can only be conducted under the
assumption that the optimized privacy budget distribution based
historical and synthetic data is valid for the current data stream,
i.e., the ground truth of a data stream is not frequently changed.
When such an assumption does not hold, statistical approaches can
be an alternative. Given well-defined private patterns and target
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patterns, it is possible to calculate their correlations and conditional
possibilities of occurrence. We can then attempt to formulate the
relations between these statistics and the decrease in data utility
when a certain privacy budget is assigned to a certain pattern.
However, for different PPMs, statistical methods may vary greatly,
as the ground truth and the calculation of probabilities are usually
distinct among different PPMs.

7 EVALUATION
Our work needs to be evaluated by comparing it with other state-of
the-art PPMs through practical experiments. Under the assumptions
introduced, we believe that fairness and variety are the most critical
factors in this evaluation.

Fairness indicates that different PPMs should be evaluated by
equivalent metrics. Regarding the evaluation of privacy protection,
the privacy budget 𝜖 of DP is the most favorable metric. However,
for different DP guarantees, their privacy budgets are not initially
equivalent. We must transform all measurements of privacy bud-
gets into the same scale. As we aim to quantify the advantage of
our approach, it is more intuitive to transfer the other forms of
privacy budgets into ours instead of in a reverse way. Regarding
the evaluation of data utility, we prefer to minimize the decrease in
utility caused by applying a PPM. Mean Relative Error (MRE) is a
typical metric to measure this decrease MRE𝑈 =

𝑈ord−𝑈PPM
𝑈ord

, where
𝑈ord denotes the ordinary data utility without applying any PPM,
while𝑈PPM is the utility after employing a PPM. Our PPM usually
aims to detect as many target patterns as possible, which can be
measured by recall, and to reduce false detections, which can be
measured by precision. The data utility 𝑈 is therefore measured by
both precision and recall.

Stronger privacy protection leads to additional noise and dam-
ages data utility even more. Considering the trade-off between pri-
vacy protection and data utility, one of them must be fixed to com-
pare the overall performance among multiple PPMs. As data utility
is determined by recall and precision, it is complicated to compare
both simultaneously when privacy budgets are fixed. Therefore,
we set recall and precision fixed and compare privacy budgets. A
lower privacy budget indicates stronger privacy protection under
the same data utility and hence an overall superior performance.

Considering the variety of experiments, the principal factors
are the variety of datasets, e.g., different types of datasets, and the
variety of test examples, e.g., different types of private patterns
in the same dataset. There exist sufficient public datasets for PPM
evaluations, e.g., the Taxi 1 [13, 14] dataset and the Taobao 2 [12]
dataset. However, since only a few works study privacy protection
with respect to patterns, most public datasets cannot be used to
generate enough types of patterns for our evaluation, as we know
little about the ground truth of these datasets. An alternative solu-
tion is to collect our own dataset in need, which costs a significant
amount of time and human resources. Another option is to synthe-
size artificial datasets. They are more flexible but less persuasive
than real-world datasets.

1https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-
sample/
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

8 CONCLUSIONS AND REFLECTIONS
For sequence operators, we have established a satisfactory ground
for pattern-level approaches. We also propose a pattern-level DP
and early-stage pattern-level PPMs with promising performance.
Currently, we generalize these approaches for other operators. Fur-
thermore, we will investigate local privacy protection approaches
under the assumption that data consumers do not reveal their target
patterns. We plan to evaluate the proposed approaches through
practical experiments on public real-world datasets, collected datasets,
and synthetic datasets.
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