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Abstract

For a finite collection of graphs F , the F-TM-Deletion problem has as input an n-vertex
graph G and an integer k and asks whether there exists a set S ⊆ V (G) with |S| ≤ k such
that G \ S does not contain any of the graphs in F as a topological minor. We prove that
for every such F , F-TM-Deletion is fixed parameter tractable on planar graphs. Our
algorithm runs in a 2O(k2) · n2 time or, alternatively in 2O(k) · n4 time. Our techniques can
easily be extended to graphs that are embeddable on any fixed surface.

Keywords: Topological minors, irrelevant vertex technique, treewidth, vertex deletion prob-
lems

1 Introduction

1.1 The P-deletion problem and its variants

In general, a P-deletion problem is determined by some graph class P and asks, given an
n-vertex graph G and an integer k, whether G can be transformed to a graph in P after the
deletion of k vertices. In other words, the class P represents some desired property that we want
to impose on the input graph after deleting k vertices. This is a general graph modification
problem with great expressive power as it encompasses many problems, depending on the choice
of the property P. Unfortunately for most instances of P, this problem is not expected to admit
a polynomial time algorithm. Lewis and Yannakakis showed in [42] that for any non-trivial and
hereditary graph class P, the P-vertex deletion problem is NP-complete. Given this hardness
result, an attractive alternative is to consider the standard parameterized version of the problem,
called p -P-deletion where the parameter is the number k of vertex deletions. In this case the
challenge is to investigate for which instances of P, p -P-deletion is fixed parameter tractable
(or, in short, is FPT), i.e., it can be solved by an f(k) ·nO(1)-time algorithm (also called an FPT-
algorithm), for some function f : N→ N. There is a long line of research on this general question.
In many cases, this concerns particular properties and possible optimizations of the parametric
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dependence f(k) (see e.g. [10]). However, it is interesting to notice that FPT-algorithms exist for
general families of properties. In this direction the more general (and compact) results concern
properties P that can be characterized by the exclusion of some finite set F of graphs of at
most h vertices or edges with respect to some partial ordering relation ≤. We define

PF ,≤ = {G | ∀H ∈ F : H 6≤ G}

and ask whether p -PF ,≤-deletion is FPT. Let us now consider the general status of this
problem for the main known instances of the partial ordering relation ≤.

(1) ≤ is the contraction1 relation: then there are graphs H such that P{H},≤-deletion is NP-
complete even for the case where k = 0. For instance one may take H to be the path on 4
vertices, as indicated in [12]. Using the terminology of fixed parameter complexity, this implies
that there are choices of F such that p -PF ,≤-deletion is para-NP-complete.

(2) ≤ is the induced minor2 relation: as in the previous case, there are choices of F such that
p -PF ,≤-deletion is para-NP-complete. For instance, one may consider F to contain the graph
in [23, Theorem 4.3].

(3) ≤ is the subgraph or the induced subgraph relation: because of the result of Cai in [15],
p -PF ,≤-deletion is FPT, for every F . In particular, the result in [15] implies an O(hknh+1)-
time algorithm for both these problems. However, if instead we parameterize PF ,≤-deletion
by h, then there are instances of F for which the problem is W[1]-hard even for k = 0: just take
F = {Kh} in order to generate the p-Clique problem.

(4) ≤ is the minor3 relation: again p -PF ,≤-deletion is FPT, for every F . To see this, observe
that, for every k, the set of yes-instances of this problem is closed under taking of minors. On the
other hand, Robertson and Seymour [47] proved that graphs are well-quasi-ordered with respect
to the minor relation. These two facts together imply that there is a finite set Bk (whose size
depends on k and h) such that (G, k) is a yes-instance if and only if G contains no graph in Bk as
a minor. As minor-checking for a graph on c vertices can be done in Oc(n3) time [46], we derive
the (non-constructive) existence of an Ok,h(n3)-time algorithm (see Section 2 for the definition
of the Ok,h(·) notation). This result was made constructive in [2]. Recently, a 2kOh(1) · n2 time
algorithm for p -PF ,≤-deletion was designed in [48].

1.2 Our contribution.

A graph H is a topological minor of a graph G if G contains as a subgraph some subdivision4

of H and we denote this by H � G. We consider the problem p -PF ,�-deletion that in the
rest of this paper we call F-TM-Deletion. Notice that this problem is more general than its
counterpart for the minor relation (case (4) above) as, for every graph H, there exists a finite
set of graphs H such that a graph G contains H as a minor if and only if G contains some graph
in H as a topological minor. However as graphs are not well-quasi-ordered with respect to the
topological minor relation, the parameterized complexity of F-TM-Deletion remained open
for a while.

1A graph G is a contraction of a graph G′ if G can be obtained from G by applying edge contractions.
2A graph G is an induced minor of a graph G′ if G can be obtained from some contraction of G′ after removing

vertices.
3A graph G is an minor of a graph G′ is G is the contraction of some subgraph of G′.
4A graph G is a subdivision of a graph G′ if G can be obtained from G′ if we replace its edges by paths with

the same endpoints.
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In this paper we prove that F-TM-Deletion is FPT for inputs restricted to planar graphs.
Moreover, we develop results and techniques that may serve as the base for further FPT-
algorithms for p -PF ,≤-deletion on planar graphs, when ≤ is the induced minor or the con-
traction relation (see Subsection 6.4 for a discussion). We stress that, until very recently, the
parameterized complexity of this problem was unknown. For an update on the current status
of the general problem see Subsection 6.3.

Let F be a finite set of graphs. We use h(F) for the maximum number of vertices or edges
of a graph in F , i.e., h(F) = max{|V (H)|, |E(H)| | H ∈ F}. We also write F � G to denote
the fact that none of the graphs in F is a topological minor of G. We define the parameter
tmF so that, for every graph G,

tmF (G) = min{k | ∃S ⊆ V (G) : |S| ≤ k ∧ F � G \ S}.

The main result of this paper is the following:

Theorem 1.1. There exists an algorithm that given a finite set of graphs F , a k ∈ N, and an
n-vertex planar graph G, outputs whether tmF (G) ≤ k in 2Oh(k2) · n2 time, or, alternatively,
O(k · n4) +Oh(n4) + 2Oh(k) · n2 time, where h = h(F).

We stress that the algorithm of Theorem 1.1 can be straightforwardly modified so as to
output a set S of size at most k that intersects all models of the graphs in F . A version of
Theorem 1.1 without the explicit parametric dependences on the running times appeared in [30].

1.3 High level description of our algorithm

Our main approach towards proving Theorem 1.1 is the application of the so-called irrelevant
vertex technique. This technique was introduced for the first time by Roberston and Seymour
in [46] for the design of an FPT-algorithm for the Disjoint Paths problem, parameterized
by the number of terminals. Subsequently, it was applied, in diverse ways, for the design of
FPT-algorithms for several graph-theoretical problems and is now considered as a powerful
technique of parameterized algorithm design [3, 18, 29, 32, 33, 35, 37–40, 43, 44]. We also refer
to [17, Chapter 7] for a high-level overview of the irrelevant vertex technique. The general
algorithmic paradigm of the irrelevant vertex technique takes advantage of some structural
characteristic of the input graph in order to detect, in FPT-time, some vertex, called irrelevant,
whose removal from G generates an equivalent instance of the problem. By recursing on the
produced equivalent instance we end up with a graph where the structural parameter is bounded
(by some function of k). This fact permits the resolution of the problem with other techniques
– typically by dynamic programming. Most of the times, this structural parameter is treewidth
(see Section 2 for the formal definition) and this is the one that we use in this paper. Towards
proving Theorem 1.1, the application of the irrelevant vertex technique is based on Theorem 1.2
that we present below.

Let G be a graph, R be a subset of V (G), and k be a non-negative integer. We say that
(G,R, k) is a tmF -triple if there exists an S ⊆ R such that |S| ≤ k and F � G \ S. Intuitively,
the set R can be seen as the set of vertices that are possible candidates for a solution S. Aiming
to remove (irrelevant) vertices from the given graph, we also make progress by reducing R. This
is formulated in the next result.

Theorem 1.2. There exists a function f1 : N → N, and an algorithm with the following
specifications:
Find_Irrelevant_Vertex(k, h,G,R)
Input: k, h ∈ N, an n-vertex planar graph G, and a set R ⊆ V (G).
Output:
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1. an (irrelevant) vertex v ∈ V (G) and a set R′ ⊆ R such that, for every graph class F where
h(F) ≤ h, (G,R, k) is a tmF -triple if and only if (G \ v,R′, k) is a tmF -triple or

2. a tree decomposition of G of width at most f1(h) · k.

Moreover, this algorithm runs in 2Oh(k2) · n time, or, alternatively, O(k · n3) + Oh(n3) +
2Oh(k) · n time.

After applying the algorithm of Theorem 1.2 at most n times, the problem is reduced to
instances of bounded treewidth. As topological minor containment can be defined by a formula
in Monadic Second Order Logic, i.e., an MSOL formula, [41, Appendix D] and vertex deletion to
some MSOL definable property is also MSOL definable, it follows from Courcelle’s Theorem [16]
(see also [4, 11, 49]) that the problem for reduced instances can be solved in Ok,h(n) time. To
solve the version of the problem where a certificate of the solution is asked for, one can use
the version of Courcelle’s Theorem [16] that returns such a certificate, if it exists. However, to
achieve the parametric dependencies in the running times of Theorem 1.1, we have to avoid the
use of Courcelle’s Theorem when solving the problem on instances of bounded treewidth. We
devote Section 3 to describe how to develop a dynamic programming algorithm (Lemma 3.4)
that can solve the problem on instances of treewidth at most w in 2Oh(w logw) · n time, or,
alternatively, in O(n3) + 2Oh(w) · n time. Theorem 1.1 follows. We stress that each one of these
running times has some advantage against the other. In the first case, we have a linear, in n,
algorithm whose parametric dependence on k is super-exponential. In the second, we drop the
parametric dependency to a single exponential one to the cost of a worst polynomial dependency
on n.

In the rest of this section we give an outline on how Theorem 1.2 is proved. All combinatorial
concepts used in this description are presented in an intuitive way; formal definitions can be
found in Section 2. Given a tuple of variables x = (x1, . . . , xq) by the term x-big/small we refer
to a quantity that is lower/upper bounded by some (unbounded) function of x. Alternatively,
we use the term x-many/few that is defined analogously. We work on some embedding of G in
the plane.

Walls and annuli. An important combinatorial object is the one of a r-wall , as the one in
Figure 1, that can be seen as the union of r horizontal paths intersected by r vertical paths.
The layers of a wall W are defined as indicated in Figure 1.

Figure 1: A 17-wall and its 8 layers.

We call the outermost layer perimeter of the wall W . Combining the results of [1, 8, 29, 34]
we know that if the treewidth of a planar graph is (k, h)-big, then we can find a (k, h)-big wall
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in G such that the subgraph of G, called the compass of W , inside the closed disk “cropped” by
the perimeter of W has (k, h)-small treewidth (see Proposition 2.1). This additional property
will permit us to compute (possible) partial solutions on subgraphs of the compass of W .

The next step is to detect some more structure in the wall W that is intuitively depicted
in the left side of Figure 2. We first distinguish the collection C of the (k, h)-many outermost
layers, drawn in yellow, and then we consider in the rest of W a packing of (k, h)-many (h)-big
walls, drawn in green. This is done in Lemma 2.1.

We now work on the “annulus” of the (k, h)-many outer layers ofW . For this, it is convenient
to see those cycles as “crossed” by a collection P of disjoint paths (that are monotone subpaths
of the horizontal/vertical paths of W ) called rails. We call this system of cycles and rails railed
annulus, denoted by A = (C,P). See the right side of Figure 2 for an example of a railed annulus
with 5 cycles and 8 rails.

Combing topological minor models. Notice that if H is a topological minor of a graph G,
then this is materialized by a pair (M,T ) where M is a subgraph of G and T is a set of vertices
of M , called branches, such that all vertices of V (M) \ T have degree 2. We say that (M,T ) is
a topological minor model of H in G if a graph isomorphic to H is created after dissolving in M
all vertices in V (M) \ T (which means deleting every such vertex and making its two neighbors
adjacent). For simplicity, assume that F = {H} and recall that tmF (G) ≤ k if there is a set
S ⊆ V (G), |S| ≤ k, called from now on solution set, that intersects all topological minor models
of H in G.

Our next aim is to analyze how topological minor models of H may cross the cycles and the
rails of a railed annulus A = (C,P). For this reason, using [31, Corollary 1] (see also [30] for
a conference version), we prove that if the branches of (M,T ) are situated outside the annulus
and the annulus is (h)-big then it is possible to find an alternative “rail-combed” model (M ′, T ′)
of G, whose intersection with the “middle cycle” of A consists only of (h)-few rail vertices. We
refer to this theorem as the “model combing theorem” (Theorem 2.1).

Representations of topological minor models. Using the model combing theorem, we
can pick an (h)-small collection P ′ of the rails of A for which the following holds: for every
topological minor model (M,T ) of H that crosses A, there is a disk ∆ bounded by some cycle
C of A and a “combed” (through P ′) version (M ′, T ′) of (M,T ) that represents (M,T ) in the
sense that a set of vertices that are “not so close” to C, intersects M ∩∆ if and only if the same
set intersects M ′ ∩∆. From now on we refer to the instances of M ′ ∩∆ as the inner combed
models of A and we can see them as models representing the “inner part” of all annulus-crossing
models.

Reducing the solution space. The next step is to compute, for every cycle C of A, a set
SC of at most (k, h)-many vertices intersecting each possible inner combed model of A (it is
possible that SC is an empty set). This computation can be done by the dynamic programming
algorithm of Lemma 3.4 that can find (partial) solutions of the problem on subgraphs of the
compass of W that have (k, h)-small treewidth. Let ∆in be the disk bounded by the innermost
cycle of C (cycle C5 in Figure 2). We then compute Sin = ∆in∩ (⋃C∈C SC) and observe that Sin
has (k, h)-small size. Based on the fact that the inner combed models represent the inner part of
all models crossing A and the fact that all these models are intersected by subsets of at most k
vertices whose restriction in ∆in is in Sin, we prove that if G\S does not contain any topological
minor model of H, then we can replace S ∩∆in by vertices of Sin to obtain a new solution that
is not larger than S (Lemma 4.1). This is an important restriction of the solution space of the
problem in what concerns its intersection with ∆in. As there are (k, h)-many (h)-big subwalls
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∆in

Figure 2: Left: The partition of a wall into a yellow annulus and several green subwalls. Right:
An example of a (5, 8)-railed annulus depicted in yellow; its innermost cycle is C5 and the disk
∆in bounded by C5 is depicted in green.

packed inside ∆in, there is a subwall whose compass can be avoided by all possible solution sets.
The compass of such a wall is called solution-free. In the above, H might be any graph on h
vertices, however its is more convenient to think about some specific (planar) graph H in F .

Finding an irrelevant vertex. We now fix our attention to the solution-free compass of
some (h)-big subwall of W . Once again, we see this wall as a railed annulus A′ and use the
model combing theorem in order to represent all ways topological minor models of H can
“invade” the compass of W by combed topological models going through the rails of A′. This,
in turn, permits us to detect a vertex v of the solution-free compass of W such that if a solution
set S intersects a topological minor model that contains v, then it should also intersect some
representation of it that avoids v, therefore v is irrelevant (Lemma 4.2).

1.4 Organization of the paper

In Section 2, we give some definitions and preliminaries. In Section 3 we present a way to design
a dynamic programming algorithm that solves the problem in bounded treewidth graphs. In
Section 4 we present the two main subroutines of the algorithm of Theorem 1.2 and in Section 5
we prove Theorem 1.2. We conclude in Section 6 by discussing the running time dependancy
on h of our algorithm, the extension of our results to bounded Euler genus graphs, some recent
advances on the study of the problem on general graphs, and some open problems.

2 Definitions and preliminaries
We denote by N the set of all non-negative integers. Given an n ∈ N, we denote by N≥n the
set containing all integers equal or greater than n. Given two integers x and y we define by
[x, y] = {x, x+ 1, . . . , y − 1, y}. Given an n ∈ N≥1, we also define [n] = {1, . . . , n}. Let U be a
set, r ∈ N≥1, and A = [A1, . . . , Ar] ⊆ (2U )r, B = [B1, . . . , Br] ⊆ (2U )r. We say that A ⊆ B if
for all i ∈ [r], Ai ⊆ Bi. Also, if S ⊆ U we denote A ∩ S = [A1 ∩ S, . . . , Ar ∩ S].

Let (x1, . . . , xl) ∈ Nl and χ, ψ : N→ N. We use the notation χ(n) = Ox1,...,xl(ψ(n)) to denote
that there exists a computable function f : Nl → N such that χ(n) = O(f(x1, . . . , xl) · ψ(n)).
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2.1 Basic concepts on graphs

All graphs in this paper are undirected, finite, and they do not have loops or multiple edges.
Unless stated otherwise, we denote by n the number of vertices of the graph under consideration.
If G1 = (V1, E1) and G2 = (V2, E2) are graphs, then we denote G1 ∩ G2 = (V1 ∩ V2, E1 ∩ E2)
and G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). Also, given a graph G and a set S ⊆ V (G), we denote by
G\S the graph obtained if we remove from G the vertices in S, along with their incident edges.
Given a vertex v ∈ V (G), we denote by NG(v) the set of vertices of G that are adjacent to v
in G. Also, given a set S ⊆ V (G), we set NG(S) = ⋃

v∈S NG(v) and NG[S] = NG(S) ∪ S. We
denote by ∂(S) the set of vertices in S that have a neighbor in V (G) \ S. Given a graph G, we
say that the pair (A,B) is a separation of G if A∪B = V (G) and there is no edge in G with one
endpoint in A \B and the other in B \A. A path (cycle) in a graph G is a connected subgraph
with all vertices of degree at most (exactly) 2. A path is trivial if it has only one vertex and is
empty if it is the empty graph (i.e., the graph with empty vertex set).

Partially disk-embedded graphs. A closed disk (resp. open disk) ∆ is a set homeomorphic
to the set {(x, y) ∈ R2 | x2 + y2 ≤ 1} (resp. {(x, y) ∈ R2 | x2 + y2 < 1}). We use bor(∆) to
denote the boundary of ∆ and int(∆) to denote the open disk ∆ \ bor(∆). When we embed a
graph G in the plane or in a disk, we treat G as a set of points. This permits us to make set
operations operations between graphs and sets of points. We say that a graph G is partially
disk-embedded in some closed disk ∆, if there is some subgraph K of G that is embedded in ∆
such that bor(∆) is a cycle of K and (V (G) ∩ ∆, V (G) \ int(∆)) is a separation of G. From
now on, we use the term partially ∆-embedded graph G to denote that a graph G is partially
disk-embedded in some closed disk ∆. We also call the graph K the compass of the partially
∆-embedded graph G and we always assume that we accompany a partially ∆-embedded graph
G with the embedding of its compass in ∆, that is the set G ∩∆.

Grids and walls. Let k, r ∈ N. The (k × r)-grid is the Cartesian product of two paths on k
and r vertices, respectively. An elementary r-wall, for some odd r ≥ 3, is the graph obtained
from a (2r× r)-grid with vertices (x, y), x ∈ [2r]× [r], after the removal of the “vertical” edges
{(x, y), (x, y+1)} for odd x+y, and then the removal of all vertices of degree one. Notice that, as
r ≥ 3, an elementary r-wall is a planar graph that has a unique (up to topological isomorphism)
embedding in the plane such that all its finite faces are incident to exactly six edges. The
perimeter of an elementary r-wall is the cycle bounding its infinite face. Given an elementary
wall W, a vertical path of W is one whose vertices, in order of appearance, are (i, 1), (i, 2), (i+
1, 2), (i+ 1, 3), (i, 3), (i, 4), (i+ 1, 4), (i+ 1, 5), (i, 5), . . . , (i, r−2), (i, r−1), (i+ 1, r−1), (i+ 1, r),
for some i ∈ {1, 3, . . . , 2r − 1}. Also, a horizontal path of W is one whose vertices, in order of
appearance, are (1, j), (2, j), . . . , (2r, j), for some j ∈ [2, r− 1], or (1, 1), (2, 1), . . . , (2r− 1, 1) or
(2, r), (3, r), . . . , (2r, r).

An r-wall is any graph W obtained from an elementary r-wall W after subdividing edges
(see Figure 1). We call the vertices that were added after the subdivision operations subdivision
vertices. The perimeter of W , denoted by perim(W ), is the cycle of W whose non-subdivision
vertices are the vertices of the perimeter of W . Also, a vertical (resp. horizontal) path of
W is a subdivided vertical (resp. horizontal) path of W . An r′-subwall W ′ of a wall W is
any r′-wall that is a subgraph of W and whose horizontal/vertical paths are subpaths of the
horizontal/vertical paths of W .

A subgraph W of a graph G is called a wall of G if W is an r-wall for some odd r ≥ 3
and we refer to r as the height of the wall W . Let W be a wall of a graph G and K ′ be the
connected component of G \V (perim(W )) that contains W \V (perim(W )). The compass of W ,
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denoted by compass(W ), is the graph G[V (K ′)∪V (perim(W ))]. Observe that W is a subgraph
of compass(W ) and compass(W ) is connected.

The layers of an r-wall W are recursively defined as follows. The first layer of W is its
perimeter. For i = 2, . . . , (r− 1)/2, the i-th layer of W is the (i− 1)-th layer of the subwall W ′
obtained from W after removing from W its perimeter and all occurring vertices of degree one.
Notice that each (2r + 1)-wall has r layers (see Figure 1).

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and χ :
V (T )→ 2V (G) such that

1. ⋃t∈V (T ) χ(t) = V (G);

2. for every edge e of G there is a t ∈ V (T ) such that χ(t) contains both endpoints of e and

3. for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ χ(t)} is connected.

The width of (T, χ) is defined as w(T, χ) := max
{
|χ(t)| − 1 | t ∈ V (T )

}
. The treewidth of G is

defined as tw(G) := min
{
w(T, χ)

∣∣ (T, χ) is a tree decomposition of G
}
.

The following result follows combining the results of [1, 8, 29, 34]. It intuitively states that
given a q ∈ N and a planar graph G with “big” enough treewidth, we can find a q-wall of G
whose compass has “small” enough treewidth.

Proposition 2.1. There exists a constant c1 and an algorithm with the following specifications:
Find_Wall(G, q)
Input: a planar graph G and a q ∈ N≥3.
Output:

1. Either a q-wall W of G whose compass has treewidth at most c1 · q or

2. a tree decomposition of G of width at most c1 · q.

Moreover, this algorithm runs in 2O(q2) · n time, or, alternatively, in 2O(q) · n2 time.

The above algorithm uses first the single exponential FPT-approximation of treewidth by [8]
and as long as the treewidth is not small enough then it finds a q-wall W by either using the
algorithm of [1], that runs in 2O(q2) · n time, or the algorithm of [34] that runs in O(n2) time.
The treewidth of the compass of W is bounded by applying the main idea of [29, Lemma 4.2].
We present a proof for completeness.

Proof of Proposition 2.1. The following algorithm is a slight modification of the algorithm Com-
pass in [29, Subsection 4.2]. The version presented here uses [8, Theorem VI] and the algorithms
of [1, 34] to obtain the claimed running times.

We set c1 := 94. We start by applying the single-exponential 5-approximation algorithm of
Bodlaender et al. for treewidth [8, Theorem VI], which outputs either a report that the treewidth
of G is larger than 18q + 1 or a tree decomposition of G of width at most 5 · (18q + 1) + 4.
Observe that 5 · (18q + 1) + 4 ≤ 94q, for q ≥ 3. In the latter case, we return the obtained tree
decomposition of G. In the former case, i.e., where the treewidth of G is larger than 18q+1, we
know [29, Lemma 2.1] that G contains a 2q-wall as a minor. Such a q-wallW can be found using
either the minor-checking algorithm of [1] that runs in 2O(q2) · n time, or the algorithm of [34]
that runs in O(n2) time. Next, among the four vertex-disjoint q-subwalls of W , we obtain the
one, say W ′, whose compass has the minimum number of vertices. We recursively apply the
algorithm of [8, Theorem VI] with input the compass of W ′ and the integer 18q + 1. For more
details, we refer the reader to [29, Subsection 4.2].
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2.2 Railed annuli

In this subsection we present the notion of railed annulus, introduced in [36], a “wall-like” graph
as in the right side of Figure 2, that is the union of a collection of cycles and a collection of
paths “crossing” these cycles. In order to define railed annuli, we first give the definitions of
nested sequences of cycles and annuli.

Nested cycles and annuli. Let G be a partially ∆-embedded graph and let C = [C1, . . . , Cr],
r ≥ 2, be a collection of vertex-disjoint cycles of the compass of G. We say that the sequence C
is a ∆-nested sequence of cycles of G if every Ci is the boundary of an open disk Di such that
∆ ⊇ D1 ⊇ · · · ⊇ Dr. From now on, each ∆-nested sequence C will be accompanied with the
sequence [D1, . . . , Dr] of the corresponding open disks as well as the sequence [D1, . . . , Dr] of
their closures. Given x, y ∈ [r] where x ≤ y, we call the set Dx \Dy the (x, y)-annulus of C and
we denote it by ann(C, x, y). Finally, we say that ann(C, 1, r) is the annulus of C and we denote
it by ann(C).

Railed annuli. Let r ∈ N≥3 and q ∈ N≥3. Assume also that r is an odd number. An (r, q)-
railed annulus of a partially ∆-embedded graph G is a pair A = (C,P) where C = [C1, . . . , Cr] is
a ∆-nested collection of cycles of G and P = [P1, . . . , Pq] is a collection of pairwise vertex-disjoint
paths in G such that

• For every j ∈ [q], Pj ⊆ ann(C).

• For every (i, j) ∈ [r]× [q], Ci ∩ Pj is a non-empty path, that we denote Pi,j .

We refer to the paths of P as the rails of A and to the cycles of C as the cycles of A.
Let A = (C,P) be an (r, q)-railed annulus of a partially ∆-embedded graph G. We call Dr

(resp. D1) the inner (resp. outer) disk of A. We also extend the notion of an annulus and we
say that the annulus of A = (C,P) is the annulus of C.

We now prove the following lemma which intuitively states that there is an algorithm that
given a “big enough” wall, outputs a collection of railed annuli whose number and size will be
useful in the proof of Theorem 1.2.

Lemma 2.1. There exists a function f2 : N3 → N and an algorithm with the following specifi-
cations:
Find_Collection_of_Annuli(x, y, z,∆, G,W )
Input: two odd integers x, y ∈ N≥3, an integer z ∈ N, a partially ∆-embedded graph G and a
q-wallW of the compass of G whose perimeter is the boundary of ∆ and such that q ≥ f2(x, y, z).
Output: a closed disk ∆′ ⊆ ∆ and a collection A = {A0,A1, . . . ,Az} of railed annuli of the
compass of G such that

• A0 is an (x, x)-railed annulus whose outer disk is ∆ and whose inner disk is ∆′,

• for i ∈ [z], Ai is a (y, y)-railed annulus of G ∩ int(∆′), and

• for every i, j ∈ [z] where i 6= j, the outer disk of Ai and the outer disk of Aj are disjoint.

Moreover, this algorithm runs in O(n) time and f2(x, y, z) = O(x+ y
√
z).

Proof. Let y′ := 2y + dy/4e and assume that y′ is an odd integer (otherwise, make it odd by
adding 1) and let f2(x, y, z) = 2x + max{dx/4e, d

√
z/2e · y′} + 1. We argue that the following

holds:
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Claim: Let p ∈ Z≥3 be an odd integer. If H is an h-wall of G, where h is an odd integer such
that h ≥ 2p+ dp/4e, then H contains a (p, p)-railed annulus A = (C,P), where C = [C1, . . . , Cp]
and for every i ∈ [p], Ci is the i-th layer of H.
Proof of Claim: Let H be an h-wall of G, where h ≥ 2p + dp/4e. We define the ∆-nested
collection C = [C1, . . . , Cp] of cycles of G, where, for every i ∈ [p], Ci is the i-th layer of H. Let
P̂ be the collection of the vertical and horizontal paths of H that contain branch vertices of
W that are not in ⋃i∈[p] V (Ci). Observe that, for every i ∈ [p], every path in P̂ also intersects
Ci and that P̂ ∩ ann(C) is a collection of pairwise-vertex disjoint paths of G. Also, notice that
since h− 2p ≥ dp/4e, P̂ ∩ ann(C) contains at least p paths. Let P := [P1, . . . , Pp] be a subset of
P̂ ∩ ann(C). Then, P is a collection of pairwise vertex-disjoint paths of G and it holds that for
every j ∈ [p], Pj ⊆ ann(C) and for every (i, j) ∈ [p]× [p], Ci∩Pj is a non-empty path. Therefore,
H contains a (p, p)-railed annulus A = (C,P) of G and the claim follows.

Following the claim above, for H := W , h := q, and p := x, since q ≥ 2x+ dx/4e, we deduce
the existence of an (x, x)-railed annulus A0 whose inner disk is Dx and whose outer disk is D1
- that is ∆. Observe that since q− 2x ≥ d

√
z/2e · y′+ 1, there exists an r-wall Ŵ of G for some

odd r ∈ Z≥3 such that r ≥ d
√
z/2e · y′ and Ŵ ⊆ G ∩Dx.

Now, notice that Ŵ contains a collection W = {W ′1, . . . ,W ′z} of z y′-subwalls of W such
that, for every i, j ∈ [z], i 6= j, compass(W ′i ) ∩ compass(W ′j) = ∅. Therefore, for every i ∈ [z],
applying again the claim above for H := W ′i , h := y′ and p := y, we deduce the existence
of a (y, y)-railed annulus Ai of W ′i . Furthermore, for every i, j ∈ [z], i 6= j, the fact that
compass(W ′i ) ∩ compass(W ′j) = ∅ implies that the outer disk of Ai and the outer disk of Aj are
disjoint. The proof concludes by setting ∆′ = Dx and A = {A0,A1, . . . ,Az}.

2.3 Rerouting linkages inside railed annuli

In the rest of this section we show how to reroute topological minor models inside railed annuli.
For this reason, in Subsection 2.3, we define the notion of a linkage, which we study as a
subgraph of a partially disk-embedded graph. It has been proved [31, Corollary 1] that if a
linkage L of a partially disk-embedded graph invades a sufficiently large railed annulus inside
the disk, then there is an equivalent linkage that is “combed” through the rails of the annulus. In
Subsection 2.4, we extend this result (Proposition 2.2) to topological minor models, by treating
the paths of the model as paths of the linkage, and we conclude with the “model combing
theorem” (Theorem 2.1) that allows us to reroute topological minor models in order to “comb”
them through the rails of a sufficiently large railed annulus.

Before stating Proposition 2.2 we need some definitions.

Linkages. A linkage in a graph G is a subgraph L of G whose connected components are all
non-trivial paths. The paths of a linkage are its connected components and we denote them by
P(L). The size of L is the number of paths and is denoted by |L|. The terminals of a linkage
L, denoted by T (L), are the endpoints of the paths in P(L), and the pattern of L is the set{
{s, t} | P(L) contains some (s, t)-path

}
. Two linkages L1, L2 of G are equivalent if they have

the same pattern and we denote this fact by L1 ≡ L2.

Linkages in railed annuli. Let G be a partially ∆-embedded graph, let A = (C,P) be a
(r, q)-railed annulus of G and L be a linkage of G. Given a set D ⊆ ∆, then we say that L
is D-avoiding if T (L) ∩D = ∅. We also say that L is A-avoiding if it is ann(C)-avoiding (see
Figure 3).
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Figure 3: An example of a railed annulus A and a linkage L (depicted in red) that is A-avoiding.

Let r = 2t+ 1. Let also s ∈ [r] where s = 2t′+ 1. Given some I ⊆ [q], we say that a linkage
L is (s, I)-confined in A if

L ∩ ann(C, t+ 1− t′, t+ 1 + t′) ⊆
⋃
i∈I

Pi.

We are now ready to state the following result from [30], whose proof can be found in [31].

Proposition 2.2 ([30, 31]). There exist two functions f3, f4 : N → N, where the images of f4
are even, such that for every odd s ∈ N≥1 and every ` ∈ N, if G is a partially ∆-embedded
graph, A = (C,P) is a (r, q)-railed annulus of G, where r = f4(`) + s and q ≥ 5/2 · f3(`), L
is an A-avoiding linkage of size at most `, and I ⊆ [q], where |I| > f3(`), then G contains a
linkage L̃ where L̃ ≡ L, L̃ is A-avoiding, L̃ \ ann(C) ⊆ L \ ann(C), and L̃ is (s, I)-confined in
A. Moreover, f4(`) = O((f3(`))2).

It follows from the result in [3], that f3(`) = 2O(`), when G is a planar graph. Furthermore,
if G is a graph of Euler genus at most γ, then f3(`) = 2Oγ(`), because of the result of Mazoit
in [45]. We stress that [31] contains the proof of a more general version of Proposition 2.2 where
linkages are t-scattered, i.e., their paths are within distance at least t.

2.4 Rerouting topological minors

We say that (M,T ) is a tm-pair if M is a graph, T ⊆ V (M), and all vertices in V (M) \ T have
degree two. We denote by diss(M,T ) the graph obtained from M by dissolving all vertices in
V (M) \T . A tm-pair of a graph G is a tm-pair (M,T ) where M is a subgraph of G. Given two
graphs H and G, we say that a tm-pair (M,T ) of G, is a topological minor model of H in G if
H is isomorphic to diss(M,T ). We call the vertices in T branch vertices of (M,T ).

Topological minor models in railed annuli. Let G be a partially ∆-embedded graph, let
H be a graph, A = (C,P) be a (r, q)-railed annulus of G. Let r = 2t+ 1. Let also s ∈ [r] where
s = 2t′ + 1. Given some I ⊆ [q], we say that a topological minor model (M,T ) of H in G is
(s, I)-confined in A if

M ∩ ann(C, t+ 1− t′, t+ 1 + t′) ⊆
⋃
i∈I

Pi.

Intuitively, the above definition demands that M traverses the “middle” (s, q)-annulus by
intersecting it only at the rails of A.

Our algorithms are strongly based on the following combinatorial result.
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Theorem 2.1 (Model Combing). There exist two functions f3, f4 : N → N, where the images
of f4 are even, such that if

• s is a positive odd integer,

• H is a graph on at most g edges,

• G is a partially ∆-embedded graph,

• A = (C,P) is an (r, q)-railed annulus of G, where r = f4(g) + 2 + s and q ≥ 5/2 · f3(g),

• (M,T ) is a topological minor model of H in G such that T ∩ ann(A) = ∅, and

• I ⊆ [q] where |I| > f3(g),

then G contains a topological minor model (M̃, T̃ ) of H in G such that

1. T̃ = T ,

2. M̃ is (s, I)-confined in A and

3. M̃ \ ann(A) ⊆M \ ann(A).

Moreover, f4(g) = O((f3(g))2).

Proof. Let s be a positive odd integer, H be a graph on g edges, G be a partially ∆-embedded
graph, A = (C,P) be a (r, q)-railed annulus of G, where r = f4(g) + 2 + s and q ≥ 5/2 · f3(g),
(M,T ) be a topological minor model of H in G such that T ∩ ann(A) = ∅.

Notice that all the connected components of M \ T are paths of G. Let L be the linkage of
G\T created by taking the union of all non-trivial connected components ofM \T (see Figure 4).
Observe that P(L) is the set of all paths of G connecting neighbors of branch vertices of M and
consisting only of subdividing vertices of M and that there is an one-to-one correspondence of
P(L) with E(H). Thus |L| ≤ g.

Let A′ = ([C2, . . . , Cr−1],P ∩ ann(C, 2, r − 1)) and keep in mind that A′ is a (r′, q)-railed
annulus of G, where r′ = f4(g) + s and q ≥ 5/2 · f3(g). The fact that T ∩ ann(A) = ∅ implies
that T (L) ∩ ann(A′) = ∅ and thus L is A′-avoiding (see Figure 4).

Let I ⊆ [q], where |I| > f3(h). By applying Proposition 2.2 for s, g,G,A′, L, and I we
obtain a linkage L̃ of G such that L̃ ≡ L, L̃ is A′-avoiding, L̃ \ ann(A′) ⊆ L \ ann(A′), and L̃
(s, I)-confined in A′. We define

M̃ = (M \ L) ∪ L̃.

By definition, (M̃, T ) is a topological minor model of H in G. Also, since L, L̃ ⊆ ann(A), then
M̃ \ ann(A) ⊆M \ ann(A). Finally, as L̃ is (s, I)-confined in A′ then M̃ is (s, I)-confined in A
as well.

3 Optimizing the Dynamic programming
According to the classic meta-algorithmic results of [4, 11] (see also [5,16]) computing tmF (G)
can be done in Oh,tw(n) time. As we want to optimize the contribution of k in our algorithm, we
present in this section a way to design a dynamic programming algorithm for computing tmF (G)
in 2Oh(tw log tw)n time. Actually, we give a more general statement of this result, Lemma 3.4,
that will be useful in intermediate steps of our algorithm, presented in Subsection 4.1 and
Subsection 4.2. In particular, Lemma 3.4 will allow us to find (partial or complete) solutions
to the (partial or complete) instances of the problem in bounded treewidth graphs. In order
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Figure 4: An example of a topological minor model (M,T ) of H in G. Vertices of T are depicted
in blue while the neighbors of vertices of T that are also subdividing vertices are depicted in
red. Also, ann(A′) is depicted in green.

to prove Lemma 3.4, we adapt the main ideas of [6] in our context. Thus, in Subsection 3.1,
we define boundaried graphs and an equivalence relation among them with respect to the
existence of certain topological minor models as subgraphs, which gives rise to a minimum-
sized representative of each equivalence class. In Subsection 3.2, we use known results from
the protrusion machinery and bidimensionality theory [6, 7, 26] to deduce that the size of each
representative is bounded by a function of its boundary size. Finally, in Subsection 3.3, we
define a notion of annotated boundaried graphs, the enhanced boundaried graphs, we extend
the notions of equivalence of boundaried graphs to meta-equivalence of enhanced boundaried
graphs, and we consider the meta-representatives of enhanced boundaried graphs. We also prove
that the number of different meta-representatives is bounded by a function of the boundary size
(Lemma 3.3) and, using the dynamic programming tools of [7], we conclude with an algorithm
(Lemma 3.4) that computes the minimal size modulator of an enhanced boundaried graph to a
given meta-representative.

3.1 Boundaried graphs and representatives

We begin with some definitions, which originate in the seminal work of Bodlaender et al. [9].

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is a
graph, B ⊆ V (G), |B| = t, and ρ : B → [t] is an bijective function. We call B the boundary of
G and we call the vertices of B the boundary vertices of G. We also call G the underlying graph
of G. We say that the t-boundaried G′ = (G′, B′, ρ′) is a subgraph of G if G′ is a subgraph of G,
B′ = B, and ρ′ = ρ. For S ⊆ V (G) \B, we define G \S to be the t-boundaried graph (G′, B, ρ)
where G′ = G\S. Also, for B′ ⊆ B, we define the bijection ρ[B′] : B′ → [|B′|] such that for every
v ∈ B′, ρ[B′](v) = |{u ∈ B′ | ρ(u) ≤ ρ(v)}|. Two t-boundaried graphs G1 = (G1, B1, ρ1) and
G2 = (G2, B2, ρ2) are isomorphic if G1 is isomorphic to G2 via a bijection φ : V (G1)→ V (G2)
such that ρ1 = ρ2 ◦φ|B1 , i.e., the vertices of B1 are mapped via φ to equally indexed vertices of
B2. A boundaried graph is any t-boundaried graph for some t ∈ N. As in [46] (see also [6]), we
define the detail of a boundaried graph G = (G,B, ρ) as detail(G) := max{|E(G)|, |V (G) \B|}.
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Let h, t ∈ N. We denote by B(t) the set of all (pairwise non-isomorphic) t-boundaried graphs
and by B(t)

h the set of all (pairwise non-isomorphic) t-boundaried graphs with detail at most h.
We set B = ⋃

t∈N B(t). We say that a boundaried graph G = (G,B, ρ) is planar if G is planar.
We also define the treewidth of a boundaried graph G = (G,B, ρ), denoted by tw(G), as

the minimum width of a tree decomposition (T, χ) of G for which there is some u ∈ V (T ) such
that B ⊆ χ(u). Notice that the treewidth of a t-boundaried graph is always lower bounded by
t− 1.

Equivalent boundaried graphs and representatives. We say that two boundaried graphs
G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2) are compatible if ρ−1

2 ◦ρ1 is an isomorphism from G1[B1]
to G2[B2]. Given two compatible boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2),
we define G1 ⊕G2 as the graph obtained if we take the disjoint union of G1 and G2 and, for
every i ∈ [|B1|] we identify vertices ρ−1

1 (i) and ρ−1
2 (i).

Given an h ∈ N, we say that two boundaried graphs G1 and G2 are h-equivalent, denoted
by G1 ≡h G2, if they are compatible and, for every graph H on at most h vertices and h edges
(or, in other words, every 0-boundaried graph H with detail at most h) and every boundaried
graph F that is compatible with G1 (hence, with G2 as well), it holds that

H � F⊕G1 ⇐⇒ H � F⊕G2.

Note that ≡h is an equivalence relation on B. In the rest of this section we insist that
B contains only planar graphs, therefore ≡h is seen as an equivalence relation on boundaried
planar graphs.

A minimum-sized (first in terms of edges and then in terms of vertices) member of an
equivalence class of ≡h is called representative of ≡h. For every t ∈ N, we denote by R(t)

h the set
of all t-boundaried graphs that are representatives of equivalence classes of ≡h. We also define
the function rep : B → ⋃

t∈NR
(t)
h that maps each boundaried graph to the representative of the

equivalence class of ≡h it belongs to.

3.2 Bounding the size of a representative

In this subsection we briefly present how the main idea of [6] is applied in our context so as
to bound the size of the representatives in R(t)

h . We define a graph parameter that measures
the minimum amount of vertices needed to affect every wall of the graph under consideration.
Following [6, Corollary 25], this parameter on representatives in R(t)

h is linear in terms of t
(Proposition 3.1). Moreover, we argue that, under the light of bidimensionality theory, this
parameter is contraction-bidimensional and linear-separable. We combine all above facts and
employ a result of Fomin et al. [26, Theorem 3.11] and a slight extension of a result of Baste
et al. [7, Lemma 7.2] to obtain the desired linear bound on the size of every representative
(Lemma 3.2). To achieve this, we have to deal with protrusion decompositions, a notion which
is also defined in this subsection and was introduced in [9].

Affecting walls in planar graphs. Let r ∈ N≥3, G be a planar graph, S ⊆ V (G), andW be
an r-wall of G. We say that S affects W if the following condition holds: for every embedding
Γ of G on the plane and every closed disk ∆, if the connected component ∆W of R2 \ perim(W )
that intersects W is a subset of ∆, then S∩∆W 6= ∅. Given an r ∈ N≥3, we define the following
graph parameter on planar graphs

pr(G) = min{k | ∃S ⊆ V (G) : |S| ≤ k ∧ S affects every r-wall of G}.
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From now on, functions f3, f4 will always denote the functions of Theorem 2.1. The following
result is [6, Corollary 25] in the special case of planar graphs.

Proposition 3.1. Let h, t ∈ N. There exists a function f5 : N→ N such that for every G ∈ R(t)
h

it holds that pf5(h)(G) ≤ t. Moreover, f5(h) = O((f3(h))3).

We comment that the function f5 is obtained by [6, Theorem 23 and Corollary 25] taking
into account that in our case we deal with walls whose compass is planar.

Protrusion decompositions of boundaried graphs. Given a graph G, a set X ⊆ V (G)
is a β-protrusion of G if |∂(X)| ≤ β and tw(G[X]) ≤ β − 1. Given a boundaried graph
G = (G,B, ρ), a boundaried graph G′ = (G′, B′, ρ′) is a β-protrusion of G if

• V (G′) is a β-protrusion of G,

• tw(G′) ≤ β − 1,

• ∂(V (G′)) ⊆ B′,

• B ∩ V (G′) ⊆ B′, and

• ρ′ = ρ[B′].

Given α, ` ∈ N, an (α, β)-protrusion decomposition of G is a sequence P = 〈R0, . . . , R`〉 of
pairwise disjoint subsets of V (G) such that

• ⋃
i∈[0,`]Ri = V (G),

• max{`, |R0|} ≤ α,

• B ⊆ R0,

• for i ∈ [`], the triple G′i = (G′i, B′i, ρ′i), where G′i = G[NG[Ri]], B′i = ∂(NG[Ri]), and
ρ′i = ρ[B′i]→ [|B′i|], is a β-protrusion of G, and

• for i ∈ [`], NG(Ri) ⊆ R0.

Linear protrusion decompositions of representatives. Before we proceed, we give the
definition of a contraction-bidimensional parameter, as defined in [26]. A graph parameter is
a function π mapping graphs to non-negative integers. We say that a graph parameter π is
contraction-bidimensional if for every graph G and every e ∈ E(G) it holds that π(G/e) ≤ π(G)
and π(Γk) = Ω(k2), where Γk is the (k × k)-triangulated grid5. Notice that pr is contraction-
bidimensional.

Moreover, it easy to observe that pr is linear-separable, i.e., for every graph G, every set
S ⊆ V (G) of size pr(G) that affects every r-wall of G, and every separation (L,R) of G it holds
that ||S ∩ L| − pr(G[L])| = O(|L ∩R|).

Since pr is a contraction-bidimensional and linear-separable parameter on planar graphs, [26,
Theorem 3.11] together with Proposition 3.1 imply the following result.

Lemma 3.1. Let h, t ∈ N. There is a constant ch such that every G ∈ R(t)
h admits a (ch · t, ch)-

protrusion decomposition. Moreover, ch = (f3(h))O(1).
5the graph obtained from the (k×k)-grid by adding, for all 1 ≤ x, y ≤ k−1, the edge with endpoints (x+1, y)

and (x, y + 1) and additionally making vertex (k, k) adjacent to all the other vertices (x, y) with x ∈ {1, k} or
y ∈ {1, k}, i.e., to the whole perimetric border of the grid.
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Using Lemma 3.1, the definition of (α, β)-protrusion decompositions, and the arguments of
the proof of [7, Lemma 7.2], it follows that the size of every G ∈ R(t)

h is Oh(t).

Lemma 3.2. There is a function f6 : N→ N such that for every t, h ∈ N, if G is a boundaried
graph in R(t)

h , then the underlying graph of G has at most f6(h) · t vertices. Moreover, f6(h) =

222(f3(h))O(1) log f3(h)
.

Proof. Let s := f(ch, h), where f is the function of [7, Lemma 7.2] and ch is the constant
from Lemma 3.1. From the proof of [7, Lemma 7.2] we can derive that f(ch, h) = 222O(ch log ch)

.
Also, we set f6(h) = (s+ 1) · ch.

Let G = (G,B, ρ) be a boundaried graph in R(t)
h . We will prove that G has at most

f6(h) · t vertices. By Lemma 3.1, G admits a (ch · t, ch)-protrusion decomposition. Therefore, by
definition, there is an ` ∈ [0, ch · t] and a sequence P = 〈R0, . . . , R`〉 of pairwise disjoint subsets
of V (G) such that

• ⋃
i∈[0,`]Ri = V (G),

• max{`, |R0|} ≤ ch · t,

• B ⊆ R0,

• for i ∈ [`], the triple G′i = (G′i, B′i, ρ′i), where G′i = G[NG[Ri]], B′i = ∂(NG[Ri]), and
ρ′i = ρ[B′i]→ [|B′i|], is a ch-protrusion of G, and

• for i ∈ [`], NG(Ri) ⊆ R0.

For every i ∈ [`], we will show that G′i has at most s vertices. Suppose that, towards a
contradiction, |V (G′i)| > s. We sketch the proof of [7, Lemma 7.2] and we comment how to
adjust it to our setting in order to obtain a contradiction to the fact that G ∈ R(t)

h . First
of all, in the statement of [7, Lemma 7.2] it is required that the family F contains a planar
graph, an assumption that is not true in our case. However, inside the proof this is only used
in order to bound the treewidth of G′i (in fact, to bound its branchwidth, which we know that
is upper-bounded by its treewidth). Here, the fact that the treewidth of G′i is at most ch is
implied by the fact that G′i is a ch-protrusion of G. After this step, the proof of our lemma
follows the same arguments as the one of [7, Lemma 7.2]. Intuitively, having a bound on the
branchwidth of G′i we can consider a branch decomposition of G′i of bounded width. Since
we assume that |V (G′i)| > s and we have that G ∈ R(t)

h , the number of edges of G′i is “large
enough” and therefore the branch decomposition contains a “long enough” path from the root
of the decomposition to a leaf. Along this “long enough” path, we can find two boundaried
graphs G′′1 and G′2 such that the underlying graph of G′′2 is a subgraph of the underlying graph
of G′′1 that has less edges and G′′1 ≡h G′2. Therefore, by replacing G′′1 with G′2, we obtain a
boundaried graph that is h-equivalent to G and whose underlying graph has less edges than G,
a contradiction to the fact that G ∈ R(t)

h . For more details, we refer the reader to the proof
of [7, Lemma 7.2].

3.3 Enhanced boundaried graphs

In this subsection we define a notion of annotated boundaried graphs, the enhanced boundaried
graphs. Mirroring the equivalence relation defined in Subsection 3.1 for boundaried graphs, in
this subsection we also define meta-equivalences and meta-representatives of enhanced bound-
aried graphs and we prove that the size of a meta-representative is also linear bounded in terms
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of its boundary size. This directly implies that an almost single-exponential (with a logarithmic
factor error) bound on the number of different meta-representatives (Corollary 3.1). Finally,
using the ideas of [7] concerning dynamic programming, we arrive to the main result of this
section, Lemma 3.4.

Enhanced boundaried graphs. Let t ∈ N and q ∈ N≥1. A q-enhanced t-boundaried graph is
a triple (G,Z,V), where G = (G,B, ρ) is a t-boundaried graph, Z = {Z1, . . . , Zq} is a collection
of non-empty subsets of B, and V = {V1, . . . , Vq} is a collection of non-empty subsets of V (G),
such that for every i ∈ [q], (G[Vi], Zi, ρ[Zi]) is a boundaried graph. A q-enhanced boundaried
graph is a q-enhanced t-boundaried graph for some t ∈ N. The treewidth of a q-enhanced
boundaried graph (G,Z,V) is the treewidth of G. As we did in the previous subsection, we
consider only triples (G,Z,V) where G is planar.

Meta-representatives of enhanced boundaried graphs. We say that two q-enhanced
boundaried graphs (G,Z,V) and (G′,Z ′,V ′) are h-meta-equivalent, denoted by (G,Z,V) ≡(q)

h

(G′,Z ′,V ′), if the following hold:

• G and G′ are compatible (via the isomorphism ρ′−1 ◦ ρ from G[B] to G′[B′]) and

• for every i ∈ [q], it holds that (G[Vi], Zi, ρi) ≡h (G′[V ′i ], Z ′i, ρ′i).

Notice that ≡(q)
h defines an equivalence relation on q-enhanced boundaried graphs. The

minimum-sized (first in terms of edges and then in terms of vertices) member of each equivalence
class of ≡(q)

h is called a meta-representative of ≡(q)
h . We denote by R(q,t)

h the set of all q-enhanced
t-boundaried graphs that are meta-representatives of ≡(q)

h . We call |V (G)| the size of a meta-
representative (G,Z,V) of ≡(q)

h .

Lemma 3.3. There is a function f6 : N → N such that for every t, h ∈ N and q ∈ N≥1, every
Ḡ ∈ R(q,t)

h has size at most f6(h) · q · t.

Proof. Let t, h ∈ N, q ∈ N≥1 and let (G,V,Z) be a q-enhanced t-boundaried graph, where
G = (G,B, ρ). For every i ∈ [q], we denote by Hi the graph rep((G[Vi], Zi, ρi)) and notice
that, due to Lemma 3.2, the underlying graph of Hi has at most f6(h) · t vertices. By setting
G′ = (⋃i∈[q]Hi, B, ρ) and V ′ = {V (H1), . . . , V (Hq)}, we observe that the triple (G′,V ′,Z) is a
q-enhanced t-boundaried graph that is h-meta-equivalent with (G,V,Z) and its size is at most
f6(h) ·q ·t. Thus, the meta-representative of the equivalence class of ≡(q)

h that contains (G,V,Z)
has size at most f6(h) · q · t.

The following result is a direct consequence of Lemma 3.3, using the fact that the underlying
graph G of every meta-representative of ≡(q)

h is planar, hence it has O(|V (G)|) edges.

Corollary 3.1. There is a function f7 : N3 → N such that for every t, h ∈ N and q ∈ N≥1,
|R(q,t)

h | ≤ f7(h, q, t). Moreover, it holds that f7(h, q, t) = 2O(f6(h)·q·t·log(q·t)).

Let q ∈ N≥1 and (G,V,Z) be a q-enhanced boundaried graph, where G = (G,B, ρ). We say
that a set S ⊆ V (G) is boundary-avoiding if S ∩B = ∅. The dynamic programming machinery
of [7, Theorem 1 and Theorem 5] together with Corollary 3.1 and the single-exponential 5-
approximation algorithm of Bodlaender et al. for treewidth [8, Theorem VI] yield the following
result.
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Lemma 3.4. There is an algorithm with the following specifications:
Compute_rep(h, q, t, w, k, Ḡ, R, J̄)
Input: five integers t, w, k ∈ N and h, q ∈ N≥1, where h ≥ t, q, a q-enhanced (planar) t-
boundaried graph Ḡ of treewidth at most w, a boundary-avoiding set R ⊆ V (G), and a meta-
representative J̄ ∈ R(q,t)

h .
Output: if exists, the minimum-size set SJ̄ ⊆ R of size at most k such that Ḡ \ SJ̄ ≡

(q)
h J̄.

This algorithm runs in 2O(f6(h)·w logw) · n time or, alternatively, in O(n3) + 2O(f6(h)·w) · n time.

Proof. The algorithm first applies the single-exponential 5-approximation algorithm of Bod-
laender et al. for treewidth [8, Theorem VI] to compute a tree decomposition of the underlying
graph of Ḡ of width at most 5w. Then, using the dynamic programming algorithm of [7, The-
orem 1], it checks, for every Ī ∈ R(q,t)

h , whether there is a set SĪ ⊆ V (G) of size at most k such
that Ḡ \ SĪ ≡

(q)
h Ī. We can easily modify this dynamic programming algorithm so as it checks

whether such a set SĪ is a subset of R and to also output a minimum-size SĪ satisfying all above
properties, if such exists. As, due to Corollary 3.1, |R(q,t)

h | ≤ f7(h, q, t), this algorithm runs in
time 2O(f6(h)·w logw) · n. Moreover, we can replace the algorithm of [7, Theorem 1] with the one
of [7, Theorem 5], which runs in a special branch decomposition of the underlying graph of Ḡ
(called sphere-cut decomposition) and performs in time O(n3) + 2O(f6(h)·w) · n.

We stress that, in the case q = 1, we simply refer to q-enhanced t-boundaried graphs
as t-boundaried graphs, and to the equivalence relation ≡(q)

h as ≡h. Following this, meta-
representatives of ≡(1)

h are just called representatives. Lemma 3.4 is applied three times in this
paper. First we use it in the proof of Lemma 4.1 in Subsection 4.1 towards reducing the solution
size, second we use it with q = 1 and k = 0 in the proof of Lemma 4.2 in Subsection 4.2, and
we also use it with t = 0, k = 0, and q = 1, in order to deduce Theorem 1.1 from Theorem 1.2.

4 The two main subroutines of the algorithm
In this section, we provide two main subroutines that will be useful in the proof of Theorem 1.2.
In subsection Subsection 4.1, we provide an algorithm (Lemma 4.1), that allows us to “safely”
reduce the set of possible candidates to a solution, while in Subsection 4.2, we provide an
algorithm (Lemma 4.2) that outputs a “big enough” wall such that the vertices in its compass
are irrelevant with respect to the existence of a solution to the problem.

Before proceeding to the algorithmic results, we provide some definitions that will facilitate
the presentation of the proofs.

Boundaried graphs in railed annuli. Let A = (C,P) be a (r, q)-railed annulus of a partially
∆-embedded graph G. We can see each path Pj in P as being oriented towards the “inner”
part of ∆, i.e., starting from an endpoint of P1,j and finishing to an endpoint of Pr,j . For every
(i, j) ∈ [r] × [q], we define ri,j as the first vertex of Pj that appears in Pi,j while traversing Pj
according to this orientation. Given an i ∈ [r] and a t ∈ [q], we define the t-boundaried graph
Gi,t = (Gi, Bi,t, ρi,t) where Gi = G ∩Di, Bi,t = {ri,1 . . . , ri,t} and, for j ∈ [t], ρi,t(ri,j) = j.

4.1 Reducing the solution space

We now prove the following lemma that intuitively states that there is an algorithm that given
a graph G and a “big enough” railed annulus A of G, it “reduces” the set of vertices that are
candidates to the set S that certifies that tmF (G) ≤ k.
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Lemma 4.1. There are three functions f8, f9 : N2 → N, f10 : N→ N and an algorithm with the
following specifications:
Reduce_Solution_Space(k, h, w,F ,∆, G,R, C,P)
Input: three integers k, h, w ∈ N, a finite set F of graphs such that h ≤ h(F), a partially ∆-
embedded graph G whose compass has treewidth at most w, a set R ⊆ V (G), and an (r, q)-railed
annulus A = (C,P) of G, where r = f9(h, k) and q ≥ f10(h).
Output: a set R′ ⊆ R such that

• |R′ ∩Dr| ≤ f8(h, k) and

• if (G,R, k) is a tmF -triple then (G,R′, k) is a tmF -triple.

Moreover, f9(h, k) = Oh(k), f8(h, k) = Oh(k2), and the algorithm runs in 2Oh(w logw) ·k ·n time,
or, alternatively, in O(k · n3) + 2Oh(w) · k · n time.

Proof. Let g :=
(h

2
)
, λ := f3(g) + 1, µ := f4(g) + 3,

f9(h, k) := (k + 1)(h+ 1)µ,
f8(h, k) := f7(h+ λ, h+ 1, (h+ 1) · λ) · k(k + 1), and
f10(h) := 5/2 · f3(g).

Given an i ∈ [k+1], we define Ai = ann(C, (i−1)(h+1)µ+1, i(h+1)µ) and for every j ∈ [h+1]
we define Qi,j = ann(C, (i − 1)(h + 1)µ + (j − 1)µ + 1, (i − 1)(h + 1)µ + jµ). Intuitively, we
partition C into k + 1 sets of consecutive cycles (i.e., the cycles of Ai, i ∈ [k + 1]) and then, for
every i ∈ [k+ 1] we further partition the set of cycles of Ai into h+ 1 sets of consecutive cycles
(i.e., the cycles of Qi,j , j ∈ [h+ 1]). Notice that for every i, j ∈ [k + 1]× [h+ 1], |Qi,j ∩ C| = µ
(see Figure 5).

C1 Cr
C(i−1)(h+1)µ+1

C(i−1)(h+1)µ+(j−1)µ+1 C(i−1)(h+1)µ+jµ

C(i−1)(h+1)µ+(j−1)µ+dµ/2e

Ci(h+1)µ

A1

Q1,1 Q1,h+1

Ai

Qi,1 Qi,j Qi,h+1

Ak+1

Qk+1,1 Qk+1,h+1

. . .
. . .

. . . . . .
. . .

. . .

Figure 5: Visualization of the partition of the cycles of A into sets Ai, i ∈ [k + 1] and of the
partition in sets Qi,j , i, j ∈ [k + 1]× [h+ 1].

Also, we define for every (i, j) ∈ [k + 1]× [h+ 1] the λ-boundaried graph

(Gi,j , Bi,j , ρi,j) := G(i−1)(h+1)µ+(j−1)µ+dµ/2e,λ.

To get some intuition, notice that the vertices of Bi,j lie on the “middle” cycle of Qi,j – see
Figure 5.
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Now, for every i ∈ [k + 1], we aim to define a (h + 1)-enhanced ((h + 1) · λ)-boundaried
graph obtained by the union of the λ-boundaried graphs (Gi,j , Bi,j , ρi,j), for j ∈ [h + 1]. Let
i ∈ [k+ 1]. We set ρ̄i : ⋃j∈[h+1]Bi,j → [(h+ 1) · λ] to be the function that, for every j ∈ [h+ 1],

ρ̄i(v) = (j − 1) · λ+ ρi,j(v), if v ∈ Bi,j .

Notice that ρ̄i is a bijection and that, for every j ∈ [h+ 1], ρ̄i[Bi,j ] = ρi,j . Thus, if we set

Ḡi := (
⋃

j∈[h+1]
Gi,j ,

⋃
j∈[h+1]

Bi,j , ρ̄i),

Zi := {Bi,1, . . . , Bi,h+1}, and
Vi := {V (Gi,1), . . . , V (Gi,h+1)},

we have that (Ḡi,Zi,Vi) is an (h+ 1)-enhanced ((h+ 1) · λ)-boundaried graph.
For every i ∈ [k + 1] and every meta-representative J̄ ∈ R(h+1,(h+1)·λ)

h+λ , let Si,J̄ be the
minimum-size subset of R∩Di(h+1)µ of at most k vertices such that (Ḡi,Zi,Vi) \Si,J̄ ≡

(h+1)
h+λ J̄.

If such a set does not exist, then we set Si,J̄ = ∅. We define

R∗ = (
⋃

i∈[k+1]
J̄∈R(h+1,(h+1)·λ)

h+λ

Si,J̄) ∩Dr

and R′ = (R \ Dr) ∪ R∗. Observe that |R∗| ≤ (k + 1) · |R(h+1,(h+1)·λ)
h+λ | · k = f8(h, k), and

therefore |R′ ∩ Dr| ≤ f8(h, k). Also, notice that as the underlying graph of Ḡi is a subgraph
of the compass of G, it has treewidth at most w. Moreover, since Si,J̄ ⊆ R ∩ Di(h+1)µ, it
holds that R ∩ ⋃j∈[h+1]Bi,j = ∅. Therefore, for every i ∈ [k + 1] and every J̄ ∈ R(h+1,(h+1)·λ)

h+λ ,
we compute Si,J̄ by using the algorithm of Lemma 3.4 for h := h + λ, q := h + 1, t :=
(h + 1) · λ, Ḡ := Ḡi, and R := R ∩ Di(h+1)µ. This algorithm runs in 2Oh(w logw) · n time,
or, alternatively, in O(n3) + 2Oh(w) · n time, since the underlying graph of each Ḡi is planar.
Therefore, we can compute R′ as well, in 2Oh(w logw) · (k + 1) · n time, or, alternatively, in
(k + 1) · O(n3) + (k + 1) · 2Oh(w) · n time.

We now prove that if (G,R, k) is a tmF -triple then (G,R′, k) is also a tmF -triple. In
particular, we prove that for every graph H on at most h vertices and every S ⊆ R, if |S| ≤ k
and H � G \ S, then there is some S′ ⊆ R′ such that |S′| ≤ k and H � G \ S′.

Let H be graph on at most h vertices (and, therefore, of at most g edges) and let S ⊆ R
such that |S| ≤ k and H � G \ S. As r = (k + 1)(h+ 1)µ and |S| ≤ k, then by the pigeonhole
principle there is some ` ∈ [k+1] such that S∩A` = ∅. (In case there are many such `’s, we take
the minimum one.) Let Sin = S ∩D`(h+1)µ and Sout = S \D(`−1)(h+1)µ+1. Let also kin := |Sin|
and kout := |Sout| and keep in mind that kin + kout = |S| ≤ k.

Let J̄S be the meta-representative of (Ḡ`,Z`,V`) \ Sin. Let also SJ̄S be the minimum-size
subset of R ∩ D`(h+1)µ such that (Ḡ`,Z`,V`) \ SJ̄S ≡

(h+1)
h+λ J̄S . Clearly, |SJ̄S | ≤ |Sin| = kin

and therefore SJ̄S = S`,J̄S . We now set S′ = SJ̄S ∪ Sout and observe that, since SJ̄S = S`,J̄S ,
SJ̄S ∩Dr ⊆ R∗ and therefore S′ ⊆ R′. Since |S′| ≤ k, it remains to prove that H � G \ S′.

Let H be the set of all topological minor models of H in G and notice that for every
(M,T ) ∈ H it holds that S ∩ V (M) 6= ∅, i.e., S intersects at least one vertex of each graph in
H. Let H` be the members of H that are intersected only by vertices in Sin.

The next claim shows that there is a collection of cycles of A, the “middle” cycles of Q`,j ’s,
such that for every tm-pair (M,T ) ∈ H` there is a cycle C of this collection and a tm-pair
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(M̃, T̃ ) ∈ H` that is equivalent to (M,T ) and is “combed in C” in the sense that M̃ ∩ C is a
subgraph of the rails of A.

Claim: For every (M,T ) ∈ H`, there exists a jM ∈ [h + 1] and a tm-pair (M̃, T̃ ) ∈ H`, such
that M̃ \A` ⊆M \A` and the graph M̃ ∩CyM is the union of the paths {PyM ,cM1 , . . . , PyM ,cMzM },
where yM = (`− 1)(h+ 1)µ+ (jM − 1)µ+ dµ/2e and {cM1 , . . . , cMzM } ⊆ [λ] (see Figure 6).

A`

Q`,1 Q`,jM Q`,h+1

A`

Q`,1 Q`,jM Q`,h+1

Figure 6: Visualization of the statement of the Claim. (M,T ) is depicted in the left figure,
while (M̃, T̃ ) is depicted in the right figure.

Proof of Claim: Let (M,T ) ∈ H` and notice that Sin ∩ V (M) 6= ∅. As |T | ≤ h, there is some
jM ∈ [h + 1] such that T ∩ Q`,jM = ∅ (if many such jM ’s exist, take the minimum one). We
use notation A(M) = (C(M),P(M)) instead of A ∩ Q`,jM . Since |C(M)| = µ = f4(g) + 3 and
|P(M)| = q ≥ f10(h) = 5/2 · f3(g), we can now apply Theorem 2.1 for s = 1, A := A(M),
and I = [λ] and obtain a topological minor model (M̃, T̃ ) of H in G such that T̃ = T , M̃ is
(1, I)-confined in A(M) and M̃ \Q`,jM ⊆M \Q`,jM , which implies that M̃ \A` ⊆M \A`. Let
yM = (`− 1)(h+ 1)µ+ (iM − 1)µ+ dµ/2e. Notice that (M̃, T̃ ) is a topological minor model in
H` whose intersection with CyM is the union of some of the paths in {PyM ,1, . . . , PyM ,λ}, namely
{PyM ,cM1 , . . . , PyM ,cMzM }, where {c

M
1 , . . . , cMzM } ⊆ [λ]. The claim follows.

Suppose, towards a contradiction, that the graph G \ S′ contains some topological minor
model (M,T ) of H as a subgraph. Since H � G \ S, it holds that (M,T ) is intersected only by
vertices in Sin - thus (M,T ) ∈ H`. According to the Claim above, there is an jM ∈ [h+1] and a
topological minor model (M̃, T̃ ) ∈ H` such that M̃ \A` ⊆M \A` and the graph M̃ ∩CyM is the
union of the paths {PyM ,cM1 , . . . , PyM ,cMzM } where yM = (`− 1)(h+ 1)µ+ (jM − 1)µ+ dµ/2e+ 1
and {cM1 , . . . , cMzM } ⊆ [λ]. Note that B`,jM ⊆ V (CjM ). Moreover, since (M,T ) is a topological
minor model of H in G \ S′ and M̃ \A` ⊆M \A`, we have that (M̃, T̃ ) is a topological minor
model of H in G \ S′.

We consider the λ-boundaried graph M̃in = (M̃in, B`,jM , ρ`,jM ) where M̃in = (M̃ ∩DyM ) ∪
(B`,jM , ∅), i.e., the graph M̃ ∩DyM together with the isolated vertices B`,jM . We also define

M̃out = (M̃ \ (DyM \B`,jM )) ∪ (B`,jM , ∅) and M̃out = (M̃out, B`,jM , ρ`,jM ).

Intuitively, M̃out is the graph obtained from M̃ by removing all vertices in DyM except the
vertices in B`,jM and adding the isolated vertices B`,jM \ V (M̃).

We now observe that, since (M̃, T̃ ) is a topological minor model of H in G \ S′ and SJ̄ is a
subset of S′, M̃in is a subgraph of (G`,jM , B`,jM , ρ`,jM ) \ SJ̄. The latter, together with the fact
that M̃out is compatible with (G`,jM , B`,jM , ρ`,jM ) \ SJ̄, implies that

H � M̃out ⊕ (G`,jM , B`,jM , ρ`,jM ) \ SJ̄. (1)
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Also, the fact that (Ḡ`,Z`,V`) \ SJ̄S ≡
(h+1)
h+λ (Ḡ`,Z`,V`) \ Sin implies that

(G`,jM , B`,jM , ρ`,jM ) \ Sin ≡h+λ (G`,jM , B`,jM , ρ`,jM ) \ SJ̄. (2)

By (1) and (2), we obtain that H � M̃out ⊕ (G`,jM , B`,jM , ρ`,jM ) \ Sin, which, in turn, implies
that H � G \ S, a contradiction.

4.2 Finding an irrelevant area

The next lemma intuitively states that there exists an algorithm that given a partially ∆-
embedded graph G and a “big enough” railed annulus of G, outputs a “big enough” wall W of
G whose compass is a subset of ∆ and such that for every hitting set S outside ∆, the vertex
set of the compass of W in G is an irrelevant part of the instance.

Lemma 4.2. There exist two functions f11, f12 : N2 → N, and an algorithm with the following
specifications:
Find_irrelevant_area(b, h, w,F ,∆, G,R, C,P)
Input: three integers b ∈ N≥3 and h,w ∈ N, a finite set of graphs F where h ≤ h(F), a partially
∆-embedded graph G whose compass has treewidth at most w, a set R ⊆ V (G) \ ∆, and an
(f11(h, b), f12(h, b))-railed annulus A = (C,P) of G.
Output: a b-wall W of G such that

• V (compass(W )) ⊆ ∆ and

• if (G \ V (compass(W )), R, k) is a tmF -triple then (G,R, k) is a tmF -triple.

Moreover, f11(h, b) = Oh(b), f12(h, b) = Oh(b), and this algorithm runs in 2Oh(w logw) ·b ·n time,
or, alternatively, in Oh(b · n3) + 2Oh(w) · b · n time.

Proof. Let g :=
(h

2
)
, λ := f3(g) + 1, and µ := f4(g) + 3. We set

` :=(h+ 2)µ+ b+ 1,
r := f7(h+ λ, 1, λ) · `,
q := max{5/2 · f3(g), λ+ 2b},

f11(h, b) := r, and
f12(h, b) :=q.

For every i ∈ [r], we consider the λ-boundaried graph Gi,λ = (Gi, Bi,λ, ρi,λ) where Gi = G∩Di,
Bi,λ = {ri,1 . . . , ri,λ} and, for j ∈ [λ], ρi,λ(ri,λ) = j. Also, for every i ∈ [r], let Ji be the
representative of Gi,λ. To compute Ji, we first observe that as the underlying graph of each Gi,λ

is a subgraph of the compass of G, we have that tw(Gi,λ) ≤ w+λ = Oh(w). Therefore, for each
representative J ∈ R(λ)

h+λ, we call the algorithm Compute_rep(h+ λ, 1, λ, w + λ, 0,Gi,λ, ∅,J)
of Lemma 3.4 to check whether Gi,λ ≡h+λ J. The overall running time needed to compute the
representative of each Gi,λ is r · |R(λ)

h+λ| · 2Oh(w logw) · n = 2Oh(w logw) · b · n, or, alternatively,
r · O(n3) + r · |R(λ)

h+λ| · 2Oh(w) · n = Oh(b · n3) + 2Oh(w) · b · n.
Since |R(λ)

h+λ| ≤ f7(h+λ, 1, λ), then there is a set I ⊆ [r] of size ` such that for every p, q ∈ I,
Jp = Jq. Let i′ be the maximum element of I and note that i′ ≥ (h+ 2)µ+ b+ 1. We define ∆′
to be the arc-wise connected component of ann(C, i′ − b, i′ − 1) \ (Pλ+1 ∪ Pλ+2b) that does not
intersect P1 (see Figure 7).

Notice that the graph obtained by the union of ⋃j∈[b]Ci′−j and ⋃
j∈[2b] Pλ+j contains a

b-wall W as a subgraph such that V (compass(W )) is a subset of the closure of ∆′. We set
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C1 Ci′−b Ci′ Cr

b

∆′

Pλ+2b

Pλ+1

Figure 7: An example showing the disk ∆′, whose closure contains the vertices of the compass
of the obtained b-wall W .

K := compass(W ) and keep in mind that V (K) (and, therefore, also ∆′) is a subset of ∆ that
does not intersect the cycle Ci′ .

We now aim to prove that if (G \V (K), R, k) is a tmF -triple then (G,R, k) is a tmF -triple.
In order to prove this, we argue that if H is a graph on at most h vertices and S is a subset of
R such that H � (G \ V (K)) \ S, then it holds that H � G \ S.

Let H be a graph on at most h vertices (and, therefore, of at most g edges) and S ⊆ R ⊆
V (G) \ ∆ such that H � (G \ V (K)) \ S. Suppose towards a contradiction that the graph
G \ S contains some topological minor model (M,T ) of H as a subgraph. In what follows, we
argue how to obtain a subgraph of (G \ V (K)) \ S that is a subdivision of H, thus arriving at
a contradiction.

As |T | ≤ h and ` = (h+ 2)µ+ b+ 1, there is some y ∈ I \ {i′} such that

T ∩ ann(C, y − bµ/2c, y + bµ/2c) = ∅.

We consider the (µ, q)-railed annulus A′ = (C′,P ′) of G where

• C′ = [C ′1, . . . , C ′µ] := [Cy−bµ/2c, . . . , Cy+bµ/2c] and

• P ′ = [P ′1, . . . , P ′q] := [P1 ∩ ann(C′), . . . , Pq ∩ ann(C′)]. (See Figure 8.)

A′

C1
Cy−bµ/2c Cy+bµ/2c Ci′

Cr

µ

∆′

Figure 8: An example showing the (µ, q)-railed annulus A′.

Observe that, since S ⊆ V (G) \∆, A′ remains intact after removing the vertices of S from
G, i.e., A′ is also an (µ, q)-railed annulus of G \ S. Since µ = f4(g) + 3 and q ≥ 5/2 · f3(g),
we are in position to apply Theorem 2.1 for s := 1, H, G := G \ S, A := A′, r := µ, M , and
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A′

Cy−bµ/2c Cy Cy+bµ/2c Ci′

∆′

Figure 9: An example of (M̃, T̃ ), the result of applying Theorem 2.1 in the railed annulus A′.

I = [λ]. We deduce the existence of a topological minor model (M̃, T̃ ) of H in G \ S such that
T̃ = T , M̃ is (1, I)-confined in A′, and M̃ \ ann(A′) ⊆M \ ann(A′) (see Figure 9).

Notice now that M̃ ∩Cy is the union of some of the paths in {Py,1, . . . , Py,λ}. Suppose that
these paths are {Py,c1 , . . . , Py,cz} where {c1, . . . , cz} ⊆ [λ]. We consider the λ-boundaried graph
My = (My, By,λ, ρy,λ) where My = (M̃ ∩Dy) ∪ (By,λ, ∅) (i.e. the graph M̃ ∩Dy together with
the isolated vertices By,λ). We also define

M̃out = (M̃ \ (Dy \By,λ)) ∪ (By,λ, ∅) and M̃out = (M̃out, By,λ, ρy,λ).

Keep in mind that M̃out is a subgraph of G\S that does not contain vertices ofK (see Figure 10).

Cy

ry,c1

ry,c2

Cy

ry,c1

ry,c2

Figure 10: The graphs M̃out (depicted in blue) and My (depicted in red).

Notice that My is a subgraph of Gy,λ and therefore the graph M̃out⊕My (that is the graph
M̃ ∪ (By,λ, ∅)) is a subgraph of M̃out ⊕ Gy,λ. Thus, H � M̃out ⊕ Gy,λ. Since Jy = Ji′ , we
have that H � M̃out ⊕Gi′,λ. Therefore, Gi′,λ contains as a subgraph a λ-boundaried graph
Mi′ = (Mi′ , Bi′,λ, ρi′,λ), such that M̃out ⊕Mi′ contains H as a topological minor. Notice that
Mi′ is a subgraph of G \ S that does not intersect V (compass(W )).

For every j ∈ [z], we define P ∗j to be the path in Pj starting from ry,j and finishing to ri′,y,
i.e., P ∗j = (Pj ∩ Dy) \ (Di′ \ ri′,j) and P∗ = {P ∗j | j ∈ [z]}. Observe that none of the paths
in P∗ intersects V (K). Let M̂i′ (resp. M̂out) be the graph obtained from Mi′ (resp. M̃out)
after removing, for every j ∈ [λ] \ {c1, . . . , cz}, the vertices ri′,j (resp. ry,j). Consider now the
graph M0 := M̂out ∪ M̂i′ ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃
P∗ and observe that M0 is a subgraph of (G \ V (K)) \ S that is a

subdivision of H. Therefore H � (G \ V (K)) \ S, a contradiction (see Figure 11).
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Figure 11: Visualization of the last part of the proof.

5 Proof of Theorem 1.2
In this section, having all necessary results, we are in position to present the proof of Theo-
rem 1.2.

Proof of Theorem 1.2. Let

x := max{f9(h, k), f10(h)} = Oh(k),
y := max{f11(h, 3), f12(h, 3)},
z :=f8(h, k) + 1 = Oh(k2), and
q :=f2(x, y, z) = O(x+ y

√
z) = Oh(k).

We first call the algorithm Find_Wall(G, q) of Proposition 2.1 which outputs either a q-
wall W of G whose compass has treewidth at most c1 · q or a tree decomposition of G of width
at most c1 · q. This algorithm runs in 2O(q2) · n = 2Oh(k2) · n time, or, alternatively, in O(n2)
time. We consider the first case.

Let ∆ be the closed disk whose boundary is the perimeter of W and contains compass(W ).
We call the algorithm Find_Collection_of_Annuli(x, y, z,∆, G,W ) of Lemma 2.1 which,
in O(n) time, outputs a closed disk ∆′ ⊆ ∆ and a collection A = {A0,A1, . . . ,Az} of railed
annuli of the compass of G such that

• A0 is an (x, x)-railed annulus whose outer disk is ∆ and whose inner disk is ∆′,

• for i ∈ [z], Ai is a (y, y)-railed annulus of G ∩ int(∆′), and

• for every i, j ∈ [z] where i 6= j, the outer disk of Ai and the outer disk of Aj are disjoint.

Then, we call the algorithm Reduce_Solution_Space(k, h, w,∆, G,R, C,P) of Lemma 4.1
for (C,P) := A0 and w := c1 · q which outputs a set R′ ⊆ R such that

• |R′ ∩ int(∆′)| ≤ f8(h, k) = z − 1 and

• if (G,R, k) is a tmF -triple then (G,R′, k) is a tmF -triple.

This algorithm runs in 2Oh(q log q) · k · n = 2Oh(k log k) · n time, or, alternatively, in O(k · n3) +
2Oh(q) · k · n = O(k · n3) + 2Oh(k) · n time. Since |R′| < z then there exists a j ∈ [z] such that
R′ ∩ ann(Aj) = ∅. Let (C(j),P(j)) := Aj and ∆j be the closure of the outer disk of Aj . Now,
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for b := 3, the algorithm Find_irrelevant_area(h, b, w,∆j , G,R
′, C(j),P(j)) of Lemma 4.2

outputs a b-wall W of G such that

• V (compass(W )) ⊆ ∆ and if and only if

• if (G \ V (compass(W )), R, k) is a tmF -triple then (G,R, k) is a tmF -triple.

This algorithm runs in 2Oh(q log q) ·n = 2Oh(k log k) ·n time, or, alternatively, in Oh(n3)+2Oh(q) ·n =
Oh(n3) + 2Oh(k) · n time.

Therefore, if we pick a vertex v ∈ V (G) ∩∆′′ then it holds that (G,R, k) is a tmF -triple if
and only if (G \ v,R′, k) is a tmF -triple. The overall running time of the whole procedure is
2Oh(k2) · n, or, alternatively, O(k · n3) +Oh(n3) + 2Oh(k) · n.

6 Discussion
In this paper we prove that F-TM-Deletion is Fixed Parameter Tractable on planar graphs.

6.1 Running time dependency on h

The parametric dependency of our FPT-algorithm is 2Oh(k2) and it can be dropped to 2Oh(k) if we
admit a cubic polynomial dependency on n. However both these parametric dependencies hide
huge dependency on h. To estimate this, one may observe that the complexity of the dynamic
programming algorithm of Lemma 3.4 dominates the overall running time of the algorithm of
Theorem 1.2, in terms of the contribution of h. This permits us to estimate that the algorithm

of Theorem 1.1 runs in 2k2·2222O(h)

· n2 time, or, alternatively, in O(k · n4) + 22222O(h)

· n4 +

2k·2222O(h)

· n2.

6.2 Extensions to bounded genus graphs

In this subsection, we show how to extend our results to graphs of Euler genus at most γ. In
particular, we obtain an algorithm for F-TM-Deletion on graphs of Euler genus at most γ
that runs in 2Oh,γ(k2) · n2 time, or, alternatively, in Oγ(k · n4) +Oh,γ(n4) + 2Oh,γ(k) · nO(1) time.

Theorem 6.1. There exists an algorithm that given a finite set of graphs F , a k ∈ N, and an
n-vertex graph G of Euler genus at most γ, outputs whether tmF (G) ≤ k in 2Oh,γ(k2) · n2 time,
or, alternatively, Oγ(k · n4) +Oh,γ(n4) + 2Oh,γ(k) · nO(1) time, where h = h(F).

To prove Theorem 6.1, we can follow the same approach as in the proof of Theorem 1.1, i.e.,
reduce the problem to instances of bounded treewidth by removing vertices and reducing the
set R. This is done using the following result, which is an analogue of Theorem 1.2 for graphs
of bounded Euler genus.

Lemma 6.1. There exists a function f13 : N → N, and an algorithm that given two integers
k, h ∈ N, an n-vertex graph G of Euler genus at most γ, and a set R ⊆ V (G), outputs either a
vertex v ∈ V (G) and a set R′ ⊆ R such that, for every graph class F where h(F) ≤ h, (G,R, k)
is a tmF -triple if and only if (G \ v,R′, k) is a tmF -triple or a tree decomposition of G of
width at most f13(h) · k. Moreover, this algorithm runs in 2Oh,γ(k2) · n time, or, alternatively,
Oγ(k · n3) +Oh,γ(n3) + 2Oh,γ(k) · n time.
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The proof of Lemma 6.1 is analogous to the proof of Theorem 1.2. We can use both
subroutines in Section 4 (i.e., the algorithms of Lemma 4.1 and Lemma 4.2) since they are
designed to work when the input graph is partially ∆-embedded (and not necessarily planar).
The only missing ingredient for the proof of Lemma 6.1 is an extension of Proposition 2.1 on
graphs of bounded Euler genus.
Lemma 6.2. There exists a constant c2 and an algorithm that given an n-vertex graph G of
Euler genus at most γ and an integer q ∈ N≥3, outputs either a disk-embedded q-wall W of G
whose compass has treewidth at most c2 · q or a tree decomposition of G of width at most c2 · q.
Moreover, this algorithm runs in 2Oγ(q2) · n time, or, alternatively, in 2Oγ(q) · n2 time.
Proof. As a first step we use the single exponential 5-approximation algorithm of [8] in order to
check whether tw(G) = O(q). If not, we aim to find a disk-embedded q-wall, whose existence is
guaranteed by the grid exclusion theorem on bounded genus graphs (see e.g., [19–21,24]). To find
the q-wall, we may again use the algorithm of [1] to first detect a wall of G and then a subwall of
it that is disk-embedded (see [28]). This way, we derive an algorithm running in 2Oγ(q2) ·n time.
Ιf we want to avoid the exponential dependence on q2, we may find the q-wall by the following
alternative approach: as a first step, we may find a set S of Oγ(q) vertices whose removal from G
will give either a planar graph of treewidth Ω(q) or a non-planar embedded graph of face-width
Ω(q). This can be done by successively finding minimum-size non-contractible cycles on O(q)
vertices by using a polynomial time algorithm (see e.g., [13, 14, 22, 27, 50]). If the outcome is
that S is a set of vertices whose removal from G gives a planar graph, then, as in the planar
case, we use the polynomial algorithm of [34] to find the q-wall. Otherwise, the q-wall can be
found by using the polynomial algorithmic procedure described in the proof of [19, Lemma 3.3].
The overall running time of the above procedure is 2Oγ(q) · nO(1).

To complete the proof of Theorem 6.1 and achieve the claimed parametric dependencies in
its running times, we may adapt the dynamic programming algorithm of Lemma 3.4 which runs
in 2Oh,γ(w logw) · n time. Again, if we want to avoid the logw contribution in the exponent, we
may alternatively use dynamic programming in [7, Theorem 10.1] (based on an extension of
sphere-cut decompositions called surface-cut decompositions) and derive a dynamic program-
ming algorithm that runs in Oγ(n3) + 2Oh,γ(w) · n time.

We stress that, in the above analysis, we insisted on a single-exponential dependence on k
on the running time of the algorithms. The reason is that this implies that, for every finite set
of graphs F with detail h and every γ ∈ N, the following problem is polynomially solvable.

(F , γ)-Log-TM-Deletion
Input: an n-vertex graph G of Euler genus γ.
Question: Does G contain a set S of logn vertices such that G \ S

excludes every graph in F as a topological minor?

6.3 Recent advances on the general problem

The remaining question is whether the same result can be derived for all graphs. Recently
an Oh,k(n4) algorithm for the general F-TM-Deletion problem was proposed by Fomin et
al. [25]. Using the words of [25], the parametric dependency of this algorithm, on k and h, is
humongous. However, in the same paper, it was proven that better parametric dependancies
can be achieved when restricting the problem to graphs of bounded Euler genus. According to
the results of [25], F-TM-Deletion on graphs of Euler genus at most γ can be solved by an
algorithm running in 22Oh,γ (k)

· n2 time. The algorithms claimed in Subsection 6.2 can be seen
as improvements of this result.
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6.4 Open problems

We believe that the techniques developed in this paper can be applied to other instances of the
P-deletion problem. In particular, we conjecture the following.

Conjecture 6.1. If F is a finite set of graphs and ≤ is the contraction relation, then the
problem PF ,≤-deletion, with inputs restricted on graphs of Euler genus at most γ, can be
solved by an algorithm that runs in Oh,k(nc) time, for some constant c.

Conjecture 6.2. If F is a finite set of graphs and ≤ is the induced minor relation, then the
problem PF ,≤-deletion, with inputs restricted on graphs of Euler genus at most γ, can be
solved by an algorithm that runs in Oh,k(nc) time, for some constant c.

A possible pathway for proving Conjecture 6.1 is to use the fact that, given an graph
embedding Γ, edge contractions on G correspond to topological minors on the dual embedding
Γ∗. This “translation” of contractions to topological minors was proposed in [36] in order to
devise an algorithm for the problem of checking whether a graph of Euler genus at most γ
contains a graph H as a contraction (this result is the case k = 0 of Conjecture 6.1). Under
this setting, the only significant change is that instead of looking for a set of vertices to remove,
we must find a set of faces to “shrink”. Therefore, the main missing ingredient for a proof of
Conjecture 6.1 is a dynamic programming framework for this shrinking variant of the problem
on surfaces.

For Conjecture 6.2 one may directly attempt to build counterparts of all the algorithms of
this paper for the induced minor relation. The only missing combinatorial ingredient for this is
an “induced” version of the model combing theorem (Theorem 2.1), that is proved in [31].
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