
Interval Temporal Logic for Visibly Pushdown
Systems
Laura Bozzelli
University of Napoli “Federico II”, Napoli, Italy

Angelo Montanari
University of Udine, Udine, Italy

Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

Abstract
In this paper, we introduce and investigate an extension of Halpern and Shoham’s interval temporal
logic HS for the specification and verification of branching-time context-free requirements of pushdown
systems under a state-based semantics over Kripke structures. Both homogeneity and visibility
are assumed. The proposed logic, called nested BHS, supports branching-time both in the past
and in the future, and is able to express non-regular properties of linear and branching behaviours
of procedural contexts in a natural way. It strictly subsumes well-known linear time context-free
extensions of LTL such as CaRet [4] and NWTL [2]. The main result is the decidability of the
visibly pushdown model-checking problem against nested BHS. The proof exploits a non-trivial
automata-theoretic construction.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Pushdown systems, Interval temporal logic, Model checking

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.33

1 Introduction

Model checking in the framework of interval temporal logics. Point-based temporal logics
(PTLs), such as, for instance, the linear-time temporal logic LTL [25] and the branching-time
temporal logics CTL and CTL∗ [16], provide a standard framework for the specification and
verification (model checking) of the behavior of reactive systems. In this framework, the
evolution of a system over time is described state-by-state (“point-wise” view). Interval
temporal logics (ITLs) have been proposed as an alternative setting for reasoning about
time [17, 24, 28]. Unlike standard PTLs, they assume intervals, instead of points, as their
primitive entities. ITLs allow one to specify relevant temporal properties that involve, e.g.,
actions with duration, accomplishments, and temporal aggregations, which are inherently
“interval-based”, and thus cannot be naturally expressed by PTLs. They have been applied
in various areas of computer science, including formal verification, computational linguistics,
planning, and multi-agent systems (e.g. see [18, 24, 26]). Among ITLs, the landmark is
Halpern and Shoham’s modal logic of time intervals HS [17], which features one modality for
each of the 13 ordering relations between pairs of intervals (the so-called Allen’s relations),
apart from equality. The satisfiability problem for HS and most of its fragments is undecidable
over all relevant classes of linear orders, with some meaningful exceptions (see [23, 12, 13]).

In the last years, the model checking problem for HS over finite Kripke structures (finite
MC problem) has been extensively studied [8, 9, 10, 18, 19, 20, 21, 22]. Each finite path
of a Kripke structure is interpreted as an interval, whose labelling is defined on the basis
of the labelling of the component states. In particular, the finite MC problem under the
homogeneity assumption (a proposition letter holds over an interval if and only if it holds over
each component state) and the state-based semantics (time branches both in the future and

© Laura Bozzelli, Angelo Montanari, and Adriano Peron;
licensed under Creative Commons License CC-BY

39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2019).
Editors: Arkadev Chattopadhyay and Paul Gastin; Article No. 33; pp. 33:1–33:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Interval Temporal Logic for Visibly Pushdown Systems

in the past) has been investigated in [9, 21, 22]. In this setting, it turns out to be decidable
and the complexity of the problem for full HS and its syntactical fragments has been almost
completely settled (the only intriguing open question is the complexity of the problem for
full HS currently located in between an Expspace lower bound and a non-elementary upper
bound). In [10] the authors study the expressiveness of the state-based semantics of HS and
of two variants: the computation-tree-based semantics, that allows time to branch only in
the future, and the trace-based semantics, that disallows time branching. The computation-
tree-based variant of HS is expressively equivalent to finitary CTL∗ (the variant of CTL∗
with quantification over finite paths), while the trace-based variant is equivalent to LTL (but
at least exponentially more succinct). The state-based variant is more expressive than the
computation-tree-based variant and expressively incomparable with both LTL and CTL∗.

Model checking of pushdown systems. In the last two decades, model checking of push-
down automata (PDA) against non-regular properties has received a lot of attention [2, 4,
5, 11, 14]. PDA are an infinite-state formalism suitable to model the control flow of typical
sequential programs with recursive procedure calls. PDA have a decidable model-checking
problem against regular specifications (e.g. see [29, 15]) but the general problem of checking
context-free properties is undecidable. The latter problem has been positively solved, however,
for interesting subclasses of context-free requirements such as those expressed by the linear
temporal logic CaRet [4], a context-free extension of LTL. CaRet formulas are interpreted on
words over a pushdown alphabet which is partitioned into three disjoint sets of call, return, and
internal symbols respectively denoting a procedure invocation (i.e., a push stack operation), a
return from a procedure call (a pop stack operation), and an internal operation (not affecting
the stack). CaRet allows one to specify non-regular context-free properties which require
matching of calls and returns such as correctness of procedures with respect to pre and post
conditions, and security properties that require the inspection of the call-stack.
An automata-theoretic generalization of CaRet is the class of Nondeterministic Visibly
Pushdown Automata (NVPA) [5], a subclass of PDA where the operations on the stack are
determined by the input symbols over a pushdown alphabet. The accepted class of visibly
pushdown languages (or VPL) is closed under Boolean operations, and the problem of lan-
guage inclusion, which is undecidable for context-free languages, is instead decidable for
VPL. This implies that under the visibility requirement (call and returns are made visible)
the model-checking problem of pushdown systems (VPMC problem) against linear-time
pushdown properties is decidable. To the best of our knowledge, the only branching-time
context-free logic introduced in the literature with a decidable VPMC problem (in particular,
the problem is Exptime-complete) is the visibly pushdown µ-calculus (VP-µ) [3], an extension
of the modal µ-calculus with future modalities which allow one to specify requirements on
the branching behavior of procedural contexts.

Paper contributions. First of all, we unify the linear time (trace-based) and branching
time (computation-based and state-based) semantic variants of HS in a common framework.
To this end, we extend HS with a novel binding operator, which restricts the evaluation of
a formula to the interval sub-structure induced by the current interval. The extension is
denoted by BHS. By additionally generalizing the interval mapping also to infinite paths, the
logic BHS gives one the ability to force a linear-time semantics of the temporal modalities
along a (finite or infinite) path, so that the trace-based semantics can be subsumed.

As a second contribution, BHS, with the state-based semantics, is further extended
for specifying branching-time context-free requirements of pushdown systems under the
homogeneity and visibility assumptions. It is the very first time (as far as we know) that

L. Bozzelli, A. Montanari, and A. Peron 33:3

HS is studied in the context of model checking of pushdown systems (in general, of infinite
state systems) where only PTL approaches have been investigated, and it is interesting
to notice that the most distinctive feature of pushdown systems, namely, the matching of
a call with the corresponding return, has a natural interval nature (it bounds meaningful
computation intervals where local properties can be checked). This suggests that an interval
temporal logic (instead of point-based one) could be a natural choice. The extension of
BHS we propose, called nested BHS, is powerful despite its simplicity: we just add to BHS a
special proposition pwm that captures finite intervals corresponding to computations with
well-matched pairs of calls and returns. We investigate the expressiveness of nested BHS
showing that it strictly subsumes well-known linear time context-free extensions of LTL
such as CaRet [4] and NWTL [2]. Nested BHS is a formalism which supports past and
future branching-time besides linear time: future branching time allows to express context-
free versions of standard CTL∗-like properties (for instance, multiple return conditions for
procedure calls); past branching time allows to check properties (regular and context-free) of
multiple histories leading to a common fixed state. An expressiveness comparison between
VP-µ and BHS is out of the scopes of this paper. Here, we just observe that while VP-µ is
bisimulation-closed [3], HS, and thus BHS, with the state-based semantics, is not (this is due
to branching past [10]). Whether the future fragment of BHS is subsumed or not by VP-µ is
an intriguing open issue.

As a third and main result, we prove that the VPMC problem against nested BHS is
decidable, although with a non-elementary complexity. For the upper bound, we exploit
a non-trivial automata-theoretic approach consisting in translating a nested BHS formula
ψ into an NVPA accepting suitable encodings of the computations of the given pushdown
system which satisfy formula ψ. Actually, we conjecture that the non-elementary complexity
of nested BHS only depends on the nesting depth of the binding modality.

2 Interval temporal logic HS with binding contexts

In this section, we introduce the temporal logic HS with binding contexts (BHS for short)
and the model-checking framework for verifying BHS formulas.

We fix the following notation. Let N be the set of natural numbers. For all i, j ∈ N, with
i ≤ j, [i, j] denotes the set of natural numbers h such that i ≤ h ≤ j. Let w be a finite or
infinite word over some alphabet. We denote by |w| the length of w (we set |w| =∞ if w is
infinite). For all i, j ∈ N, with i ≤ j, w(i) is the i-th letter of w, wi = w(i)w(i+ 1) . . . is the
suffix of w from position i on, while w[i, j] denotes the infix of w given by w(i) · · ·w(j). The
set Pref(w) of proper prefixes of w is the set of non-empty finite words u such that w = u · v
for some non-empty word v. The set Suff(w) of proper suffixes of w is the set of non-empty
words u such that w = v · u for some non-empty finite word v. We fix a finite set AP of
atomic propositions which represent predicates over the states of the given system.

A Kripke structure over AP is a tuple K = (AP , S, E,Lab, s0), where S is a set of states,
E ⊆ S × S is a transition relation, Lab : S 7→ 2AP is a labelling function assigning to each
state s the set of propositions that hold over it, and s0 ∈ S is the initial state. We say that K
is finite if S is finite. A path π of K is a non-empty word over S such that, for all 0 ≤ i < |π|,
(π(i), π(i+ 1)) ∈ E. A path is initial if it starts from the initial state of K . A path π induces
the word Lab(π) over 2AP having the same length as |π| given by Lab(π(0))Lab(π(1)) We
also say that Lab(π) is the trace induced by π.

An interval algebra to reason about intervals and their relative orders was proposed by
Allen in [1], while a systematic logical study of interval representation and reasoning was
done a few years later by Halpern and Shoham, who introduced the interval temporal logic

FSTTCS 2019

33:4 Interval Temporal Logic for Visibly Pushdown Systems

Table 1 Allen’s relations and corresponding HS modalities.

Allen relation HS Definition w.r.t. interval structures Example

x y
v z
v z

v z
v z
v z

v z

meets 〈A〉 [x, y]RA[v, z] ⇐⇒ y = v

before 〈L〉 [x, y]RL[v, z] ⇐⇒ y < v

started-by 〈B〉 [x, y]RB [v, z] ⇐⇒ x = v ∧ z < y

finished-by 〈E〉 [x, y]RE [v, z] ⇐⇒ y = z ∧ x < v

contains 〈D〉 [x, y]RD[v, z] ⇐⇒ x < v ∧ z < y

overlaps 〈O〉 [x, y]RO[v, z] ⇐⇒ x < v < y < z

HS featuring one modality for each Allen relation, but equality [17]. Table 1 depicts 6 of the
13 Allen’s relations, together with the corresponding HS (existential) modalities. The other
7 relations are the 6 inverse relations (given a binary relation R , the inverse relation R is
such that bR a iff aR b) and equality. Here, we introduce an extension of the logic HS, called
binding HS (BHS for short), obtained by adding a novel binding modality which allows one
to restrict the valuation of a formula to the interval sub-model induced by a given interval.

Let APu be a finite set of uninterpreted interval properties. BHS formulas ψ over APu
are defined by the grammar:

ψ ::= true | false | pu | ¬ψ | ψ ∧ ψ | 〈X〉ψ | Bψ

where pu ∈ APu, 〈X〉 is the existential temporal modality for the (non-trivial) Allen’s relation
X ∈ {A,L,B,E,D,O,A,L,B,E,D,O}, and B is the unary binding modality. The size |ψ| of
a formula ψ is the number of distinct subformulas of ψ. We also exploit the standard logical
connectives ∨ (disjunction) and → (implication) as abbreviations, and for any temporal
modality 〈X〉, the dual universal modality [X] defined as: [X]ψ := ¬〈X〉¬ψ. The standard
logic HS is obtained from BHS by disallowing the binding modality.

W.l.o.g. we assume the non-strict semantics, which admits intervals consisting of a single
point. Under such an assumption, all HS-temporal modalities can be expressed in terms of
〈B〉, 〈E〉, 〈B〉, and 〈E〉 [28]. As an example, 〈A〉 can be expressed in terms of 〈E〉 and 〈B〉 as:
〈A〉ϕ := (¬ 〈E〉 true ∧ (ϕ ∨ 〈B〉ϕ)) ∨ 〈E〉(¬ 〈E〉 true ∧ (ϕ ∨ 〈B〉ϕ)). BHS can be viewed as
an extension, by means of the binding modality B, of a multi-modal logic where 〈B〉, 〈E〉, 〈B〉,
and 〈E〉 are the primitive temporal modalities. BHS formulas can thus be interpreted over a
multi-modal Kripke structure, called abstract interval model (AIM for short), where intervals
are treated as atomic objects and Allen’s relations as binary relations over intervals. As we
will see, in model-checking against BHS, a Kripke structure is suitably mapped to an AIM.

Formally, an abstract interval model (AIM) [21] over APu is a tuple A = (APu, I, BI, EI,

LabI), where I is a possibly infinite set of worlds (abstract intervals), BI and EI are two
binary relations over I, and LabI : I 7→ 2AP u is a labeling function, which assigns a set of
proposition letters from APu to each abstract interval. In the interval setting, I is interpreted
as a set of intervals and BI and EI as Allen’s relations B (started-by) and E (finished-by),
respectively; LabI assigns to each interval in I the set of atomic propositions that hold over
it. The semantics of the B modality is based on the notion of abstract interval sub-model
induced by a given abstract interval.

I Definition 1. Let A = (APu, I, BI, EI,LabI) be an AIM. The sub-interval relation GI
induced by BI and EI is defined as follows: (I, J) ∈ GI iff (I, J) ∈ (BI ∪ EI)∗ (i.e., (I, J)
is in the reflexive and transitive closure of the relation BI ∪ EI). For I ∈ I, the abstract
interval sub-model induced by I is the AIM AI = (APu, II , BII , EII ,LabII), where II is the set
of abstract sub-intervals of I, i.e., the set of J ∈ I such that (I, J) ∈ GI and BII (resp., EII ,
LabII) is the restriction of BI (resp., EI, LabI) to II .

L. Bozzelli, A. Montanari, and A. Peron 33:5

Semantics of BHS. Let A = (APu, I, BI, EI,LabI) be an AIM. A context C is either ε (the
empty context) or an abstract interval J ∈ I. We write Aε for A (the meaning of Iε, BεI , EεI ,
and LabεI is analogous). For an interval I ∈ IC and a BHS formula ψ, the satisfaction relation
AC, I |= ψ is inductively defined as follows (the Boolean connectives are treated as usual):

AC, I |= pu iff pu ∈ LabC
I (I), for any pu ∈ APu;

AC, I |= 〈X〉ψ, for X ∈ {B,E}, iff I XC
I J and AC, J |= ψ for some J ∈ IC;

AC, I |= 〈X〉ψ, for X ∈ {B,E}, iff J XC
I I and AC, J |= ψ for some J ∈ IC;

AC, I |= Bψ iff AI , I |= ψ.

Following [21], we propose a state-based approach for model-checking Kripke structures
against BHS which consists in defining a mapping from Kripke structures to AIMs, where
the abstract intervals correspond to the paths of the Kripke structure and the following two
assumptions are adopted: (i) the set APu of HS-propositions coincides with the set AP of
proposition letters for the given Kripke structure, and (ii) a proposition holds over an interval
if and only if it holds over all its subintervals (homogeneity principle). Differently from [21],
where only finite paths are considered, here we consider both finite and infinite paths.

I Definition 2. Let K = (AP , S, E,Lab, s0) be a Kripke structure. The AIM induced by K is
AK = (AP , I, BI, EI,LabI), where I is the set of finite and infinite paths of K , and:

BI = {(π, π′) ∈ I× I | π′ ∈ Pref(π)}, EI = {(π, π′) ∈ I× I | π′ ∈ Suff(π)}, and
for all p ∈ AP , Lab−1

I (p) = {π ∈ I | p ∈
⋂i<|π|
i=0 Lab(π(i))}.

A Kripke structure K over AP is a model of a BHS formula ψ over AP , written K |= ψ,
if for all initial paths π of K , AK , π |= ψ. The finite model-checking problem consists in
checking whether K |= ψ, for a given BHS formula ψ and a finite Kripke structure K .

We observe that in the considered model-checking setting, the semantics of temporal
modalities 〈B〉 and 〈E〉 is “linear-time” both in HS and in BHS, i.e., 〈B〉 and 〈E〉 allow one
to select only subpaths (proper prefixes and suffixes) of the current timeline (computation).
As for the temporal modalities 〈B〉 and 〈E〉, while in HS the semantics of these modalities
is always “branching-time” (i.e., 〈B〉 and 〈E〉 allow one to non-deterministically extend the
current timeline in the future and in the past, respectively), in BHS the semantics of 〈B〉
and 〈E〉 can be either “linear-time” or “branching-time”, depending on the current context.

Forcing linear time. We now show how the binding modality can be used to force a linear
time semantics for a formula. By exploiting the notion of abstract interval sub-model, the
linear-time model-checking setting for HS formulas introduced in [10] can be reformulated as
follows: K is a model of an HS formula ψ under the linear-time (or trace-based) semantics,
written K |=lin ψ, if for all initial infinite paths π of K and positions i ≥ 0, AπK , π[0, i] |= ψ.
It is easy to check that K |=lin ψ iff K |= B((¬ 〈A〉 true) → [B]ψ) where the subformula
¬ 〈A〉 true captures the infinite paths π and the binding modality B forces the occurrences
of 〈B〉 and 〈E〉 in ψ to refer only to sub-paths of π.

3 Model Checking Visibly Pushdown Systems against nested BHS

In this section we introduce and address expressiveness issues of a context-free extension of
BHS, called nested BHS, for model checking (infinite-state) Kripke structures generated by
Visibly Pushdown Systems (VPS).

We first recall the standard notions of pushdown alphabet and VPS. A pushdown alphabet
is a finite alphabet Σ = Σcall ∪ Σret ∪ Σint which is partitioned into a set Σcall of calls, a set
Σret of returns, and a set Σint of internal actions. This partition induces a nested hierarchical

FSTTCS 2019

33:6 Interval Temporal Logic for Visibly Pushdown Systems

structure in a word over Σ obtained by associating to each call the corresponding matching
return (if any) in a well-nested manner. Formally, the set of well-matched finite words wm
over Σ is inductively defined by the following abstract syntax: wm := ε

∣∣ a ·wm ∣∣ c ·wm ·r ·wm,
where ε is the empty word, a ∈ Σint, c ∈ Σcall , and r ∈ Σret. Let w be a non-empty word
over Σ. For a call position 0 ≤ i < |w|, if there is j > i such that j is a return position of
w and w[i + 1, j − 1] is a well-matched finite word (note that j is uniquely determined if
it exists), we say that j is the matching return of i along w and i is the matching call of
j. An infinite word is well-matched if each call (resp., return) has a matching return (resp.,
matching call). For instance, consider the finite word w depicted below where Σcall = {c},
Σret = {r}, and Σint = {ı}. Note that 0 is the unique unmatched call position of w.

w = 0
c

1
c

2
ı

3
c

4
ı

5
r

6
r

7
c

8
ı

9
r

10
ı

To verify recursive programs, we assume that the set AP of atomic propositions (which
represent predicates over the states of the system) contains three special propositions, namely,
call, ret, and int: call denotes the invocation of a procedure, ret denotes the return from a
procedure, and int denotes internal actions of the current procedure. Under this assumption,
the set AP induces a pushdown alphabet ΣAP = Σcall∪Σret∪Σint , where for t ∈ {call, ret, int},
Σt = {P ⊆ AP | P ∩ {call, ret, int} = {t}}.

A Visibly Pushdown System (VPS) over AP is a tuple PS = (AP , Q = Qcall ∪ Qret ∪
Qint , q0,Γ∪{⊥},Trans,Lab), where: (i)Q is a finite set of (control) states, which is partitioned
into a set of call states Qcall , a set of return states Qret , and a set of internal states Qint , (ii)
q0 ∈ Q is the initial state, (iii) Γ∪ {⊥} is a finite stack alphabet, (where ⊥ /∈ Γ is the special
stack bottom symbol), (iv) Trans ⊆ (Qcall ×Q× Γ) ∪ (Qret × (Γ ∪ {⊥})×Q) ∪ (Qint ×Q) is
a transition relation, and (v) Lab : Q 7→ 2AP is a labelling function assigning to each control
state q ∈ Q the set Lab(q) of propositions that hold over it such that for all t ∈ {call, ret, int}
and q ∈ Qt, Lab(q) ∩ {call, ret, int} = {t}.

Intuitively, from a call state q ∈ Qcall , PS chooses a push transition of the form (q, q′, γ) ∈
Trans, pushes the symbol γ 6= ⊥ onto the stack, and the control changes from q to q′. From
a return state q ∈ Qret , PS chooses a pop transition of the form (q, γ, q′), where γ is popped
from the stack (if γ = ⊥, then γ is read but not popped). Finally, from an internal state
q ∈ Qint , PS can choose only transitions of the form (q, q′) which do not use the stack.

A configuration of PS is a pair (q, β), where q ∈ Q and β ∈ Γ∗ · {⊥} is a stack content.
The initial configuration is (q0,⊥) (the stack is initially empty). The VPS PS induces an
infinite-state Kripke structure KPS = (AP , S, E,Lab′, s0), where S is the set of configurations
of PS , s0 is the initial configuration, and for all configurations s = (q, β), Lab′((q, β)) = Lab(q)
and the set E(s) of configurations s′ such that (s, s′) ∈ E (s-successors) is defined as follows:

Push If q ∈ Qcall , then E(s) = {(q′, γ · β) | (q, q′, γ) ∈ Trans}.

Pop If q ∈ Qret, then either β = ⊥ and E(s) = {(q′,⊥) | (q,⊥, q′) ∈ Trans}, or β = γ · β′,
with γ ∈ Γ, and E(s) = {(q′, β′) | (q, γ, q′) ∈ Trans}.

Internal If q ∈ Qint , then E(s) = {(q′, β) | (q, q′) ∈ Trans}.
Note that the traces of KPS are words over the pushdown alphabet ΣAP . An (initial)
computation of PS is an (initial) path in KPS .

L. Bozzelli, A. Montanari, and A. Peron 33:7

Nested BHS. We now focus on model-checking VPS against BHS formulas over a set of
propositions AP ⊇ {call, ret, int}. To that purpose, we extend the state-based branching-time
approach presented in Section 2 by augmenting the set of atomic propositions AP with the
special well-matching proposition, denoted by pwm, which is fulfilled by a path of a Kripke
structure over AP iff the associated trace is a well-matched finite word over ΣAP .

I Definition 3. Let K = (AP , S, E,Lab, s0) be a Kripke structure over AP . The generalized
AIM induced by K is the AIM over AP ∪ {pwm} given by NK = (AP ∪ {pwm}, I, BI, EI,LabI),
where I, BI, EI, Lab−1

I (p) for p ∈ AP are defined as in Definition 2, and Lab−1
I (pwm) is the

set of finite paths π of K such that Lab(π) is well-matched. For a BHS formula ψ over
AP ∪ {pwm} and a path π of K , we write K , π |=n ψ to mean that NK , π |= ψ. K is a nested
model of ψ, denoted K |=n ψ, if K , π |=n ψ for all initial paths of K .

A nested BHS formula over AP is a BHS formula over AP ∪ {pwm}. The visibly pushdown
model checking (VPMC) problem against nested BHS is the problem of checking, given a
visibly pushdown system PS and a nested BHS formula ψ (both over AP), if KPS |=n ψ holds.

We also consider the so-called linear-time fragment of nested BHS (nested BHSlin for
short) obtained by imposing that modalities 〈B〉 and 〈E〉 occur in the scope of the binding
modality B. In nested BHSlin formulas ψ, the valuation of ψ depends only on the trace of
the given path and is independent of the underlying Kripke structure. Formally, for all paths
π and π′ of (possibly distinct) Kripke structures K and K ′ having the same trace, it holds
that K , π |=n ψ iff K ′, π′ |=n ψ. Thus, given a nested BHSlin formula ψ and a non-empty
word w over ΣAP , we write w |=n ψ to mean that K , π |=n ψ for any Kripke structure K with
labeling Lab and path π such that Lab(π) = w.

In the following, we give some examples of how to use nested BHS as a specification
language. For this, we introduce some auxiliary formulas which will be used as macro to specify
more complex requirements. The formula len1 := [E] false captures the singular intervals
(i.e. paths of length 1), and for a nested BHS formula ψ, the formulas left(ψ) := 〈A〉(len1∧ψ)
and right(ψ) := 〈A〉(len1 ∧ ψ) assert that ψ holds at the singular intervals corresponding
to the left and right endpoints, respectively, of the current finite interval. The formula
θmwm := left(call) ∧ right(ret) ∧ pwm ∧ [B]¬pwm characterizes the finite intervals whose first
position is a matched call and the last position is the associated matching return, while the
formula θpc := ξret ∧ [B]ξret , where ξret := right(ret)→ (len1 ∨ θmwm ∨ 〈E〉 θmwm), captures
intervals such that each non-first return position has a matched-call, i.e., fragments of
computations π starting at a configuration s which precede the end (if any) of the procedural
context associated with s. Finally, the formula θloc := right(true) ∧ θpc ∧ ξcall ∧ [E]ξcall ,
where ξcall := left(call) → (len1 ∨ θmwm ∨ 〈B〉 θmwm), characterizes the finite intervals π
satisfying θpc such that each non-last call position has a matching-return, i.e., the finite
intervals π s.t. the first and last positions of π belong to the same local procedural path (alias
abstract path). An abstract path captures the local computation within a procedure with the
removal of subcomputations corresponding to nested procedure calls.

Specifying requirements. As we will show in Theorem 4, nested BHS strictly subsumes
well-known context-free linear-time extensions of standard LTL, such as the logic CaRet [4]. In
the analysis of recursive programs, an important feature of CaRet is that it allows to express
in a natural way LTL requirements over two kinds of non-regular patterns on words over a
pushdown alphabet: abstract paths and caller paths (a caller path represents the call-stack
content at a given position). We show that CaRet formulas can be translated in polynomial
time into nested BHS formulas of the form Bψ such that ψ is a nested HS formula (see

FSTTCS 2019

33:8 Interval Temporal Logic for Visibly Pushdown Systems

Theorem 4). It is worth noting that while CaRet provides ad hoc modalities for expressing
abstract and caller properties, in nested BHS, we just use the special proposition pwm and
the regular modalities in BHS for expressing such non-regular context-free requirements.
Additionally, nested BHS supports branching-time both in the past and in the future.
In particular, the novel logic allows to specify in a natural way procedural-context (resp.
abstract, resp. caller) versions of standard CTL and CTL∗ requirements which cannot
be expressed in CaRet. As a first example, the procedural-context version of the CTL
formula E(p1Up2), requiring that there is a computation π from the current configuration
s such that the LTL formula p1Up2 holds along a prefix of π which precedes the end
(if any) of the procedural context associated with s, can be expressed in nested HS by
〈A〉(θpc ∧ [B]p1 ∧ right(p2)), where 〈A〉 plays the role of the existential path quantifier E of
CTL∗. Similarly, the abstract version of E(p1Up2), requiring that there is an abstract path
from the current configuration s such that the LTL formula p1Up2 holds, can be expressed
by 〈A〉{θloc ∧ right(p2) ∧ [B](θloc → (left(p1) ∧ right(p1)))}.

As another example, we consider a generalized version of the total correctness requirement
for a procedure A (popular in formalisms like Hoare logic), requiring that if a precondition pre
is satisfied when A is called and an additional condition p eventually holds at a configuration
s preceding the return (if any) of procedure A, then there is a computation from s such
that A terminates and the post condition post holds upon return. This requirement can be
expressed by the following nested HS formula, where cA denotes invocation of procedure A:
[E]{(left(call∧cA∧pre)∧right(p)∧θpc)→ 〈B〉(θmwm∧right(post))}. Note that for expressing
the previous branching-time requirement, we cannot simply use the existential path quantifier
of CTL∗ corresponding to 〈A〉, but we need to keep track of the current interval satisfying
θpc, and we exploit modality 〈B〉 to nondeterministically extend this interval in the future.

We now consider the ability of expressing past branching-time modalities. Assume
that the initial state q0 is characterized by proposition init, q0 is not a return state, and
q0 is not strictly reachable by any state. Then, the requirement that for every reachable
configuration s where procedure A is called, s can be also reached in such a way that procedure
B is on the call-stack can be expressed in nested HS by the formula right(call ∧ cA) →
〈E〉{left(call ∧ cB) ∧ θpc ∧ (left(init) ∨ 〈E〉(left(init) ∧ θpc))}.

As a last example, we consider the ability of specifying different properties at different
returns of a procedural call depending on the behavior of the different branches in the called
procedural context. For instance, let us consider the requirement that whenever a procedure
is invoked, there are at least two branches in the called procedural context which return and:
in one of them, condition p eventually holds and condition q holds upon the return, while in
the other one, p never holds and q does not hold upon the return. This can be expressed by
right(call)→ {〈A〉(θmwm ∧ right(q) ∧ 〈B〉 〈E〉 p) ∧ 〈A〉(θmwm ∧ right(¬q) ∧ ¬ 〈B〉 〈E〉 p)}.

Expressiveness issues for nested BHS. Given two logics F1 and F2 interpreted over Kripke
structures on AP ⊇ {call, ret, int}, and two formulas ϕ1 ∈ F1 and ϕ2 ∈ F2, we say that ϕ1
and ϕ2 are equivalent if ϕ1 and ϕ2 have the same Kripke structure models. We say that F2
is subsumed by F1, written F1 ≥ F2, if for each formula ϕ2 ∈ F2, there is a formula ϕ1 ∈ F1
such that ϕ1 and ϕ2 are equivalent. Moreover, F1 is as expressive as (resp., strictly more
expressive than) F2 if both F1≥F2 and F2≥F1 (resp., F1≥F2 and F2 6≥F1).

We compare nested BHSlin with known context-free linear-time extensions of LTL, namely
CaRet [4], NWTL [2], and the extension of CaRet with the within modality W (see [2]). Recall
that NWTL and CaRet + W are expressively complete for the known context-free extension
FOµ of standard first-order logic (FO) over words (on a pushdown alphabet) by a binary
call/matching return predicate [2], while it is an open question whether the same holds for
CaRet [2]. Our expressiveness results can be summarized as follows.

L. Bozzelli, A. Montanari, and A. Peron 33:9

I Theorem 4.
1. Nested BHSlin has the same expressiveness as FOµ, and NWTL (resp., CaRet + W) can be

translated in polynomial time into equivalent nested BHSlin formulas ψ, where for CaRet
formulas, ψ is of the form Bψ′ for some nested HS formula ψ′.

2. Nested BHS is strictly more expressive than FOµ.
3. HS (hence, BHS as well) is strictly more expressive than standard CTL∗.

Sketched proof. Due to lack of space, the proof of Statement 1 is omitted. Statement 2
easily follows from Statement 1 and the fact that nested BHS supports branching-time. For
example, let us consider the classical branching-time requirement asserting that from each
state reachable from the initial one, it is possible to reach a state where proposition p holds.
It is well-known that this formula is not FO-definable (see [7], Theorem 6.21). Hence, it is
not FOµ-definable as well (on Kripke structures having labeling Lab such that int ∈ Lab(s)
for each state, FO and FOµ are equivalent). On the other hand, the previous requirement
can be easily expressed in HS. Now, let us consider Statement 3. In [10], it is shown that
in the state-based setting and under the homogeneity principle adopted in this paper, but
assuming that intervals are associated with only finite paths of the Kripke structure, it holds
that HS is strictly more expressive than finitary CTL∗ (a variant of standard CTL∗ where
path quantification ranges over finite paths). By allowing also infinite paths and trivially
adapting the results in [10], we deduce that HS (as considered in this paper) is strictly more
expressive than standard CTL∗. J

4 Decision procedures

In this section, we show that the VPMC problem against nested BHS is decidable. The
proof is based on a non-trivial automata-theoretic approach consisting in translating a given
nested BHS formula ψ into a Non-deterministic Visibly Pushdown Automaton (NVPA) [5]
accepting encodings of the computations of the given VPS PS which satisfy the formula ψ.

Details about the syntax and semantics of NVPA can be found in [5]. Here, we consider
NVPA equipped with two sets F and Fω of accepting states: F is used for acceptance of
finite words, and Fω for acceptance of infinite words. For an NVPA A, we denote by L(A)
the language of finite and infinite words over Σ accepted by A (Visibly Pushdown Language).

We fix a visibly pushdown system PS = (AP , QPS , q
0
PS ,ΓPS ∪ {⊥},TransPS ,LabPS) over AP ,

where QPS = Qcall ∪Qret ∪Qint . For encoding computations of PS , we adopt the pushdown
alphabet ΣPS = Σcall ∪ Σret ∪ Σint defined as follows: Σcall := Qcall ∪ ΓPS ∪ (Qcall × ΓPS),
Σret := Qret, and Σint := Qint. Thus, the return (resp., internal) symbols in ΣPS are the
return (resp., internal) states of PS , while the set of calls consists of the call states of PS
together with the stack symbols, and the pairs call state/stack symbol. Given a finite word w
over ΣPS \Qcall , the unmatched call part umc(w) of w is the word over ΓPS defined as follows:
let h0 < . . . < hn−1 be the (possibly empty) sequence of unmatched call positions of w, then
umc(w) = γ0 . . . γn−1, where for each 0 ≤ i ≤ n− 1, γi is the ΓPS -component of w(hi).

We encode the computations π of PS by words over ΣPS consisting of a prefix (the head)
over ΓPS encoding the stack content of the first configuration of π, followed by a word over
ΣPS \ ΓPS (the body) which keeps track of the states visited by π together with the stack-top
symbols pushed from the non-last configurations of π associated with the call states.

I Definition 5 (Computation-codes). A computation-code (of PS) is a word w over the
pushdown alphabet ΣPS of the form w = wh · wb such that the prefix wh (the head) is a word
in Γ∗PS and the suffix wb (the body) is either a non-empty finite word in ((Qcall×ΓPS)∪Qret∪

FSTTCS 2019

33:10 Interval Temporal Logic for Visibly Pushdown Systems

Qint)∗ · (Qcall ∪Qret ∪Qint), or an infinite word over (Qcall × ΓPS) ∪Qret ∪Qint. Moreover,
the body wb satisfies the following conditions for each 0 ≤ i < |wb| − 1 (∞− 1 is for ∞),
where for a symbol σ ∈ ΣPS \ ΓPS , we denote by q(σ) the QPS -component of σ:

if wb(i) is a call, then wb(i) = (q, γ) and (q, q(wb(i+ 1)), γ) ∈ TransPS .
if wb(i) is an internal action then (wb(i), q(wb(i+ 1))) ∈ TransPS .
if wb(i) is a return, then (wb(i), γ, q(wb(i + 1))) ∈ TransPS , where γ = ⊥ if the return
position i+ |wh| has no matched-call in w = wh · wb; otherwise, γ is the ΓPS -component
of w(ic), where ic is the matched-call position of i+ |wh|.

We denote by ΠPS the set of computation-codes. Clearly, there is a bijection between ΠPS

and the set of computations of PS . In particular, a computation code w = wh · wb encodes
the computation πw of PS of length |wb| given by πw := (q(wb(0)), β0 ·⊥)(q(wb(1)), β1 ·⊥) . . .,
where for each 0 ≤ i < |wb|, βi is the reverse of the unmatched call part of the prefix of
w until position i+ |wh| − 1. Note that the head wh encodes the stack content of the first
configuration, i.e., β0 = (wh)R · ⊥, where (wh)R is the reverse of wh.

We now illustrate the translation of nested BHS formulas over AP into a subclass of
NVPA over ΣPS , we call PS-NVPA. A PS-NVPA is simply an NVPA over ΣPS accepting only
computation-codes. The following result is straightforward.

I Proposition 6. One can construct a PS-NVPA APS with O(|ΣPS |) states and O(|ΓPS |) stack
symbols accepting the set ΠPS of computation-codes.

For the Boolean connectives in nested BHS formulas, we exploit the well-known closure
of NVPA under language Boolean operations [5]. In particular the following holds.

I Proposition 7 (Closure under intersection and complementation [5]). Given two PS-NVPA
A and A′ with n and n′ states, and m and m′ stack symbols, respectively, one can construct
(i) a PS-NVPA with n · n′ states and m ·m′ stack symbols accepting L(A) ∩ L(A′), and (ii) a
PS-NVPA with O(|ΣPS | · 2n

2) states and O(|ΣPS |2 · 2n
2) stack symbols accepting ΠPS \ L(A).

We now extend in a natural way the semantics of the HS modalities 〈B〉, 〈B〉, 〈E〉, 〈E〉 to
languages L of words over the pushdown alphabet ΣPS , i.e. we interpret the 〈B〉, 〈B〉, 〈E〉,
〈E〉 modalities as operators over languages on ΣPS . The translation of nested BHS formulas
into PS-NVPA is crucially based on the closure of PS-NVPA under such language operations.

For a computation-code w ∈ ΠPS encoding a PS -computation πw, we denote by PrefPS (w)
the set of computation-codes encoding the computations in Pref(πw), and by SuffPS (w) the
set of computation-codes encoding the computations in Suff(πw). Given a language L over
ΣPS , let 〈B〉PS (L), 〈E〉PS (L), 〈B〉PS (L), 〈E〉PS (L) be the languages over ΣPS defined as follows:

〈B〉PS (L) = {w ∈ ΠPS | PrefPS (w) ∩ L 6= ∅};
〈E〉PS (L) = {w ∈ ΠPS | SuffPS (w) ∩ L 6= ∅};
〈B〉PS (L) = {w ∈ ΠPS | ∃w′ ∈ ΠPS ∩ L such that w ∈ PrefPS (w′)};
〈E〉PS (L) = {w ∈ ΠPS | ∃w′ ∈ ΠPS ∩ L such that w ∈ SuffPS (w′)}.

We show that PS-NVPA are closed under the above language operations. We start with
the prefix operator 〈B〉PS and the suffix operator 〈E〉PS .

I Proposition 8 (Closure under 〈B〉PS and 〈E〉PS). Given a PS-NVPA A with n states and m
stack symbols, one can construct in polynomial time a PS-NVPA with O(n · |ΣPS |) states and
O(m · |ΓPS |) stack symbols accepting 〈B〉PS (L(A)) (resp., 〈E〉PS (L(A))).

L. Bozzelli, A. Montanari, and A. Peron 33:11

Proof. Let us consider the suffix operator 〈E〉PS (the closure under 〈B〉PS is straightforward).
Let A be a PS -NVPA with set of states Q and stack alphabet Γ. We first construct an NVPA
A′ with O(|Q|) states and O(|Γ|) stack symbols accepting the set of words w over ΣPS such
that there is a non-empty proper prefix w′ of w over ΣPS \Qcall so that the last symbol of
w′ is in ΣPS \ ΓPS and umc(w′) · w′′ is accepted by A, where w′′ is the remaining portion
of w, i.e. w = w′ · w′′. Since A accepts only words in ΠPS , our encoding ensures that the
PS -NVPA accepting 〈E〉PS (L(A)) and satisfying the statement of the theorem is given by the
synchronous product of A′ with the PS-NVPA APS accepting ΠPS of Proposition 6.

We now illustrate the construction of the NVPA A′. Intuitively, A′ guesses a non-empty
proper prefix w′ of the given input w such that the last symbol of w′ is in ΣPS \ΓPS and checks
that there is an accepting run of A over umc(w′) · w′′, where w = w′ · w′′. The behaviour of
A′ is split in two phases. In the first phase, starting from an initial state of A, A′ simulates
the behaviour of A over the unmatched call part umc(w′) of the guessed prefix w′ of the
input. In the second phase, A′ simply simulates the behaviour of A over w′′ and accepts
if and only if A accepts. A′ keeps track in its (control) state of the current state of the
simulated run of A over umc(w′) · w′′. Whenever a call position ic is read along the guessed
prefix w′, A′ guesses that one of the following two conditions holds:

ic is a matched-call position in the guessed prefix w′: A′ pushes a special symbol # on
the stack, and the Q-component of the state remains unchanged. Moreover, in order to
ensure that the guess is correct, A′ exploits a flag mc. Intuitively, the flag mc marks the
current state iff the current input position has a caller whose matching return exists in
the guessed prefix w′. The transition function of A′ ensures that the flag is propagated
consistently with the guesses. In particular, on reading a call of w′ in a state marked
by mc, the flag mc is pushed onto the stack in order to be recovered on reading the
matching-return. The guesses are ensured to be correct by requiring that the second
phase can start only if the flag mc does not appear in the current state.
ic is an unmatched-call position in the guessed prefix w′: from the current state with
Q-component q, A′ guesses a push-transition q

c,push(γ)−→ q′ of A such that c is the
ΓPS -component of w′(ic), pushes γ on the stack and moves to a state whose Q-component
is q′. A′ ensures that in the first phase no symbol in Γ can be popped from the stack.

Note that in the first phase, on reading a non-call position, the Q-component of the state of
A′ remains unchanged. J

Next, we consider the prefix-converse operator 〈B〉PS and the suffix-converse operator
〈E〉PS . For an NVPA A and state q, Aq denotes the NVPA defined as A but with set of initial
states given by {q}. Given states q and p of A, a summary of A from q to p is a run of Aq
over some finite well-matched word leading to a configuration whose associated state is p. A
minimally well-matched word is a non-empty finite well-matched word w whose first position
is a call having as matching-return the last position of w. We denote by MR(ΣPS) the set of
words over ΣPS such that each return position has a matching call.

I Proposition 9 (Closure under 〈B〉PS and 〈E〉PS). Given a PS-NVPA A with n states and m
stack symbols, one can construct in polynomial time
1. a PS-NVPA with O(n2) states and O(n ·m) stack symbols accepting 〈B〉PS (L(A)), and
2. a PS-NVPA with 3n states and m stack symbols accepting 〈E〉PS (L(A)).

Proof. We focus on Property 1 (i.e. closure under 〈B〉PS). Let A be a PS-NVPA with set
of states Q and stack alphabet Γ. We first construct an NVPA A′ over ΣPS with O(|Q|2)
states and O(|Q||Γ|) stack symbols accepting the language 〈B〉(L(A)) := {w ∈ Σ∗PS | ∃w′′ ∈
L(A) such that w ∈ (Pref(w′′) ∪ {ε})}.

FSTTCS 2019

33:12 Interval Temporal Logic for Visibly Pushdown Systems

Starting from A′, one can trivially construct in linear time an NVPA A′′ over ΣPS accepting
the set of non-empty finite words v such that the last symbol of v is not in ΓPS and the word
obtained from v by replacing the last symbol of v with its QPS -component is accepted by A′.
Since A accepts only words in ΠPS , our encoding ensures that A′′ is a PS-NVPA accepting
〈B〉PS (L(A)), and the result follows. We describe now the construction of the NVPA A′
accepting 〈B〉(L(A)). Intuitively, given an input w ∈ Σ∗PS , A′ guesses a right-extension w ·w′
of w with w′ 6= ε and checks that there is an accepting run of A over w · w′. A′ simulates
the behaviour of A on the given input w. Additionally, whenever a call position ic occurs,
A′ guesses that one of the following conditions holds:

ic is a matched-call position of the input w: in order to ensure that the guess is correct, as
in the proof of Proposition 8, A′ carries in its state a flag mc that marks the current state
if the current input position has a caller whose matching return exists. The transition
function of A′ ensures that the flag is propagated consistently with the guesses and the
acceptance condition on finite words ensures that the guesses are correct.
ic is an unmatched call position both in the input w and in the guessed right-extension
w ·w′: in this case, A′ pushes the special symbol bad on the stack (the transition function
ensures that bad is never popped from the stack), and carries in the control state, by
means of an additional flag uc, the information that in the guessed right-extension w ·w′,
there are no unmatched return positions in w′.
ic is an unmatched call position in the input w but has matching return ir in the guessed
right-extension w · w′: in this case, A′ simulates the behavior of A by choosing from
the current state q a push transition q w(ic),push(γ)−→ q′ of A, and, additionally, guesses a
matching pop-transition p r,push(γ)−→ p′ of A associated with the guessed return position
ir. Then, A′ pushes the special symbol bad on the stack and moves to a state which keeps
track both of the next state q′ in the simulated run of A over w ·w′ and the state p (we call
summary state) associated with the guessed matching return position ir. Additionally, if
ic is the first guessed unmatched call position with matched return in w ·w′ (i.e., the infix
from ic to ir is the maximal minimally well-matched word containing the last position of
the input w), A′ chooses the matching pop-transition p r,push(γ)−→ p′ in such a way that
for the target state p′, (L(Ap′) \ {ε}) 6= ∅ if the flag uc does not mark the current state
(i.e., every call in w has a matching return in w · w′), and (L(Ap′) \ {ε}) ∩MR(ΣPS) 6= ∅
otherwise (w′ has no unmatched return positions). By using the stack, the summary state
p is propagated along the maximal abstract path of w from position ic + 1. Whenever
a new call îc occurs, then either îc has a matched return in the input w, or a matching
return îr in the guessed right-extension w · w′. In the first case, A′ pushes the summary
state p onto the stack to recover it on reading the matching return. In the second case, A′

chooses from the current state q̂ a push transition q̂ w(̂ic),push(γ)−→ q̂′ of A and a matching
pop-transition p̂ r,push(γ)−→ p̂′ of A associated with the return position îr such that there
exists a summary of A from state p̂′ to the summary state p (such a summary corresponds
to the portion of the guessed run of A over w · w′ associated with the infix from position
îr + 1 to position ir − 1). Then, A′ pushes the special symbol bad on the stack and moves
to a state which keeps track both of the next state q̂′ (main state) in the simulated run
of A and the new summary state p̂. When the input w is read, A′ accepts only if there is
summary of A from the current main state to the current summary state.

In case A′ guesses that every call in the input w is either matched in w, or unmatched
in the guessed right-extension w · w′, then A′ accepts only if for the final main state q,
(L(Aq) \ {ε}) 6= ∅ if no call has been guessed unmatched, and (L(Aq) \ {ε}) ∩MR(Σ) 6= ∅

L. Bozzelli, A. Montanari, and A. Peron 33:13

otherwise. By standard results, given states p and q of A, checking whether there is a
summary from p to q (resp., (L(Aq) \ {ε}) 6= ∅, resp., (L(Aq) \ {ε}) ∩MR(ΣPS) 6= ∅) can be
done in polynomial time. Hence, A′ can be constructed in polynomial time. J

We can now establish the main result of this paper.

I Theorem 10. Given a VPS PS and a nested BHS formula ψ, one can construct a PS-NVPA
accepting the words encoding the computations π of PS s.t. KPS , π |= ψ. Moreover, the VPMC
problem for nested BHS (resp., nested BHSlin) is decidable with a non-elementary complexity.

Sketch of proof. We can easily show that nested BHSlin can be translated in linear-time into
FOµ. Hence, by [6], given a nested BHSlin formula θ, one can construct an NVPA A of size
non-elementary in the size of θ accepting the words v over ΣAP such that v |=n θ. Starting
from A, one can easily construct a PS -NVPA A′ accepting the set of words over ΣPS encoding
the computations π of PS such that KPS , π |=n θ. Hence, the first part of the theorem holds
for nested BHSlin. Thus, since an arbitrary nested BHS formula can be seen as a nested
HS formula whose atomic formulas are nested BHSlin formulas, and being non-emptiness
of NVPA solvable in polynomial time, the first part of the theorem and non-elementary
decidability of the considered problem easily follow from the result for nested BHSlin and
Propositions 7–9. For the non-elementary lower-bound, we show that the result already holds
for finite model-checking against BHSlin. The proof is by a polynomial-time reduction from
the universality problem for star-free regular expressions built from union, concatenation,
and negation. This problem is known to have a non-elementary complexity [27]. J

5 Concluding remarks

We have introduced and proved decidable a branching-time context-free logical framework for
visibly pushdown model-checking, based on an extension of standard HS under the state-based
semantics over Kripke structures and the homogeneity assumption. Future work will focus
on the problem of determining the exact complexity of the VPMC problem for nested HS
and its relevant fragments, and the complexity for nested BHS in terms of the nesting depth
of the binding modality. Another intriguing problem concerns the expressiveness of the
binding modality: in particular, is (nested) BHS more expressive than (nested) HS? We
are also motivated to study suitable generalizations of the homogeneity assumption about
the behavior of proposition letters over intervals. Finally, an interesting issue concerns the
expressiveness comparison of nested BHS and VP-µ [3].

References
1 J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of the ACM,

26(11):832–843, 1983.
2 R. Alur, M. Arenas, P. Barceló, K. Etessami, N. Immerman, and L. Libkin. First-Order and

Temporal Logics for Nested Words. In Proc. 22nd LICS, pages 151–160. IEEE Computer
Society, 2007.

3 R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and global program
flows. In Proc. 33rd POPL, pages 153–165. ACM, 2006.

4 R. Alur, K. Etessami, and P. Madhusudan. A Temporal Logic of Nested Calls and Returns.
In Proc. 10th TACAS, volume 2988 of LNCS, pages 467–481. Springer, 2004.

5 R. Alur and P. Madhusudan. Visibly Pushdown Languages. In Proc. 36th STOC, pages
202–211. ACM, 2004.

6 R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of ACM, 56(3):16:1–
16:43, 2009.

FSTTCS 2019

33:14 Interval Temporal Logic for Visibly Pushdown Systems

7 C. Baier and J.P. Katoen. Principles of Model Checking. The MIT Press, 2008.
8 L. Bozzelli, A. Molinari, A. Montanari, and A. Peron. An in-Depth Investigation of Interval

Temporal Logic Model Checking with Regular Expressions. In Proc. 15th SEFM, LNCS 10469,
pages 104–119. Springer, 2017.

9 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Model checking for fragments
of the interval temporal logic HS at the low levels of the polynomial time hierarchy. Inf.
Comput., 262(Part):241–264, 2018.

10 L. Bozzelli, A. Molinari, A. Montanari, A. Peron, and P. Sala. Interval vs. Point Temporal Logic
Model Checking: An Expressiveness Comparison. ACM Trans. Comput. Logic, 20(1):4:1–4:31,
2019.

11 L. Bozzelli and C. Sánchez. Visibly Linear Temporal Logic. J. Autom. Reasoning, 60(2):177–220,
2018.

12 D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Interval temporal
logics over strongly discrete linear orders: Expressiveness and complexity. Theor. Comput.
Sci., 560:269–291, 2014.

13 D. Bresolin, D. Della Monica, A. Montanari, P. Sala, and G. Sciavicco. Decidability and
Complexity of the Fragments of the Modal Logic of Allen’s Relations over the Rationals.
Information and Computation, accepted for publication on February 20, 2019.

14 K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger, and J. Palsberg. Stack Size
Analysis for Interrupt-Driven Programs. In Proc. 10th SAS, LNCS 2694, pages 109–126.
Springer, 2003.

15 T. Chen, F. Song, and Z. Wu. Global Model Checking on Pushdown Multi-Agent Systems. In
Proc. 30th AAAI, pages 2459–2465. AAAI Press, 2016.

16 E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

17 J. Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the
ACM, 38(4):935–962, 1991.

18 A. Lomuscio and J. Michaliszyn. An Epistemic Halpern-Shoham Logic. In Proc. 23rd IJCAI,
pages 1010–1016, 2013.

19 A. Lomuscio and J. Michaliszyn. Decidability of model checking multi-agent systems against
a class of EHS specifications. In Proc. 21st ECAI, pages 543–548, 2014.

20 A. Lomuscio and J. Michaliszyn. Model Checking Multi-Agent Systems against Epistemic HS
Specifications with Regular Expressions. In Proc. 15th KR, pages 298–308. AAAI Press, 2016.

21 A. Molinari, A. Montanari, A. Murano, G. Perelli, and A. Peron. Checking interval properties
of computations. Acta Informatica, 53(6-8):587–619, 2016.

22 A. Molinari, A. Montanari, and A. Peron. Model checking for fragments of Halpern and
Shoham’s interval temporal logic based on track representatives. Inf. Comput., 259(3):412–443,
2018.

23 A. Montanari, G. Puppis, and P. Sala. A decidable weakening of Compass Logic based on
cone-shaped cardinal directions. Logical Methods in Computer Science, 11(4), 2015.

24 B. Moszkowski. Reasoning About Digital Circuits. PhD thesis, Dept. of Computer Science,
Stanford University, Stanford, CA, 1983.

25 A. Pnueli. The temporal logic of programs. In Proc. 18th FOCS, pages 46–57. IEEE, 1977.
26 I. Pratt-Hartmann. Temporal propositions and their logic. Artificial Intelligence, 166(1-2):1–36,

2005.
27 L. J. Stockmeyer. The complexity of decision problems in automata theory and logic. PhD

thesis, MIT, 1974.
28 Y. Venema. Expressiveness and Completeness of an Interval Tense Logic. Notre Dame Journal

of Formal Logic, 31(4):529–547, 1990.
29 I. Walukiewicz. Pushdown Processes: Games and Model Checking. In Proc. 8th CAV, pages

62–74, 1996.

	Introduction
	Interval temporal logic HS with binding contexts
	Model Checking Visibly Pushdown Systems against nested BHS
	Decision procedures
	Concluding remarks

