
MORPHER: Structural Transformation of Ill-formed Rows
Mazhar Hameed

Hasso Plattner Institute
University of Potsdam, Germany

mazhar.hameed@hpi.de

Gerardo Vitagliano
Hasso Plattner Institute

University of Potsdam, Germany
gerardo.vitagliano@hpi.de

Felix Naumann
Hasso Plattner Institute

University of Potsdam, Germany
felix.naumann@hpi.de

ABSTRACT

Open data portals contain a plethora of data files, with comma-
separated value (CSV) files being particularly popular with users
and businesses due to their flexible standard. However, this flexibil-
ity comes with much responsibility for data consumers, as many
files contain various structural problems, e.g., a different number
of cells across data rows, multiple value formats within the same
column, different variants of quoted fields due to user specifications,
etc. We refer to rows that contain such structural inconsistencies as
ill-formed. Consequently, ingesting them into a host system, such
as a database or an analytics platform, often requires prior data
preparation steps.

We propose to demonstrate Morpher, a desktop-based system
that incorporates our state-of-the-art error detection system, Su-
ragh [9] and extends it to also clean the files at hand. Morpher
facilitates ingesting CSV files by automatically identifying and
cleaning ill-formed rows while preserving all data. It comprises
three key components: 1) The pattern modeler, which generates
syntax-based patterns for each row of the input file. The system
uses these patterns to classify rows into ill-formed and well-formed.
2) The pattern classifier obtains row patterns for ill-formed rows
and uses them to distinguish ill-formed but wanted rows from ill-
formed unwanted rows. 3) The pattern wrangler transforms the
identified wanted rows into well-formed rows, effectively repairing
a wide range of formatting problems.

CCS CONCEPTS

• Information systems→ Data cleaning; Extraction, transfor-
mation and loading.

KEYWORDS

data preparation, data representation, file structure transformation

ACM Reference Format:

Mazhar Hameed, Gerardo Vitagliano, and Felix Naumann. 2023. MORPHER:
Structural Transformation of ill-formed Rows. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management
(CIKM ’23), October 21–25, 2023, Birmingham, United Kingdom. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3583780.3614747

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0124-5/23/10.
https://doi.org/10.1145/3583780.3614747

Figure 1: A sample of a raw CSV file with ill-formed rows due

to structural inconsistencies that exist at both column- and

row-levels.

1 ILL-FORMED ANDWELL-FORMED ROWS

As a widely adopted data format, comma-separated value (CSV)
files have become a staple for data scientists and machine learn-
ing engineers, providing an easy-to-use option for data sharing
and processing [2, 14]. However, due to their loose format, these
files appear in various dialects [4, 18] deviating from the RFC stan-
dard [11], and may contain various structural inconsistencies [3, 9].
Consequently, accurately loading them into data-driven systems
requires addressing various challenges, among which detecting and
cleaning ill-formed rows pose significant difficulties.

Morpher is an interactive system that aims to assist users in
detecting and cleaning ill-formed rows in CSV files. Its interface
allows users to visualize, for an input file, a classification of ill-
formed wanted and ill-formed unwanted rows with a corresponding
cleaned version and provides a seamless export of the final results
as both CSV and Microsoft Excel workbook (.xlsx) formats for
convenient use.

Our research has shown that ill-formed rows are common in
CSV files, often resulting from loosely defined schemata, formatting
errors, and discrepancies in row structures [9]. These challenges are
also not foreign to the research community. Surveys and studies on
CSV files have revealed various challenges, including dialect varia-
tions [8, 14], multiple tables [3], comment lines [13], and complex
headers [9]. Despite research advancements in CSV parsing [5, 18]
and classification [1, 13], it remains unclear how these findings
have been applied in real-world systems and the extent to which
data preparation burden still falls on end-users [19]. This issue is

5051

https://doi.org/10.1145/3583780.3614747
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3583780.3614747
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614747&domain=pdf&date_stamp=2023-10-21


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mazhar Hameed, Gerardo Vitagliano, & Felix Naumann

also prevalent in CSV files available on open data portals, such as
www.data.gov. Out of 2 066 files randomly selected from this portal,
20.2% (418 files) could not be directly loaded into many advanced
data preparation and cleaning tools, such as Trifacta Wrangler [12],
Tableau [17], and OpenRefine [7], due to the presence of ill-formed
rows. Figure 1 shows a sample of a raw CSV file obtained from
a government data portal, highlighting groups of ill-formed rows
with different inconsistencies. We aim to automatically detect those
ill-formed rows containing data and clean them by repairing their
structural inconsistencies.

To detect ill-formed rows, we make use of our pattern-based
system, Suragh1, which abstracts row structures into structural
patterns based on a syntactic pattern grammar. With Morpher,
we not only improve the row classification by recognizing wanted
and unwanted ill-formed rows but also enable accurate data load-
ing by cleaning up the structure of wanted rows, ensuring that
all remaining rows are structurally well-formed (see Section 2 for
details). Morpher is capable of handling various types of struc-
tural inconsistencies, such as incorrect field boundaries, ambiguous
row boundaries, values containing special characters for reference,
missing quotes and escape characters, mismatched quote and es-
cape characters, fields spanning to multiple rows, data mixed with
metadata, rows with varying lengths, and superfluous information
(comments, notes, etc.).

The graphical interface of Morpher allows for seamless interac-
tion with the results of automated row classification and transfor-
mation. Users can easily navigate through the rows within a file
and review their classification. With automatic row transformation,
users can clean up the structure of detected ill-formed wanted rows
with just a click. An interactive Morpher demo, accompanied by a
demonstration scenario video, can be accessed online2.

The subsequent sections of the paper are structured as follows:
Section 2 provides a brief overview of Morpher. Section 3 demon-
strates the practical usage of our system through the graphical
interface. Finally, Section 4 summarizes the contributions of the
paper.

2 AN OVERVIEW OF MORPHER

Morpher performs row classification and cleaning in three phases.
In the first phase, it uses Suragh to classify input file rows as either
ill-formed or well-formed based on the dominant row pattern(s)
(Section 2.1). Additionally, Suragh generates row patterns for the
ill-formed rows, which are referred to as potential row patterns.
This process is repeated incrementally until no ill-formed rows
remain without a potential pattern. In the second phase, Morpher
obtains the potential row patterns from the previous phase and
further classifies ill-formed rows into wanted and unwanted ones,
based on a comparison of column patterns (Section 2.1). Finally, in
the third phase, Morpher transforms the wanted rows into well-
formed ones using a set of pattern transformations (Section 2.2).

Due to the proposal’s limited space, we provide only a brief
overview of the system components and highlight the user ex-
perience of Morpher. For a more comprehensive understanding
of algorithmic details, we encourage readers to refer to our prior

1Suragh is an Urdu word that refers to examining an event.
2https://github.com/HMazharHameed/MORPHER

Figure 2: Morpher overview

work, which includes detailed descriptions and extensive experi-
mental analysis on real-world datasets [9]. Figure 2 provides a brief
overview of Morpher’s functionalities through a graphical user
interface (GUI).

2.1 Row Classification

Morpher builds upon Suragh, which classifies the rows of an input
file as either ill-formed or well-formed. To do so, Suragh aims to
identify the structure of input file rows by generating syntax-based
patterns through a defined grammar. The grammar contains two
types of production rules: (1) encoders and (2) aggregators, known
as abstractions. Encoders transform individual characters into more
general representations. For example, the character “1” is repre-
sented as ⟨D⟩, which stands for “Digit”. The aggregator abstractions
combine the representations from other encoders and aggregators
based on the predefined rules. For example, the character sequence
“123” is first encoded as ⟨D⟩⟨D⟩⟨D⟩, and then can be combined into
a single abstraction⟨SEQD⟩ – a “Sequence of Digits”.

Using the given pattern grammar, Suragh generates syntax-
based patterns at cell, column, and row level. The application of the
grammar rules is order-dependent, and every input value can be
transformed into one or more cell patterns. The generated patterns
have different levels of “specificity”, which depend on the abstrac-
tion levels they comprise. Once Suragh generates patterns for each
cell value, it compiles them into column patterns that represent one
or more cell values in a column. Suragh obtains a row pattern by
choosing one column pattern for each input file column. To deter-
mine useful row patterns that represent one or more rows, Suragh
examines all possible combinations of column patterns, selecting
those with high specificity and coverage.

Row patterns that are not a proper subset of another row pattern
are called dominant patterns. To avoid pattern redundancy, Suragh
detects and removes all non-dominant row patterns. The remaining
dominant row pattern(s) are then used to classify each row as
either ill-formed or well-formed: A row conforms to a dominant
row pattern if it has the same number of columns as the dominant
pattern, and if all of its column values conform to the corresponding
column patterns of the dominant pattern. We call such a row well-
formed, and ill-formed otherwise [9].

Figure 3 shows the output of Suragh for the input file presented
in Figure 1: a dominant row pattern, the rows that comply with
the dominant pattern, and the non-compliant (ill-formed) rows.

5052

www.data.gov
https://github.com/HMazharHameed/MORPHER


MORPHER: Structural Transformation of ill-formed Rows CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 3: Selected rows of the CSV file of Figure 1 with a dom-

inant row pattern (shaded green table) for well-formed rows

(highlighted green), ill-formed wanted rows (highlighted

blue), and ill-formed unwanted rows (highlighted red). The

cell separators in the table indicate the ⟨DEL⟩ abstraction,
which we omit due to space limitation.

With Morpher, we further refine this process by classifying ill-
formed rows that carry data as wanted, and all others as unwanted.
The output of Morpher’s classification process is merged with the
Suragh’s results in the same figure, minimizing visual clutter.

Some rows are ill-formed and contain no data, such as table
titles, footnotes, or empty rows. We refer to these rows as ill-formed
unwanted. Other rowsmay contain data but still be ill-formed due to
additional structural or formatting information and possibly extra
columns, necessitating data preparation for them to be properly
formatted. We refer to these rows as ill-formed wanted. In contrast,
rows without any inconsistencies are well-formed and are wanted
by default. To obtain a structurally sound file, we need to clean
up the structure of ill-formed wanted rows and remove ill-formed
unwanted ones. Although it is easily possible to retain unwanted
rows to prevent data loss, we choose to remove them to streamline
the file loading process.

To classify ill-formed rows into wanted and unwanted, Morpher
uses the generated potential patterns to assess their similarity to
dominant patterns that cover data rows by introducing a pattern-
level distance measure inspired by sequence alignment [6, 10].

The operations used for the alignment include “match”, “mis-
match”, and “indel” (insertion and deletion), eachwith a specific cost.
We introduce a distance-based alignment framework for pattern-
by-pattern alignments of entire row patterns, where the input row
patterns are compared column by column, splitting them on the
delimiter character of the raw CSV file. Our alignment framework
calculates the distance between dominant and potential row pat-
terns by aligning them using a dynamic programming approach,
similar to other sequence alignment methods [15, 16].

To align row patterns, we use the information from the calculated
dynamic programming matrix to pad shorter patterns with gaps
(“-”), if needed, to generate two patterns with the same number of
columns. We then calculate the distance between a dominant and
potential pattern’s column patterns using a formula that considers
the pattern’s abstraction details. The row pattern distance is ob-
tained by averaging the column-wise distances, which determines
the similarity between potential and dominant row patterns. The
resulting score ranges from 0 to 1, where 1 represents complete

(a) An overview of classified rows of the CSV file of Figure 1

(b) An overview of transformed rows of the CSV file of Figure 1

Figure 4: Morpher’s output exported as an Excel workbook

dissimilarity. A lower distance score indicates higher similarity,
allowing us to classify a potential pattern as wanted.

Ultimately, the classification of potential patterns determines
whether the corresponding ill-formed rows contain data (wanted)
or not (unwanted).

2.2 Row Transformation

In this phase, Morpher collects the necessary information from
the row classification phase to transform ill-formed wanted rows
into well-formed ones. Using the best alignment between dominant
and wanted patterns, it determines the necessary transformations
to transform one pattern into another. A set of pattern transfor-
mation operators is used to transform one pattern into another
and to transform the corresponding rows, including Extract that
extracts a (wanted) part from a column pattern, Merge that con-
catenates column patterns and appends the merged column pattern
to the specified position, and Reformat that offers four functionali-
ties: adding or removing quotes, escapes, field separators, and row
separators from a given column pattern.

Morpher takes the aligned column patterns one at a time from
the row patterns, applies the necessary transformations using the
above-mentioned operators, and stores the results of each column
pattern transformation in a transformation queue. Then it proceeds
to apply transformations to the remaining column patterns. Once
all transformations are complete, it applies the preferred ones from
the queue to the corresponding data rows. For example, Figure 4a
shows wanted rows of the CSV file of Figure 1 where values are
shifted either due to the absence of an escape character or incor-
rectly quote character. To address this inconsistency, Morpher
uses the operators Merge and Reformat. The resulting cleaned
rows are presented in Figure 4b, where Morpher follows the RFC
4180 standard [11] specifications to standardize the incorrect quote
and escape characters. Moreover, Morpher can deal with a wide
range of formatting problems, as detailed in Section 1. As a final
result, Morpher outputs a clean and structured file.

5053



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Mazhar Hameed, Gerardo Vitagliano, & Felix Naumann

Figure 5: Morpher’s desktop-based user interface

3 DEMOWALK-THROUGH

We present the simple but effective Morpher GUI through a demon-
stration scenario shown in Figure 5. To explore and interact with
the system, users can download3 Morpher as a desktop application,
along with a set of 148 exemplary raw CSV files obtained from four
different open data sources.

We present a use-case in which a data scientist analyzes a com-
pany’s growth and gains insights from the statistics in a CSV file.
To begin the analysis, the scientist might need to load the file into
a database connected to the analytics platform. Unfortunately, the
file contains ill-formed rows that disrupt the file ingestion process.
After encountering a halt during the file loading, the data scientist
begins a manual inspection to narrow down the causes. However,
due to the sheer amount of data and the complexity of the file, the
data scientist may have overlooked some issues or needed help find-
ing them amidst the wall of characters. The data scientist may have
initially identified one or a few ill-formed rows, but cannot assume
those are the only issues in the file. While some ill-formed rows
may be easy to spot by simply scrolling through a file, such as those
containing preambles or footnotes, others are more complicated to
recognize, such as rows containing cell values with user-specific
dialect details (non-standardized) or those containing additional
metadata, making it challenging for even expert users to identify
them manually. To ensure accurate analytics and reliable results,
thoroughly inspecting the entire file to identify all problematic
rows is crucial.

To overcome these challenges, the data scientist utilizes the func-
tionalities of Morpher, our unsupervised tool designed to detect
and clean ill-formed rows in a CSV file automatically. The tool’s
GUI includes afile viewer, which facilitates navigation and viewing
of the input file. Using the GUI, with one click the data scientist
runs Morpher’s automatic row classifier, which assigns each row
a label as either well-formed (i.e., clean), ill-formed but wanted

3https://github.com/HMazharHameed/MORPHER

(i.e., erroneous but can be cleaned), or ill-formed unwanted (i.e.,
non-data row). Figure 5 displays the output of the row classification
module on the tool’s GUI, where each row is color-coded based on
its classification label for ease of interpretation.

After classification, the data scientist executes the final stage
of Morpher’s pipeline: row wrangler, automatically cleaning the
ill-formed wanted rows with a single click. The transformed and
standardized output file, as shown in Figure 5, can then be exported
in both CSV and Excel formats, providing the data scientist with a
handy resource for their intended task. Moreover, users have the
convenience of executing the entire process through the command
line interface.

The ability to efficiently identify and clean ill-formed rows stream-
lines the data processing pipeline and allows data scientists and
machine learning engineers to spend more time on higher-level
tasks, such as modeling and analytics.

4 CONCLUSION

Morpher is an innovative tool that addresses a common data prepa-
ration challenge that data scientists face when working with CSV
files – the presence of ill-formed rows. Through its intuitive GUI,
Morpher simplifies identifying and cleaning ill-formed rows, allow-
ing data scientists to navigate and parse their files more efficiently.
Morpher automates a crucial step in data preparation, freeing up
time and resources to be better spent during the later stages of a
data processing pipeline. Overall, Morpher represents a valuable
contribution to the field of data science and has the potential to
benefit a wide range of researchers and practitioners.

ACKNOWLEDGMENTS

This research was funded by the HPI research school on Data Sci-
ence and Engineering.

5054

https://github.com/HMazharHameed/MORPHER


MORPHER: Structural Transformation of ill-formed Rows CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

REFERENCES

[1] Marco D Adelfio and Hanan Samet. 2013. Schema extraction for tabular data on
the web. PVLDB 6, 6 (2013), 421–432.

[2] Sara Bonfitto, Luca Cappelletti, Fabrizio Trovato, Giorgio Valentini, and Marco
Mesiti. 2021. Semi-automatic column type inference for CSV table understanding.
In International Conference on Current Trends in Theory and Practice of Informatics.
Springer, 535–549.

[3] Christina Christodoulakis, Eric B Munson, Moshe Gabel, Angela Demke Brown,
and Renée J Miller. 2020. Pytheas: pattern-based table discovery in CSV files.
PVLDB 13, 12 (2020), 2075–2089.

[4] Till Döhmen, Hannes Mühleisen, and Peter Boncz. 2017. Multi-hypothesis CSV
parsing. In Proceedings of the International Conference on Scientific and Statistical
Database Management (SSDBM). 1–12.

[5] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-
mann. 2019. Speculative distributed CSV data parsing for big data analytics. In
Proceedings of the International Conference on Management of Data (SIGMOD).
883–899.

[6] Martin Gollery. 2005. Bioinformatics: sequence and genome analysis. Clinical
Chemistry 51, 11 (2005), 2219–2220.

[7] Inc. Google. 2021. OpenRefine. www.openrefine.org (last accessed August 30th,
2022).

[8] Mazhar Hameed and Felix Naumann. 2020. Data Preparation: A Survey of
Commercial Tools. SIGMOD Record 49, 3 (2020), 18–29.

[9] Mazhar Hameed, Gerardo Vitagliano, Lan Jiang, and Felix Naumann. 2022.
SURAGH: Syntactic Pattern Matching to Identify Ill-Formed Records.. In Proceed-
ings of the International Conference on Extending Database Technology (EDBT).

143–154.
[10] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek Narasayya, and Surajit

Chaudhuri. 2018. Transform-data-by-example (TDE) an extensible search engine
for data transformations. PVLDB 11, 10 (2018), 1165–1177.

[11] IETF 2005. RFC 4180. https://tools.ietf.org/html/rfc4180. (last accessed February
7th, 2023).

[12] Trifacta Inc. 2021. Trifacta Data Engineering Cloud. www.trifacta.com (last
accessed August 30th, 2022).

[13] Lan Jiang, Gerardo Vitagliano, and Felix Naumann. 2021. Structure Detection in
Verbose CSV Files. In Proceedings of the International Conference on Extending
Database Technology (EDBT). 193–204.

[14] Johann Mitlöhner, Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. 2016.
Characteristics of open data CSV files. In Proceedings of the International Confer-
ence on Open and Big Data (OBD). IEEE, 72–79.

[15] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of molecular biology 48, 3 (1970), 443–453.

[16] National Library of Medicine. 2022. BLAST. https://blast.ncbi.nlm.nih.gov/Blast.
cgi (last accessed February 7th, 2023).

[17] LLC Tableau Software. 2022. Tableau. www.tableau.com (last accessed August
30th, 2022).

[18] Gerrit JJ van den Burg, Alfredo Nazábal, and Charles Sutton. 2019. Wrangling
messy CSV files by detecting row and type patterns. Data Mining and Knowledge
Discovery 33, 6 (2019), 1799–1820.

[19] Gerardo Vitagliano, Mazhar Hameed, Lan Jiang, Lucas Reisener, Eugene Wu, and
Felix Naumann. 2023. Pollock: A Data Loading Benchmark. PVLDB 16, 8 (2023),
1870–1882.

5055

www.openrefine.org
https://tools.ietf.org/html/rfc4180
www.trifacta.com
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
www.tableau.com

	Abstract
	1 Ill-Formed and Well-Formed Rows
	2 An Overview of Morpher
	2.1 Row Classification
	2.2 Row Transformation

	3 Demo Walk-Through
	4 Conclusion
	References



