
An Efficient Content-based Time Series Retrieval System
Chin-Chia Michael Yeh

Huiyuan Chen

Xin Dai

Visa Research

California, USA

Yan Zheng

Junpeng Wang

Visa Research

California, USA

Vivian Lai

Yujie Fan

Visa Research

California, USA

Audrey Der

University of California, Riverside

California, USA

Zhongfang Zhuang

Liang Wang

Wei Zhang

Visa Research

California, USA

Jeff M. Phillips

University of Utah

Utah, USA

ABSTRACT
A Content-based Time Series Retrieval (CTSR) system is an informa-

tion retrieval system for users to interact with time series emerged

from multiple domains, such as finance, healthcare, and manufac-

turing. For example, users seeking to learn more about the source

of a time series can submit the time series as a query to the CTSR

system and retrieve a list of relevant time series with associated

metadata. By analyzing the retrieved metadata, users can gather

more information about the source of the time series. Because the

CTSR system is required to work with time series data from diverse

domains, it needs a high-capacity model to effectively measure the

similarity between different time series. On top of that, the model

within the CTSR system has to compute the similarity scores in an

efficient manner as the users interact with the system in real-time.

In this paper, we propose an effective and efficient CTSR model that

outperforms alternative models, while still providing reasonable

inference runtimes. To demonstrate the capability of the proposed

method in solving business problems, we compare it against alterna-

tive models using our in-house transaction data. Our findings reveal

that the proposed model is the most suitable solution compared to

others for our transaction data problem.

CCS CONCEPTS
• Information systems→ Information retrieval;Datamining;
• Computing methodologies→ Neural networks; • Applied
computing→ Electronic funds transfer.

KEYWORDS
time series, information retrieval, neural network, fintech

ACM Reference Format:
Chin-Chia Michael Yeh, Huiyuan Chen, Xin Dai, Yan Zheng, Junpeng Wang,

Vivian Lai, Yujie Fan, Audrey Der, Zhongfang Zhuang, Liang Wang, Wei

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3614655

Zhang, and Jeff M. Phillips. 2023. An Efficient Content-based Time Series

Retrieval System. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management (CIKM ’23), October 21–25, 2023,
Birmingham, United Kingdom. ACM, New York, NY, USA, 8 pages. https:

//doi.org/10.1145/3583780.3614655

1 INTRODUCTION
Time series is a common data type analyzed for a variety of ap-

plications [9]. For example, time series from different sensors on

manufacturing machines are examined by engineers for identifying

ways to improve factories’ efficiency, various biometric time series

are studied by doctors for medical research, and multiple streams of

time series from operating payment network are monitored for un-

usual activities. As a large volume of time series data are becoming

available from various sources, it is essential to develop an effective

system to help users browse time series databases. In this paper,

we refer to such a system as a Content-based Time Series Retrieval
(CTSR) system. This system is designed to retrieve relevant time

series from a database when given a query time series.

To understand what a CTSR system is and how it can help users,

let us consider the use case presented in Fig. 1. Suppose a user comes

across a time series without any associated meta data. The time

series could be a power consumption time series or data records

from other sensors. The user wants to identify the possible source

of the time series and recover the missing information. To solve this

problem, the user queries the CTSR system
1
with the time series,

and the system returns a ranked list of similar time series with

associated meta data. In this example, five out of the top six returned

time series are power consumption signatures for microwave ovens.

Consequently, the user is able to infer that the unknown time series

is most likely a microwave oven’s power consumption signature.

Hence, the CTSR system helps the user in recovering the missing

information about time series.

We have two primary design goals when building our CTSR

system: 1) to effectively capture various concepts in time series

from different domains, and 2) to be efficient during inference, given

the real-time interactions of users with the system. To identify the

most suitable distance or similarity function for our system, we

conducted a benchmark experiment using two distance functions

and five neural network models (see Section 3). From the seven

1
The query time series may or may not exist in the database of the CTSR system.

4909

https://doi.org/10.1145/3583780.3614655
https://doi.org/10.1145/3583780.3614655
https://doi.org/10.1145/3583780.3614655
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614655&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Chin-Chia Michael Yeh et al.

3. relevant
time series

Content-based
Time Series
Retrieval System

[b][a] [a] [a] [a] [a]
[a] power consumption signatures for microwave ovens
[b] aggregated power consumption signature for a household

2. query
1. What is ?

4. it is probably the power
consumption signature for
a microwave oven

Figure 1: The use case for a Content-based Time Series Re-
trieval (CTSR) system where the database consists of time
series from multiple domains.

tested methods, the Residual Network 2𝐷 (RN2D) outperforms the

other methods with statistical significance. However, the RN2D

method failed to meet the second design goal. Its average query

time was 32 seconds, while most of the other rival methods’ query

times were below 0.04 seconds (refer to Table 1). In other words,

while the RN2D method proved to be the best model in terms of

accuracy, it may not be ideal for building our system if we aim to

guarantee a reasonable response latency.

The main reason for the drastic difference in inference time is

the difference in the role of the neural network. In faster methods

(i.e., the methods with query time less than 0.04 seconds), the neural

network serves purely as a feature extractor, and the distance is

computed using Euclidean distance (see Fig. 2.a). Therefore, we only

need to project each time series in the database to Euclidean space

once using the neural network before inference. During query time,

the neural network only needs to project the query time series to

the same Euclidean space, and the distance computation can be

efficiently performed in this space. On the other hand, the RN2D

model serves as both the feature extractor and distance function as

shown in Fig. 2.b. Thus, the RN2D model is invoked each time the

distance is computed. In cases where there are 𝑛 time series in the

database, the faster method only requires one invocation of the

neural network for the query. In contrast, the RN2D model invokes

𝑛 times, drastically increasing the runtime.

(a) (b) (c)

for each item i
in database

distance
function

modelmodel

feature

distance i

query item i

for each item i in
database

RN2Dw/T
model

distance
function

RN2Dw/T
model

feature

distance i

query
templates

… item i

for each item i in
database

RN2D
model

distance i

query item i

Figure 2: The design of the neural network can greatly impact
the inference time.

To leverage the advantages of the best available model (RN2D) for

our CTSR system, we propose a novel model architecture based on

the RN2D model with improved efficiency, called Residual Network
2𝐷 with Template Learning (RN2Dw/T). As illustrated in Fig. 2.c,

we incorporate a template (landmark) learning mechanism into the

input of the RN2D model (Fig. 2.b) and modify the model to output

feature vectors instead of distance values. Unlike the RN2D method,

the RN2Dw/T model functions solely as a feature extractor. Our

proposed RN2Dw/T achieves comparable effectiveness to the RN2D

method while maintaining an average query time of less than 0.04

seconds (see Table 1). Our results provide strong evidence that an

effective and efficient CTSR system with the proposed RN2Dw/T

model can be a valuable tool for businesses in various industries.

2 BACKGROUND
In this section, we will begin by providing the problem statement,

and then we will review relevant works from the literature.

2.1 Problem Statement
The CTSR problem is formulated as follows:

Problem 1.Given a set of time series X = [x1, · · · , x𝑛] and any

query time series q, we want to obtain a relevance score func-

tion 𝑓 (·, ·), which satisfies the property that 𝑓 (x𝑖 , q) > 𝑓 (x𝑗 , q) if
x𝑖 is more relevant to q than x𝑗 .
The scoring function can be either a predefined similarity func-

tion or a trainable function that is optimized using the metadata

associated with each time series in X.
2.2 Related Work
There are two major ways to formulate the time series retrieval

problem [13, 24, 28, 32, 46]. The first is known as the time series

similarity search problem, which focuses on finding the top 𝑘 time

series that aremost similar to a given query based on a fixed distance

function [3, 24, 25, 28, 46]. For efficiency, techniques such as lower

bounding [28], early abandoning [28], and/or indexing [25] are

commonly used. This type of research differs from our goal (i.e.,

Problem 1).

The second type of problem formulation is more aligned with

our problem statement, where the objective is to develop a model or

scoring function to aid users in retrieving relevant time series from a

database based on the query time series submitted. We searched for

relevant literature and found only one paper [32]. Their proposed

model was intended for multivariate time series analysis. If we were

to adapt it for our univariate time series problem, the resulting

model would essentially be a standard long short-term memory

network [15]. Consequently, we expanded our literature review

further to identify effective distance measures and models for time

series data, regardless of their specific application.

The Euclidean distance and dynamic time warping distance are

popular tools for analyzing time series data. They are widely used in

various tasks such as similarity search, classification, and anomaly

detection [9, 13, 22, 28, 44]. We can readily apply both distance

functions to our problem, and therefore, we include them in our

experiments. Another family of methods that can be used in our

problem is neural networks. For example, long short-term memory

networks [15, 17, 18, 20, 45], gated recurrent unit networks [7,

20, 45], transformers [5, 19, 20, 35, 45], and convolutional neural

networks [16, 29, 39] have shown effectiveness in tasks such as

time series classification, forecasting, and anomaly detection. Thus,

we also include these neural network models in our experiments.

3 METHOD
In this section, we begin by presenting six common baseline meth-

ods. Following that, we introduce the Residual Network 2𝐷 (RN2D)

method and contrast its benefits with the other baseline methods.

4910

An Efficient Content-based Time Series Retrieval System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Once we have introduced the RN2D method, we will present the

proposed Residual Network 2𝐷 with Template learning (RN2Dw/T)

method, which solves the efficiency issue associated with the design

of RN2D. The six common baseline methods are:

• Euclidean Distance (ED): We compute the Euclidean distance

between the query time series and the time series in the collection.

Then, we sort the collection based on the distances. This is the

simplest approach for solving the CTSR problem.

• Dynamic Time Warping (DTW): This method is similar to

the ED baseline, but uses the DTW distance instead. The DTW

distance is considered as a simple yet effective baseline for time

series classification problems [2, 9, 28]. Therefore, it is crucial to

include this method in our CTSR benchmark.

• Long Short-TermMemory network (LSTM): The LSTM is one

of the most popular Recurrent Neural Networks (RNNs) used for

modeling sequential data [15, 20, 45]. In this work, we optimize

LSTM models using the Siamese network architecture [6] (see

Fig. 2.a).

• Gated Recurrent Unit network (GRU): The GRU is another

popular RNN architecture widely used for modeling sequential

data [7, 20, 45]. To optimize the GRU model, we applied a similar

approach as for the LSTM model, wherein we replaced the LSTM

cells in the RNN architecture with GRU cells.

• Transformer (TF): The transformer is an alternative to the

RNNs for sequence modeling [5, 19, 20, 35, 45]. To learn the

hidden representation for the input time series, we utilized the

transformer encoder proposed in [35]. We replaced the RNNs

used in the previous two methods (i.e., LSTM and GRU) with

transformer encoders, resulting in a transformer-based Siamese

network architecture instead of an RNN-based one.

• Residual Network 1D (RN1D): The RN1D is a time series clas-

sification model inspired by the success of residual networks

in computer vision [14, 39]. It employs 1𝐷 convolutional layers

instead of 2𝐷 convolutional layers [14, 39] and is first proposed

in [39]. Extensive evaluations conducted by [16] have demon-

strated that the RN1D design is among the strongest models for

time series classification. We once again optimize this model in a

Siamese network fashion [6] (see Fig. 2.a).

Both the ED and DTW methods require no training phase as

they have no parameters to optimize. The DTWmethod is the more

effective method of the two for time series data, because it considers

all alignments between the input time series [28]. The computation

of DTW distance can be abstracted into a two-stage process. In the

first stage, a pair-wise distance matrix 𝐷 ∈ R𝑤×ℎ is computed from

the input time series a = [𝑎1, · · · , 𝑎𝑤] (where𝑤 is the length of a)
and b = [𝑏1, · · · , 𝑏ℎ] (whereℎ is the length of b) as𝐷 [𝑖, 𝑗] = |𝑎𝑖−𝑏 𝑗 |.
In the second stage, a fixed recursion function is applied to 𝐷 , i.e.,

𝐷 [𝑖, 𝑗] ← 𝐷 [𝑖, 𝑗] + min(𝐷 [𝑖 − 1, 𝑗], 𝐷 [𝑖, 𝑗 − 1], 𝐷 [𝑖 − 1, 𝑗 − 1]), for
each element in 𝐷 . Consequently, the DTW method can be viewed

as running a predefined function on the pair-wise distance matrix

between the input time series.

The remaining four baseline methods use the Siamese network

distance learning framework (refer to Fig. 2.a) and employ high-

capacity
2
neural network models, i.e., LSTM, GRU, TF, and RN1D,

to learn the hidden representation of the input time series. These

2
We use the term capacity to describe the expressiveness [23] of a model.

representations are used to compute the distance between two time

series, and the models are learned using the optimization procedure

detailed in Section 3.3. Once the model is optimized, the hidden

representations of each time series in the database are extracted

before deployment. When a user submits a query, we only need

to apply the model to the query time series to extract its hidden

representation because the hidden representations of each time

series in the database are already extracted before query time. Then,

the distances between the query and each item in the database are

computed using the Euclidean distance.

3.1 Residual Network 2D
The Residual Network 2D (RN2D) method (Fig. 3) combines the best

of both worlds (i.e., DTW and neural network). The RN2D method

takes advantage of the rich alignment information from the pair-

wise distance matrix, similar to the DTWmethod. However, instead

of using a fixed function, the RN2D method uses a high-capacity

neural network as the function, making use of an expressive model

like the four neural network baselines. Fig. 3.a shows the building

block, while Fig. 3.b shows the overall model. Please see [34] for a

detailed description of each module in Fig. 3.

(a) Building block (b) Network

relu

relu

input

output

+

2D conv, 3x3
/2, nneck->nneck

relu

2D conv, 1x1
nin->nneck

2D conv, 1x1
nneck->noutblock

nin->nneck->nout

input

output

2D conv, 1x1
/2, nin->nout

input 1 input 2

output

x 8block
64->16->64

2D conv, 7x7
/2, 1->64

get a pairwise
distance matrix

relu

global avg
pooling

linear
64->1

Figure 3: The building block and network designs for the
Residual Network 2𝐷 (RN2D) model are shown in Fig. 3.a and
Fig. 3.b, respectively.

As shown in Fig. 2.b, we cannot extract the hidden representa-

tions of each time series in the database before deployment when

using RN2D, unlike the methods using the Siamese network frame-

work. If there are 𝑛 time series in the database, we need to run

RN2D 𝑛 times during query time to compute the distance between

the query time series and each time series in the database. In con-

trast, the methods using the Siamese network framework only

need to run the model once during query time, making the RN2D

method an order of magnitude slower
3
. To address the efficiency

issue of RN2D, we propose the Residual Network 2𝐷 with Template

Learning method, which we will introduce in the next section.

3.2 Residual Network 2D with Template
Learning

We propose the Residual Network 2𝐷 with Template Learning

(RN2Dw/T) to address the efficiency issue of RN2D. This method

is designed to be as effective as the RN2D method while being

3
The claim is based on our observation of the experimental results presented in Table 1.

4911

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Chin-Chia Michael Yeh et al.

an order of magnitude faster. Fig. 4 illustrates the design of the

RN2Dw/T model.

block
64->16->64

2D conv, 7x7
/2, 32->64

relu

get pairwise
distance matrices

global avg
pooling

linear
64->64

x8

input

output

D1 … D32

…get a pairwise
distance matrix

input

get a pairwise
distance matrix

stack matrices
into a tensor

D32
D1

template 1 template 32…

Figure 4: The proposed Residual Network 2𝐷 with Templates
Learning (RN2Dw/T) model.

The proposed RN2Dw/T model begins by computing a set of

pairwise distancematrices between the input time series and a set of

templates. These distance matrices are computed as follows: Given

an input time series a = [𝑎1, · · · , 𝑎𝑤] and the 𝑘th template t𝑘 =

[𝑡𝑘,1, · · · , 𝑡𝑘,𝑤], the 𝑘th distance matrix 𝐷𝑘 ∈ R𝑤×ℎ is computed

with 𝐷𝑘 [𝑖, 𝑗] = |𝑎𝑖 − 𝑡𝑘,𝑗 |. We compute the distance matrix for

each of the 32 templates, resulting in 32 𝑤 × ℎ matrices. The 32

templates are learned during the training phase as part of model

parameters and are reference time series that help the model project

the input time series to Euclidean space using the RN2D design.

Next, we stack the 32 𝑤 × ℎ matrices together to create a tensor,

𝐷 ∈ R𝑤×ℎ×32. This tensor is the output of the pairwise distance
matrix computation step.

Similar to the RN2D model (as shown in Fig. 3.a), we employ

a 7 × 7 convolutional layer with a step size of two to project the

tensor 𝐷 onto R𝑤/2×ℎ/2×64 space. After applying a ReLU layer, the

resulting intermediate representation passes through eight building

blocks with the 64→16→64 configuration. Next, we apply a global

average pooling layer to reduce the spatial dimensions, resulting in

a size-64 vector. Finally, we use a linear layer to further process this

vector into a size-64 vector, which serves as the final representation

of the input time series.

For RN2Dw/T model, the feature of the input time series is com-

puted based on the pairwise distance matrices between the input

time series and the learned templates. This allows us to use the

trained RN2Dw/T model to extract the feature vectors for all the

items in the database before deployment, and we only need to do

this feature extraction step once. After deployment, when a query

time series is obtained, we only need to extract its feature vec-

tor, after which we can efficiently compute the Euclidean distance

between the query feature vector and the pre-computed feature

vectors from the database. However, if the RN2D model is used

in the system, we would need to reprocess all items in the data-

base whenever we receive a new query, which would considerably

increase the query time.

The proposed RN2Dw/T method bears some resemblance to the

Nyström approximation method for kernel learning [12, 40], in

that both involve using a subset of samples to replace the train-

ing dataset. This similarity highlights how RN2Dw/T can achieve

similar performance to RN2D, just as the Nyström method can

approximate the exact kernel. The RN2Dw/T model has a similar

capacity to the RN2D model, but it also enables a more efficient

query mechanism, which is crucial when designing a real-world

CTSR system.

3.3 Optimization
The loss function used in our study is the BPR loss [31], which is

appropriate for the CTSR problem since it is a learning-to-rank prob-
lem. Given a batch of training data B = [T0, · · · ,T𝑚], the loss func-
tion is defined as:

∑
(t𝑖 ,t𝑖,+,t𝑖,−) ∈B − log𝜎 (𝑓\ (t𝑖 , t𝑖,+) − 𝑓\ (t𝑖 , t𝑖,−)),

where𝑚 is the batch size, 𝜎 (·) is the sigmoid function, and 𝑓\ (·, ·)
is the model. Each sample in the batch is a tuple T𝑖 that contains
the query (or anchor) time series t𝑖 , the positive time series t𝑖,+, and
the negative time series t𝑖,− . We used the AdamW optimizer [21]

to train our models.

4 EXPERIMENT
In this section, we present the results of our experiments on a CTSR

benchmark dataset created from the UCR Archive [9] and an in-

house transaction dataset based on a real business problem (see

Fig. 9). Neural network-based methods were implemented using

PyTorch [27], and the model with the best average NDCG@10 score

on the validation data was selected for testing. We used SciPy [36]

to compute ED and Tslearn [33] to compute DTW. Further details

including source code and hyper-parameter settings can be found

in the project website [34].

4.1 UCR Archive
We created the CTSR benchmark dataset from the UCR Archive [9],

which is a collection of 128 time series classification datasets from

various domains such as motion, power demand, and traffic. The

UCR Archive is widely used for benchmarking time series classifica-

tion algorithms [2, 16, 39]. We convert the UCR Archive to a CTSR

benchmark dataset using the steps listed on the project website [34].

The resulting dataset consists of 136,377 training time series, 17,005

test queries, and 17,005 validation queries.

To measure the performance of different retrieval methods, we

computed common information retrieval metrics, including preci-

sion at 𝑘 (Prec@𝑘), average precision at 𝑘 (AP@𝑘), and normalized

discounted cumulative gain at 𝑘 (NDCG@𝑘), for each query. The

performance measurements at 𝑘 = 10 for each of the 17,005 test

queries are averaged and presented in Table 1. When comparing dif-

ferent methods, we also conducted two-sample t-tests with 𝛼 = 0.05

to test for statistical significance. Please refer to [34] for the com-

plete results of the significance tests. The reported query time is

the average time taken to compute relevant scores between a query

and the 136,377 time series in the training dataset. We computed

the average query time by using 1,000 different time series from

the test data as the query. Table 1 allows for easy comparison of

different methods based on different performance measures.

Firstly, we focus our discussion on the three performance mea-

surements: PREC@10, AP@10, and NDCG@10. When comparing

the performance of the two non-neural network baselines (ED

and DTW), we observed that DTW significantly outperforms ED

4912

An Efficient Content-based Time Series Retrieval System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 1: The proposed RN2Dw/Tmethod is both effective and
efficient. The query times are measured in seconds.

Method PREC@10 AP@10 NDCG@10 Query Time

ED 0.7316 0.7655 0.7499 0.0353

DTW 0.8562 0.8792 0.8693 36.1224

LSTM 0.9205 0.9277 0.9260 0.0169

GRU 0.9221 0.9285 0.9273 0.0084

TF 0.9146 0.9212 0.9199 0.0029

RN1D 0.9086 0.9164 0.9146 0.0366

RN2D 0.9266 0.9342 0.9325 32.0752

RN2Dw/T 0.9286 0.9343 0.9336 0.0181

in all three performance measurements. This suggests that using

alignment information helps with the CTSR problem, and simi-

lar conclusions have been drawn for the time series classification

problem [2].

When considering the first four neural network baselines (i.e.,

LSTM, GRU, TF, and RN1D), all of them significantly outperform

the DTW method. This demonstrates that using a high-capacity

model helps with the CTSR problem. One possible reason for this

is that the CTSR dataset consists of time series from many different

domains [9], and higher capacity models are required for learning

diverse patterns within the data. Among the four methods, GRU

and LSTM outperform the other two methods significantly in all

three performance measurements; GRU performs slightly better

compared to LSTM, but the difference is not statistically significant.

The RN2D method, a high-capacity model utilizing alignment in-

formation, significantly outperforms all other methods according to

the t-test results. When comparing the RN2Dw/T method with the

RN2D method, the RN2Dw/T method achieves higher performance

in all three performance measurements, although the difference is

not significant. Thus, both the proposed RN2Dw/T method and the

RN2D method can be considered the best performing methods for

the CTSR dataset in terms of the three performance measurements.

When considering the query time, the eight tested methods can

be grouped into two categories: slower methods (i.e., DTW and

RN2D) with a query time of over 30 seconds, and faster methods

(i.e., ED, LSTM, GRU, TF, RN1D, and RN2Dw/T) where each query

takes less than 0.1 seconds. The main difference between the faster

and slower groups is that all fast methods compute the relevance

score in Euclidean space, while the slower methods compute the

scores in non-Euclidean spaces. Overall, the proposed RN2Dw/T

method is the best method as it is effective in retrieving relevant

time series and efficient in terms of query time.

Following many prior works in time series classification [2, 16],

we constructed a critical difference (CD) diagram to compare the

performance of different methods. The CD diagram (see Fig. 5)

shows the average rank of each method based on a performance

measurement and indicates whether two methods exhibit a signifi-

cant difference in performance based on the Wilcoxon signed-rank

test (𝛼 = 0.05). The conclusion is consistent with the findings pre-

sented in Table 1.

In Fig. 6, we present the results of the performancemeasurements

using various values of𝑘 ranging from 5 to 15. This is done to ensure

that the conclusions drawn from Table 1 and Fig. 5 are not limited to

our particular choice of 𝑘 . To improve readability, we have omitted

ED and DTW from the figures since their performance is much

worse than the other methods.

12345678

5.49ED
4.91DTW
4.49RN1D
4.38TF 4.26 LSTM

4.22 GRU

4.14 RN2D

4.12 RN2Dw/T

NDCG@10

Figure 5: We also construct the CD diagram for PREC@10
and PR@10, the conclusion remains the same.

5 10 15
k

0.90

0.94
PREC@k

5 10 15
k

AP@k

5 10 15
k

NDCG@k

LSTM GRU TF RN1D RN2D RN2Dw/T

Figure 6: The proposed method outperforms the others with
different settings of 𝑘 for each performance measure.

As shown in Fig. 6, the proposed RN2Dw/T method achieves the

best performance across different values of 𝑘 for all three perfor-

mance measurements. The order of the remaining methods from

best to worst is: RN2Dw/T, RN2D, GRU, LSTM, TF, and RN1D. These

results are consistent with the findings presented in Table 1 and

Fig. 5.

The proposed RN2Dw/T method introduces an additional hyper-

parameter: the number of templates used to compute the pairwise

distance matrices (see Fig. 4). We experimented with various set-

tings, including 8, 16, 24, 32, 40, and 48, and the results are pre-

sented in Fig. 7. The performance of RN2Dw/T is similar to that

of the RN2D method, regardless of the hyper-parameter setting.

One potential reason for the lack of sensitivity of RN2Dw/T to

this hyper-parameter setting is that the performance of the learned

representation is not influenced by the specific shape of templates.

A similar phenomenon can be observed in various shapelet-based

methods [10, 30, 41]. We chose to set the number of templates to

32 based on its performance on the validation set.

8 16 24 32 40 48
number of template

0.90

0.94
PREC@10

8 16 24 32 40 48
number of template

AP@10

8 16 24 32 40 48
number of template

NDCG@10

validation test

Figure 7: The proposed RN2Dw/T method is not sensitive to
the number of template settings. The gray horizontal line
marks the test performance of the RN2D method.

4913

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Chin-Chia Michael Yeh et al.

Next, in Fig. 8, we present the top eight retrieved time series using

different methods. We selected two queries with different levels of

complexity from the test dataset. The simpler query consists of a

single cycle of a pattern, while the complex query contains periodic

signals. Periodic signals in complex queries typically require shift-

invariant distance measures [26] to retrieve relevant items correctly.

This figure demonstrates that the CTSR problem is challenging, as

even irrelevant time series are visually similar to the query.

DTW
LSTM
GRU
TF

RN1D

RN2Dw/T
RN2D

ED

query top 1 top 2 top 3 top 4 top 5 top 6 top 7 top 8

DTW
LSTM
GRU
TF

RN1D

RN2Dw/T
RN2D

ED

query top 1 top 2 top 3 top 4 top 5 top 6 top 7 top 8

Figure 8: The top eight items of a given query time series were
retrieved by different methods. The retrieved time series is
colored red if it is relevant and black if it is irrelevant.

Examining the retrieved time series for different methods, we

make the following observations: The ED method struggles with

the more complex query because it cannot align the query to rel-

evant time series. The DTW method outperforms the ED method

on the complex query, but its alignment freedom hurts its perfor-

mance on the simple query. The four neural network baselines

(i.e., LSTM, GRU, TF, and RN1D) perform better than both ED and

DTW methods when considering both queries. However, none of

these baselines outperforms both the RN2Dw/T and RN2Dmethods,

which reliably retrieve relevant items.

4.2 Transaction Time Series
To evaluate the effectiveness and efficiency of different CTSR sys-

tem designs in addressing the problem presented in Fig. 9, we con-

structed a transaction time series dataset for testing these solutions.

The dataset comprises 160,014 training time series, 19,993 test

queries, and 19,992 validation queries, each representing the time

series signature for a merchant, with a length of 168. For a retrieved

time series given a query time series, we consider the retrieved

time series a relevant item from the database if it belongs to mer-

chants of the same business type as the query time series. If the

retrieved time series is from another business type than the query

time series, it is considered an irrelevant item. We calculate the

performance measurements at 𝑘 = 10 for each of the 19,993 test

queries, and present the average results in Table 2. Only faster deep

1. Is Merchant A really
a restaurant?

4. Merchant A is more
likely a grocery store.

Merchant A
“restaurant”

Investigator

Content-based
Time Series
Retrieval System

2. query3. relevant
time series

grocery

pharmacy

grocery
grocery

Figure 9: The use case for a CTSR system with transaction
time series.

learning methods (i.e., LSTM, GRU, TF, RN1D, and RN2Dw/T) were

tested on the transaction time series, as these methods were the

clear winners from the experiments conducted on the UCR archive

CTSR dataset, considering both effectiveness and efficiency. The

proposed RN2Dw/T method is the best performing method, with

the difference in performance between it and the second-best RN1D

method appearing small. However, the difference is statistically sig-

nificant based on two-sample t-tests with 𝛼 = 0.05. All methods

have similar query times (in seconds).

Table 2: The proposed method outperforms the others in all
performance measurements.

Method PREC@10 AP@10 NDCG@10 Query Time

LSTM 0.8798 0.8857 0.8830 0.0194

GRU 0.8503 0.8580 0.8545 0.0093

TF 0.8622 0.8678 0.8652 0.0040

RN1D 0.8941 0.8967 0.8955 0.0687

RN2Dw/T 0.8963 0.8999 0.8982 0.0197

To provide a better user experience, we can further reduce the

query time of the proposed RN2Dw/T system by replacing the exact

nearest neighbor search algorithm with an approximate one. We

compared the performance of the proposed system using both the

exact and approximate nearest neighbor search algorithms. For

the approximate search, we utilized the nearest neighbor descent

method as described in [11], and implemented it using the PyN-

NDescent library [8]. Our results indicate that the query time for

the proposed method is 19.65 milliseconds for exact nearest neigh-

bor search and 0.45 milliseconds for approximate nearest neigh-

bor search. Moreover, the method’s performances (i.e., PREC@10,

AP@10, and NDCG@10) remain exactly the same as presented in

Table 2. In other words, we were able to improve the throughput

by 43X without compromising the method’s performance.

5 CONCLUSION
In this paper, we investigated the Content-based Time Series Re-

trieval (CTSR) problem and tested eight methods (ED, DTW, LSTM,

GRU, TF, RN1D, RN2D, and RN2Dw/T). Our results show that the

proposed RN2Dw/T method outperformed the other methods in

terms of both effectiveness and efficiency. As part of our future

work, we aim to enhance the efficiency of the proposed model

by incorporating low-bit representation techniques, such as those

presented in [1, 4, 37, 38, 43]. Moreover, we have plans to expand

the method’s scope to accommodate multi-dimensional time series

data. Additionally, we aim to tailor the method for application in

an unsupervised setting with pre-training methods [42].

4914

An Efficient Content-based Time Series Retrieval System CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES
[1] Alexandr Andoni and Daniel Beaglehole. 2022. Learning to hash robustly, guar-

anteed. In International Conference on Machine Learning. PMLR, 599–618.

[2] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.

2017. The great time series classification bake off: a review and experimental

evaluation of recent algorithmic advances. Data mining and knowledge discovery
31, 3 (2017), 606–660.

[3] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. 2010.

isax 2.0: Indexing and mining one billion time series. In 2010 IEEE International
Conference on Data Mining. IEEE, 58–67.

[4] Huiyuan Chen, Xiaoting Li, Kaixiong Zhou, Xia Hu, Chin-Chia Michael Yeh, Yan

Zheng, and Hao Yang. 2022. TinyKG: Memory-Efficient Training Framework for

Knowledge Graph Neural Recommender Systems. In Proceedings of the 16th ACM
Conference on Recommender Systems. 257–267.

[5] Huiyuan Chen, Yusan Lin, Menghai Pan, Lan Wang, Chin-Chia Michael Yeh,

Xiaoting Li, Yan Zheng, Fei Wang, and Hao Yang. 2022. Denoising Self-Attentive

Sequential Recommendation. In Proceedings of the 16th ACM Conference on Rec-
ommender Systems. 92–101.

[6] Davide Chicco. 2021. Siamese neural networks: An overview. Artificial Neural
Networks (2021), 73–94.

[7] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-

gio. 2014. On the properties of neural machine translation: Encoder-decoder

approaches. arXiv preprint arXiv:1409.1259 (2014).
[8] Contributions. 2023. A Python nearest neighbor descent for approximate nearest

neighbors. https://github.com/lmcinnes/pynndescent.

[9] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan

Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh.

2019. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica 6, 6
(2019), 1293–1305.

[10] Angus Dempster, François Petitjean, and Geoffrey I Webb. 2020. ROCKET: excep-

tionally fast and accurate time series classification using random convolutional

kernels. Data Mining and Knowledge Discovery 34, 5 (2020), 1454–1495.

[11] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph

construction for generic similarity measures. In Proceedings of the 20th interna-
tional conference on World wide web. 577–586.

[12] Petros Drineas, Michael WMahoney, and Nello Cristianini. 2005. On the Nyström

Method for Approximating a Gram Matrix for Improved Kernel-Based Learning.

journal of machine learning research 6, 12 (2005).

[13] Philippe Esling and Carlos Agon. 2012. Time-series data mining. ACM Computing
Surveys (CSUR) 45, 1 (2012), 1–34.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. 2019. Deep learning for time series classification: a

review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[17] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. 2017.

LSTM fully convolutional networks for time series classification. IEEE access 6
(2017), 1662–1669.

[18] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. 2019.

Multivariate LSTM-FCNs for time series classification. Neural networks 116 (2019),
237–245.

[19] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,

and Xifeng Yan. 2019. Enhancing the locality and breaking the memory bottle-

neck of transformer on time series forecasting. Advances in neural information
processing systems 32 (2019).

[20] Bryan Lim and Stefan Zohren. 2021. Time-series forecasting with deep learning:

a survey. Philosophical Transactions of the Royal Society A 379, 2194 (2021),

20200209.

[21] Ilya Loshchilov and Frank Hutter. 2018. Decoupled Weight Decay Regularization.

In International Conference on Learning Representations.
[22] Yue Lu, Renjie Wu, Abdullah Mueen, Maria A Zuluaga, and Eamonn Keogh.

2022. Matrix profile XXIV: scaling time series anomaly detection to trillions of

datapoints and ultra-fast arriving data streams. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1173–1182.

[23] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. 2017.

The expressive power of neural networks: A view from the width. Advances in
neural information processing systems 30 (2017).

[24] Muhammad Marwan Muhammad Fuad and Pierre-François Marteau. 2010. Multi-

resolution approach to time series retrieval. In Proceedings of the Fourteenth
International Database Engineering & Applications Symposium. 136–142.

[25] Themis Palpanas. 2020. Evolution of a Data Series Index: The iSAX Family of Data

Series Indexes: iSAX, iSAX2. 0, iSAX2+, ADS, ADS+, ADS-Full, ParIS, ParIS+,

MESSI, DPiSAX, ULISSE, Coconut-Trie/Tree, Coconut-LSM. In Information Search,
Integration, and Personalization: 13th International Workshop, ISIP 2019, Heraklion,

Greece, May 9–10, 2019, Revised Selected Papers 13. Springer, 68–83.
[26] John Paparrizos and Luis Gravano. 2015. k-shape: Efficient and accurate clustering

of time series. In Proceedings of the 2015 ACM SIGMOD international conference
on management of data. 1855–1870.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[28] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,

BrandonWestover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching

and mining trillions of time series subsequences under dynamic time warping.

In Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. 262–270.

[29] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi, Congrui Huang, Xiaoyu Kou,

Tony Xing, Mao Yang, Jie Tong, and Qi Zhang. 2019. Time-series anomaly detec-

tion service at microsoft. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 3009–3017.

[30] Xavier Renard, Maria Rifqi, Gabriel Fricout, and Marcin Detyniecki. 2016. EAST

representation: fast discovery of discriminant temporal patterns from time series.

In ECML/PKDDWorkshop on Advanced Analytics and Learning on Temporal Data.
[31] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452–461.

[32] Dongjin Song, Ning Xia, Wei Cheng, Haifeng Chen, and Dacheng Tao. 2018.

Deep r-th root of rank supervised joint binary embedding for multivariate time

series retrieval. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2229–2238.

[33] Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume An-

droz, Chester Holtz, Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar,

et al. 2020. Tslearn, a machine learning toolkit for time series data. J. Mach.
Learn. Res. 21, 118 (2020), 1–6.

[34] The Author(s). 2023. Supplementary materials. https://sites.google.com/view/

efficient-ctsr-system.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[36] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,

Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific

computing in Python. Nature methods 17, 3 (2020), 261–272.
[37] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. 2015. Learning to hash

for indexing big data—A survey. Proc. IEEE 104, 1 (2015), 34–57.

[38] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on

learning to hash. IEEE transactions on pattern analysis and machine intelligence
40, 4 (2017), 769–790.

[39] Zhiguang Wang, Weizhong Yan, and Tim Oates. 2017. Time series classification

from scratch with deep neural networks: A strong baseline. In 2017 International
joint conference on neural networks (IJCNN). IEEE, 1578–1585.

[40] Christopher Williams and Matthias Seeger. 2000. Using the Nyström method to

speed up kernel machines. Advances in neural information processing systems 13
(2000).

[41] Chin-Chia Michael Yeh. 2018. Towards a near universal time series data mining
tool: Introducing the matrix profile. University of California, Riverside.

[42] Chin-Chia Michael Yeh, Xin Dai, Huiyuan Chen, Yan Zheng, Yujie Fan, Audrey

Der, Vivian Lai, Zhongfang Zhuang, Wang Junpeng, Liang Wang, and Wei Zhang.

2023. Toward a Foundation Model for Time Series Data. In Proceedings of the
32nd ACM International Conference on Information & Knowledge Management.

[43] Chin-Chia Michael Yeh, Mengting Gu, Yan Zheng, Huiyuan Chen, Javid Ebrahimi,

Zhongfang Zhuang, Junpeng Wang, Liang Wang, and Wei Zhang. 2022. Em-

bedding Compression with Hashing for Efficient Representation Learning in

Large-Scale Graph. In Proceedings of the 28th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. 4391–4401.

[44] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn Keogh. 2016.

Matrix profile I: all pairs similarity joins for time series: a unifying view that

includes motifs, discords and shapelets. In 2016 IEEE 16th international conference
on data mining (ICDM). Ieee, 1317–1322.

[45] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,

and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-

quence time-series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 11106–11115.

[46] Dixian Zhu, Dongjin Song, Yuncong Chen, Cristian Lumezanu, Wei Cheng, Bo

Zong, Jingchao Ni, Takehiko Mizoguchi, Tianbao Yang, and Haifeng Chen. 2020.

Deep unsupervised binary coding networks for multivariate time series retrieval.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 1403–1411.

4915

https://github.com/lmcinnes/pynndescent
https://sites.google.com/view/efficient-ctsr-system
https://sites.google.com/view/efficient-ctsr-system

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Statement
	2.2 Related Work

	3 Method
	3.1 Residual Network 2D
	3.2 Residual Network 2D with Template Learning
	3.3 Optimization

	4 Experiment
	4.1 UCR Archive
	4.2 Transaction Time Series

	5 Conclusion
	References

