
A Multi-Task Semantic Decomposition Framework with
Task-specific Pre-training for Few-Shot NER

Guanting Dong∗

dongguanting@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Zechen Wang∗

shenshui@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Jinxu Zhao∗

zhaojinxu@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Gang Zhao
zhaogang@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Daichi Guo
guodaichi@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Dayuan Fu
fdy@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Tingfeng Hui
huitingfeng@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Chen Zeng
chenzeng@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Keqing He
hekeqing@meituan.com

Meituan Group, Beijing

Beijing, China

Xuefeng Li
lixuefeng@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Liwen Wang
w_liwen@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Xinyue Cui
tracycui@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

Weiran Xu†

xuweiran@bupt.edu.cn

Beijing University of Posts
and Telecommunication

Beijing, China

ABSTRACT
The objective of few-shot named entity recognition is to identify
named entities with limited labeled instances. Previous works have
primarily focused on optimizing the traditional token-wise classifi-
cation framework, while neglecting the exploration of information
based on NER data characteristics. To address this issue, we pro-
pose aMulti-Task Semantic Decomposition Framework via Joint
Task-specific Pre-training (MSDP) for few-shot NER. Drawing
inspiration from demonstration-based and contrastive learning,
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we introduce two novel pre-training tasks: Demonstration-based
Masked Language Modeling (MLM) and Class Contrastive Discrim-
ination. These tasks effectively incorporate entity boundary infor-
mation and enhance entity representation in Pre-trained Language
Models (PLMs). In the downstream main task, we introduce a multi-
task joint optimization framework with the semantic decomposing
method, which facilitates the model to integrate two different se-
mantic information for entity classification. Experimental results
of two few-shot NER benchmarks demonstrate that MSDP consis-
tently outperforms strong baselines by a large margin. Extensive
analyses validate the effectiveness and generalization of MSDP.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Natu-
ral language processing→ Information extraction.
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1 INTRODUCTION
Named entity recognition (NER) plays a crucial role in Natural
Language Understanding applications by identifying consecutive
segments of text and assigning them to predefined categories [25,
49, 50]. Recent advancements in deep neural architectures have
demonstrated exceptional performance in fully supervised NER
tasks [10, 34, 51]. However, the collection of annotated data for prac-
tical applications incurs significant expenses and poses inflexibility
challenges. As a result, the research community has increasingly
focused on few-shot NER task, which seeks to identify entities with
only a few labeled instances, attracting substantial interest in recent
years.

Previous few-shot NER methods [11, 18, 28, 46, 70, 81] generally
formulate the task as a sequence labeling task based on prototypical
networks [59]. These approaches employ prototypes to represent
each class based on labeled instances and utilize the nearest neigh-
bor method for NER. However, these models only capture the sur-
face mapping between entity and class, making them vulnerable to
disturbances caused by non-entity tokens (i.e. "O" class) [58, 66]. To
alleviate this issue, a branch of two-stage methods [47, 58, 66, 69]
arise to decouple NER into two separate processes, including span
extraction and entity classification. Despite the above achievement ,
there are still two remaining problems. (1) Span Over-prediction:
as shown in Figure 1 , previous span-based works suffer from the
span over-prediction problem [27, 80]. Specifically, the model will
extract redundant candidate spans in addition to predicting the
correct spans. The reason for the above phenomenon is that it is
difficult for PLMs to learn reliable boundary information between
entities and non-entities due to insufficient data. As a result, PLMs
tend to give similar candidate spans high probability scores or even
be over-confident about their predictions [23]. (2) Prototype Clas-
sification Disarray: Previous prototype-based methods directly
utilize the mean value of entity representations to compute proto-
type embedding, leading to the classification accuracy heavily relies
on the quality of entity representations. Unfortunately, PLMs often
face the issue of semantic space collapse, where different classes of
entity representations are closely distributed, especially for entities
within the same sentences. Figure 1 illustrates that different classes
of entities interfere with each other under the interaction of the self-
attention mechanism, causing close or even overlapping prototypes
distribution in the semantic space(e.g. "LOC" prototype overlapping
with “PER” prototype). The model finally suffers from performance
degradation due to class confusion. Therefore, we urgently need
to design a method introducing different aspects of information to
alleviate the above problems, which facilitates techniques of few-
shot NER to be widely applied in realistic task-oriented dialogue
scenarios.

Problem in stage 1 : Span Over-prediction

Professor Schweiker is an ordained minister in the united methodist church.

Golden Span : Professor Schweike   united methodist church

Professor Schweike   united methodist church

ordained minister      the united methodist× ×

All Candidate Spans

Span1 Span2 Span3 ...

Span Extractor(Baseline)

Softmax

Threshold 

Value

Problem in stage 2 : Prototype Classification Disarray

[James] played basketball in his hometown of [Akron].

Golden Span  :   PER: James     LOC: Akron

PER: James , Akron

×
LOC

PER

Baseline 

Prediction
:

Baseline 

Prediction
:

Figure 1: The illustration of the baseline model suffering
from span over-prediction (upper) and Prototype Classifica-
tion Disarray (down) problem in few-shot NER.

To tackle these limitations, we propose a Multi-Task Semantic
Decomposition Framework via Joint Task-specific Pre-training
(MSDP), which guides PLMs to capture reliable entity boundary in-
formation and better entity representations of different classes. For
the pre-training stage, inspired by demonstration-based learning
[19] and contrastive learning [9], we introduce two novel task-
specific pre-training tasks according to the data characteristics of
NER (entity-label pairs): Demonstration-based MLM, in which
we design three kinds of demonstrations containing entity bound-
ary information and entity label pair information. PLMs will im-
plicitly learn the above information during predicting label words
for [MASK]; Class Contrastive Discrimination, in which we use
contrastive learning to better discriminate different classes of entity
representations by constructing positive, negative, and hard nega-
tive samples. Through the joint optimization of above fine-grained
pre-training tasks, PLMs can effectively alleviate the two remaining
problems.

For downstream few-shot NER, we follow the two-stage framework
[47, 65] including span extraction and entity classification, and ini-
tialize them with the pre-trained parameters. Different from previ-
ous methods, we employ a multi-task joint optimization framework
and utilize different masking strategies to decompose class-oriented
prototypes and contextual fusion prototypes. The purpose of our
design is to assist the model to integrate different semantic infor-
mation for classification, which further alleviates the prototype
classification disarray problem. We conduct extensive experiments
over two widely-used benchmarks, including Few-NERD [14] and
CrossNER [28]. Results show that our method consistently out-
performs state-of-the-art baselines by a large margin. In addition,
we introduce detailed experimental analyses to further verify the
effectiveness of our method. Our contributions are three-fold:

1) To the best of our knowledge, we are the first to introduce a multi-
task joint optimization framework with the semantic decomposing
method into Few-Shot NER task.

2) we futher propose two task-specific pre-training tasks via demon-
stration and contrastive learning, namely demonstration-based
MLM and class contrastive discrimination, for effectively injecting
entity boundary information and better entity representation into
PLMs.

https://doi.org/10.1145/3583780.3614766
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Origin Input: [CLS] Obama returns to the white house.

Label Demonstration: [SEP] Obama is PER 

[SEP] the white house is LOC.

Retrieved Demonstration: [SEP] Peter is PER 

[SEP] Tower Bridge is LOC.

Negative Demonstration: [SEP]returns to is O.

+

Token1 Token2

Predicted Tokens in Three Demonstration

(a) Demonstration-based MLM

Transformer Encoder

Origin

Input
:

Mike  is  a  student  of  USC.

PER O O O O LOC

Origin

Input
:

Mike  is  a  student  of  USC.

PER O O O O LOC

Positive 

Sample
:

PER is a student of USC.

Mike is a student of LOC.

Positive 

Sample
:

PER is a student of USC.

Mike is a student of LOC.

Negative Sample：

Hard Negative Sample:MISC is a student of ORG.

other samples in batch

SCL
Positive Sample

Sequence Representation

Positive Sample

Sequence Representation

Negative Sample

Sequence Representation

Pull

Push

Positive Negative

(b) Class Constrastive Discrimination

Transformer Encoder

Masked

...

+

Figure 2: The illustration of two task-specific pre-training tasks.

3) Experiments on two widely-used few-shot NER benchmarks
show that our framework achieves superior performance over pre-
vious state-of-the-art methods. Extensive analyses further validate
the effectiveness and generalization of MSDP. Our source codes
and datasets are available at Github1 for further comparisons.

2 RELATEDWORK
2.1 Few-shot NER.
Few-shot NER aims to enhance the performance of model identify-
ing and classifying entities with only little annotated data [7, 21, 30,
31, 38, 42–45, 62, 77]. For few-shot NER, a series of approaches have
been proposed to learn the representation of entities in the semantic
space, i.e. prototypical learning [59], margin-based learning [36]
and contrastive learning [20, 24, 37]. Existing approaches can be
divided into two kinds, i.e., one-stage [11, 28, 59, 81] and two-stage
[16, 47, 58, 69]. Generally, the methods in the kind of one-stage
typically categorize the entity type by token-level metric learn-
ing. In contrast, two-stage mainly focuses on two training stages
consisting of entity span extraction and mention type classification.

2.2 Task-specific pre-training Models.
Pre-trained language models have been applied as an integral com-
ponent in modern NLP systems for effectively improving down-
stream tasks [13, 40, 52, 54, 55, 71, 74, 76]. Due to the underlying dis-
crepancies between the language modeling and downstream tasks,
task-specific pre-training methods have been proposed to further
boost the task performance, such as SciBERT [5], VideoBERT [61],
DialoGPT [75], PLATO [4], Code-BERT [17], ToD-BERT [68] and
VL-BERT [60]. However, most studies in the field of few-shot NER
use MLM and other approaches for Data Augmentation [15, 29, 79].
Although DictBERT [8], NER-BERT [41] and others have conducted
pre-training, their methods are too generalized to adapt to the struc-
tured data features of NER or propose optimization for specific
problems. Therefore, we designed demonstration-based learning
pre-training and contrastive learning pre-training for NER tasks to
improve the performance of the model.
1https://github.com/dongguanting/MSDP-Fewshot-NER

2.3 Demonstration-based learning
Demonstrations are first introduced by the GPT series [6, 55], where
a few examples are sampled from training data and transformed
with templates into appropriately-filled prompts. Based on the task
reformulation and whether the parameters are updated, the existing
demonstration-based learning research can be broadly divided into
three categories: In-context Learning [6, 48, 67, 78], Prompt-based
Fine-tuning [39], Classifier-based Fine-tuning [35, 72]. However,
these approaches mainly adopt demonstration-based learning in the
fine-tuning that cannot make full use of the effect of demonstration-
based learning. Different from them, we use demonstration-based
learning in the pre-training stage that can better capture the en-
tity boundary information to solve the multiple-span prediction
problem.

3 METHOD
3.1 Task-Specific Pre-training
The performance of few-shot NER depends heavily on the different
aspects of information from entity label pairs. as shown in Figure 2,
we introduce two novel pre-training tasks: 1) demonstration-based
MLM and 2) contrastive entity discrimination, to learn the different
aspects of knowledge.

Demonstration-based MLM. We follow the design of masked
language modeling (MLM) in BERT [13] and integrate the idea of
demonstration-based learning on this basis. In order to prompt
PLMs to figure out the boundary between the entity and none-
entity, we propose three different demonstrations which are shown
in Figure 2(a):

1) Label demonstration (LD): We let 𝐷𝑡𝑟𝑎𝑖𝑛 denote the train dataset.
For each input 𝑥 in 𝐷𝑡𝑟𝑎𝑖𝑛 , we extract the entity label pair (𝑒, 𝑙)
belonging to 𝑥 and then concatenate them behind input 𝑥 in form
of the simple template 𝑇 = {𝑒 𝑖𝑠 𝑙}. Different demonstrations are
separated by [SEP].

2) Retrieved demonstration (RD): Given an entity type label set
𝐿 = {𝑙1, ..., 𝑙 |𝐿 | }, we first enumerate all the entities in 𝐷𝑡𝑟𝑎𝑖𝑛 and
create a mapping 𝑀 = {𝑙𝑖 : [𝑒1, ..., 𝑒𝑛] | 𝑙𝑖 ∈ 𝐿} between 𝑙 and the
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Figure 3: The overall architecture of our proposed MSDP framework

corresponding list of entities. Further, we randomly select 𝐾 entity
label pairs (𝑒, 𝑙) from the mapping𝑀 according to the label set 𝐿𝑥
appearing in input 𝑥 , which aims at introducing rich entity label
pair information to prompt the model. Furthermore, we concatenate
them behind label demonstration with template 𝑇 = {𝑒 𝑖𝑠 𝑙}.

3) Negative demonstration (ND): We randomly select 𝐾 none-
entities that are easily confused by the model from input 𝑥 to con-
struct negative sample pairs (𝑒𝑛𝑜𝑛𝑒 ,𝑂), and then concatenate them
behind retrieved demonstrations with template 𝑇 ′ = {𝑒𝑛𝑜𝑛𝑒 𝑖𝑠 𝑂}.
Therefore, our training samples can be formulated as:

[CLS] 𝑥 [SEP] 𝐿𝐷 [SEP] 𝑅𝐷 [SEP] 𝑁𝐷 (1)

After constructing the training set, we randomly randomly replace
N entities or labels with mask symbols or labels in the demonstra-
tion with the special [MASK] symbol2, and then try to recover them.
If entity 𝑒 consists of multiple tokens, all of the component tokens
will be masked. Hence, the loss function of the MLM is:

𝐿𝑚𝑙𝑚 = −
∑︁𝑀

𝑚=1
log 𝑃 (𝒙𝒎) (2)

where 𝑀 is the total number of masked tokens and 𝑃 (𝒙𝒎) is the
predicted probability of the token 𝑥𝑚 over the vocabulary size.

Class Contrastive Discrimination. To better discriminate differ-
ent classes of entity representations in semantic space, we introduce
class contrastive discrimination. Specifically, we construct positive
(negative) samples as follows:

Given an input 𝑥 that contains 𝐾 entities, we employ the following
procedure to generate positive and negative samples. For positive
samples, we replace these 𝐾 entities with their corresponding label
mentions to create 𝐾 positive samples for each input utterance.
For negative samples, we select samples from other classes within

2N is an empirical hyperparameter, which is set to 4.

the batch. Additionally, we replace all entities with irrelevant label
mentions to construct a hard negative sample for each instance
that is easily confused by the model. These hard negative samples
are then included in the negative sample set. Figure 2 illustrates
the corresponding positive and negative samples as depicted in our
experiment.

The representations of the original, positive, and negative samples
are denoted by ℎ𝑜 , ℎ𝑝 , and ℎ𝑛 , respectively. To account for multi-
ple positive samples, we adopt the supervised contrastive learning
(SCL) objective [32], which aims to minimize the distance between
the original samples ℎ𝑜 and their semantically similar positive sam-
ples ℎ𝑝 , while maximizing the distance between ℎ𝑜 and 2 samples:
the negative samples ℎ𝑛 and the hard negative samples ℎℎ𝑛 . The
formulation of 𝐿𝑆𝐶𝐿 is as follow:

L𝑆𝐶𝐿 =
−1
𝑁

𝑁∑︁
𝑖=1

1
𝑁𝑦𝑖

𝑁𝑦𝑖∑︁
𝑗=1

𝑁𝑦𝑖∑︁
𝑘=1
I𝑦𝑖 𝑗=𝑦𝑖𝑘

log
𝑒𝑠𝑖𝑚 (ℎ𝑜𝑖 𝑗 ,ℎ𝑝𝑖𝑘 )/𝜏∑𝑁

𝑙=1 (I𝑗≠𝑙 )𝑒
𝑠𝑖𝑚 (ℎ𝑜𝑖 𝑗 ,ℎ𝑛𝑙 )/𝜏 + 𝑒𝑠𝑖𝑚 (ℎ𝑜𝑖 𝑗 ,ℎℎ𝑛𝑖 𝑗 )/𝜏

(3)

where 𝑁 and 𝑁𝑦𝑖 denote the number of total examples in the
batch and positive samples. 𝜏 is a temperature hyperparameter
and 𝑠𝑖𝑚(ℎ1, ℎ2) is cosine similarity. 1 is an indicator function.

We sum the demonstration-base MLM task loss and the class con-
trastive discrimination task loss, and finally obtain the overall loss
function L:

𝐿 = 𝛼𝐿𝑚𝑙𝑚 + (1 − 𝛼)𝐿𝑆𝐶𝐿 (4)

where 𝐿𝑚𝑙𝑚 and 𝐿𝑐 denote the loss functions of the two tasks. In
our experiments, we set 𝛼 = 0.6.
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3.2 Downstream Few-shot NER
After the pre-training stage, our model initially learns different
aspects of information. In this section, We formally present the
notations and the techniques of our proposed MSDP in the fine-
tuning stage. Figure 3 illustrates the overall framework, which is
composed of two steps: span extraction and entity classification.

3.2.1 Notations. We denote the train and test sets by D𝑡𝑟𝑎𝑖𝑛 and
D𝑡𝑒𝑠𝑡 , respectively. Both of them have the form of meta-learning
datasets. The dataset consists of multiple episodes of data, and each
episode of data E = (S,Q) consists of a support set S and a query
set Q. A sample (𝑋,Y) in the support set or query set consists
of the input sentence 𝑋 and the label set Y = {(𝑠 𝑗 , 𝑒 𝑗 , 𝑦 𝑗 )}𝑁𝑗=1 (𝑁
denoting the number of spans, 𝑠 𝑗 and 𝑒 𝑗 denoting the start and
end positions of the 𝑗-th span, 𝑦 𝑗 denoting the category of the 𝑗-th
span). 𝒉 denotes the hidden representation obtained by encoding
the input text.

3.2.2 Span Extractor. The span extractor aims to detect all entity
spans. We initialize encoder with pre-trained parameters to encode
the input sentence as a hidden representation 𝒉, and calculate at-
tention scores between each token representation to judge the start
token and end token of the entity span. Following previous works
[47, 65], we use span-based cross-entropy as the loss function to op-
timise our encoder. We first design the weight matrixes𝑊𝑞/𝑊𝑘/𝑊𝑣

of values 𝑞/𝑘/𝑣 and bias 𝑏𝑞/𝑏𝑘 for the attention mechanism, and
then compute the attention score of the 𝑖-th and 𝑗-th token, us-
ing formula: 𝑓 (𝑖, 𝑗) = 𝑞𝑇

𝑖
𝑘 𝑗 +𝑊𝑣 (𝒉𝑖 + 𝒉 𝑗 ). Ω𝑖, 𝑗 indicates whether

the span bounded by 𝑖 , 𝑗 is an entity. Therefore, the span-based
cross-entropy can be expressed as:

L𝑠𝑝𝑎𝑛 = log(1 +
∑︁

1≤𝑖< 𝑗≤𝐿
exp((−1)Ω𝑖,𝑗 𝑓 (𝑖, 𝑗)) (5)

3.2.3 Entity Classification. In the second stage, we classify the
entity spans extracted in the first stage. Different from the previous
methods only computing the original prototype, we further decom-
pose class-oriented prototypes and contextual fusion prototypes
by two masking strategies, which introduce different information
to assist in the classification task, thus alleviating the prototype
classification disarray problem.

1) Semantic masking strategies. Firstly, we introduce two novel
semantic masking strategies for the subsequent construction of
semantic decomposing prototypes.

• Class-orientedMasking: Given an input sentence𝑋 = {𝑥1, 𝑥2,
. . . , 𝑥𝐿}, we replace all the entity spans in 𝑋 whose labels that
are not 𝑦 with [MASK] tokens to obtain class 𝑦 specific input
𝑋
𝑦
cs, thereby forcing the model to focus on the information of

specific class by shielding the interference of other entities. For
example, as shown in Figure 3, we replace the “school” entity
of the “LOC” class and the “Sunday” entity of the “DAY” class
with [MASK] tokens to obtain “PER” class-oriented input Mike
wants to go to [MASK] on [MASK].

• Contextual Fusion Masking: we replace all the entities in
a sentence with [MASK] tokens, thus allowing the model to
focus more on contextual fusion information. As the example

sentence in Figure 3, we mask all entities to obtain 𝑋ctx =

[MASK] wants to go to [MASK] on [MASK].

2) Prototype Constructing. After decomposing two types of in-
puts with different information, we construct original prototype
and two extra prototypes for each class in entity classification stage
(The upper right corner of Figure 3)

For original prototype, we add up the representations of the start
token and the end token of an entity span as the span boundary
representation:

𝒖 𝑗 = 𝒉𝑠 𝑗 + 𝒉𝑒 𝑗 (6)
where 𝒖 𝑗 is the representation of the 𝑗-th span in the sentence, 𝒉𝑖
denote the representation of the 𝑖-th token in the sentence. 𝑠 𝑗 and
𝑒 𝑗 are the start and end positions of the 𝑗-th span respectively.

For class-oriented prototype, we perform a class-oriented mask-
ing strategy for class 𝒕 on 𝑋 to obtain 𝑋 t

cs, and compute a span
representation 𝒖cs

𝑗
in 𝑋 t

cs according to equation 6.

For contextual fusion prototype, we perform all the entity-masking
strategy on the original sentence𝑋 to obtain𝑋ctx and then compute
the span representation 𝒖ctx

𝑗
by averaging the representations of

all tokens as follow:

𝒖ctx𝑗 =
1
𝐿

𝐿∑︁
𝑖=1

𝒉𝑖 (7)

where 𝐿 denotes the number of tokens in 𝑋ctx.

Afterwards, we construct three different prototypes vectors by
averaging the representations of all entities of the same class in the
support set:

𝒄𝑡 =

∑
(𝑋,Y)∈S

∑
(𝑠 𝑗 ,𝑒 𝑗 ,𝑦 𝑗 ) ∈Y I(𝑦 𝑗 = 𝑡)𝒖∑

(𝑋,Y)∈S
∑

(𝑠 𝑗 ,𝑒 𝑗 ,𝑦 𝑗 ) ∈Y I(𝑦 𝑗 = 𝑡)
(8)

where I(·) is the indicator function; 𝒖 can be replaced with 𝒖 𝑗 ,
𝒖cs
𝑗
and 𝒖ctx

𝑗
to calculate three semantic prototypes separately.

After constructing three different semantic prototypes, we use a
metric-based approach for classification and optimize the param-
eters of the model based on the basis of distance between entity
representations and class prototypes:

L𝑐𝑙𝑠 =
∑︁

(𝑋,Y)∈S

∑︁
(𝑠 𝑗 ,𝑒 𝑗 ,𝑦 𝑗 ) ∈Y

− log𝑝 (𝑦 𝑗 |𝑠 𝑗 , 𝑒 𝑗 ) (9)

where
𝑝 (𝑦 𝑗 |𝑠 𝑗 , 𝑒 𝑗 ) = softmax(−𝑑 (𝒖 𝑗 , 𝒄𝑦 𝑗

)) (10)
is the probability distribution. We use cosine similarity as the dis-
tance function 𝑑 (·, ·).

3.3 Training and Inference of MSDP
We first perform two task-specific pre-trainings to learn reliable
entity boundary information and entity representations of different
classes. For fine-tuning, we initialize the BERT encoder with pre-
trained parameters for the few-shot NER task.

In the downstream training phase, given the training set D𝑡𝑟𝑎𝑖𝑛 =

(S,Q), we compute L𝑠𝑝𝑎𝑛 and three types of prototypes on the
support set S, L𝑐𝑙𝑠 on the query set Q, and train the two optimiza-
tion objectives jointly. Following SpanProto [65], we only optimize
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Dataset Domain # Sentences # Classes

Few-NERD Wikipedia 188.2k 66
CoNLL03 News 20.7k 4
GUM Wiki 3.5k 11
WNUT Social 5.6k 6

OntoNotes Mixed 159.6k 18
Table 1: Evaluation dataset statistics.

the L𝑠𝑝𝑎𝑛 objective in the first 𝑇 steps, and jointly optimize both
L𝑠𝑝𝑎𝑛 and L𝑐𝑙𝑠 after 𝑇 steps.

In the testing phase, given an episode E = (S,Q) ∈ D𝑡𝑒𝑠𝑡 , we con-
struct prototypes on the support set S and perform span detection
on the query set Q. Then we calculate the distance between the
extracted spans and each class prototype for classification. Note
that we only utilize original prototypes during inference.

4 EXPERIMENT
4.1 Datasets
Table 1 shows the dataset statistics of original data for constructing
few-shot episodes. We evaluate our method on two widely used
few-shot benchmarks Few-NERD [14] and CrossNER [45].

Few-NERD: Few-NERD is annotated with 8 coarse-grained and 66
fine-grained entity types, which consists of two few-shot settings
(Intra, and Inter). In the Intra setting, all entities in the training set,
development set, and testing set belong to different coarse-grained
types. In contrast, in the Inter setting, only the fine-grained entity
types are mutually disjoint in different datasets. we use episodes
released by Ding et al. which contains 20,000 episodes for training,
1,000 episodes for validation, and 5,000 episodes for testing. Each
episode is an 𝑁 -way 𝐾 ∼ 2𝐾-shot few-shot task.

CrossNER: CrossNER contains four domains from CoNLL-2003
[57](News), GUM [73] (Wiki), WNUT-2017 [12] (Social), and Onto-
notes [53](Mixed). We randomly select two domains for training,
one for validation, and the remaining for testing. We use public
episodes constructed by Hou et al. .

4.2 Baselines
For the baselines, we choose multiple strong approaches from the
paradigms of one-stage and two-stage. 1) One-stage NER paradigms:
ProtoBERT [59], StructShot [70], NNShot [70], CONTAINER [11]
and LTapNet+CDT [28]. 2) Two-stage paradigm: ESD [66], MAML-
ProtoNet [47] and SpanProto [65]. Due to the space limitation, More
details of these baselines and implementations are illustrated as
follow:

• SimBERT [28] applies BERT without any finetuning as the em-
bedding function, then assigns each token’s label by retrieving
the most similar token in the support set.

• ProtoBERT [18] uses a token- level prototypical network [59]
which represents each class by averaging token representations
with the same label, then the label of each token in the query
set is decided by its nearest class prototype.

• MatchingBERT [64] is similar to ProtoBERT except that it
calculates the similarity between query instances and support
instances instead of class prototypes.

• L-TapNet+CDT [28] enhances TapNet with pair-wise embed-
ding, label semantic, and CDT transition mechanism.

• NNShot [70] pretrains BERT for token embedding by con-
ventional classification for training, and a token-level nearest
neighbor method is used at testing.

• StructShot [70] improves NNshot by using an abstract transi-
tion probability for Viterbi decoding at testing.

• ESD [66] is a span-level metric learning-based method. It en-
hances the prototypical network by using inter- and cross-span
attention for better span representation and designs multiple
prototypes for O label.

• TransferBERT [28] trains a token- level BERT classifier, then
finetunes task-specific linear classifier on the support set at test
time.

• CONTAINER [11] uses token- level contrastive learning for
training BERT as a token embedding function, then finetunes
the BERT on the support set and applys the nearest neighbor
method at inference time.

• DecomMeta [47] trains the span detector by introducing the
model-agnostic meta-learning (MAML) algorithm and uses
MAML-enhanced prototypical networks to find a good em-
bedding space.

• SpanProto [65] transforms the sequential tags into a global
boundary matrix in the span extraction stage and performs
prototypical learningwith amargin-based loss in thementioned
classification stage.

4.3 Implementation Detail
For the upstream work, we use BERT-base-uncased [13] from Hug-
gingFace as the backbone. In two pre-training settings, we set the
batch size of BERT to 8 and the pre-training takes an average of 12
hours for 5 epochs. The corresponding learning rates are set to 1e-5.
We set the number (K) of the retrieved demonstrations to 5 and the
negative demonstration to 3. We set temperature hyperparameter𝜏1
to 0.5. In addition, our upstream pre-training corpus is aligned with
the downstream task, which means no additional data will be in-
troduced in the pre-training stage. For instance, if the downstream
few-shot NER experiment is conducted on the Inter 5 way 1-2 shot
of Few-NERD, the pre-training data is the training set of Inter 5
way 1-2 shot.

For the downstream work, we adopt the standard N-way K-shot
setting [14] and align the task definition with previous work [47].
We choose Adam [33] as the optimizer with a learning rate of 3e-5.
The warm-up rate is set to 0.1. The max sequence length we set is
64 and the batch size is set to 4. The training steps T and T’ are set
as 2000 and 200, respectively. For all the experiments, we train and
test our model on the 3090Ti GPU. It takes an average of 5 hours to
run with 3 epochs on the training dataset.
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Paradigms Models
Intra Inter

1∼2-shot 5∼10-shot
Avg.

1∼2-shot 5∼10-shot
Avg.5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

One-stage

ProtoBERT 23.45±0.92 19.76±0.59 41.93±0.55 34.61±0.59 29.94 44.44±0.11 39.09±0.87 58.80±1.42 53.97±0.38 49.08
NNShot 31.01±1.21 21.88±0.23 35.74±2.36 27.67±1.06 29.08 54.29±0.40 46.98±1.96 50.56±3.33 50.00±0.36 50.46
StructShot 35.92±0.69 25.38±0.84 38.83±1.72 26.39±2.59 31.63 57.33±0.53 49.46±0.53 57.16±2.09 49.39±1.77 53.34
CONTaiNER 40.43 33.84 53.70 47.49 43.87 55.95 48.35 61.83 57.12 55.81

Two-stage

ESD 41.44±1.16 32.29±1.10 50.68±0.94 42.92±0.75 41.83 66.46±0.49 59.95±0.69 74.14±0.80 67.91±1.41 67.12
DecomMeta 52.04±0.44 43.50±0.59 63.23±0.45 56.84±0.14 53.9 68.77±0.24 63.26±0.40 71.62±0.16 68.32±0.10 67.99
SpanProto 54.49±0.39 45.39±0.72 65.89±0.82 59.37±0.47 56.29 73.36±0.18 66.26±0.33 75.19±0.77 70.39±0.63 71.3
MSDP 56.35±0.28 47.13±0.69 66.80±0.78 64.69±0.51 58.74 76.86±0.22 69.78±0.31 84.78±0.69 81.50±0.71 78.23

Table 2: F1 scores with standard deviations on Few-NERD for both inter and intra settings.

Paradigms Models 1-shot 5-shot

CONLL-03 GUM WNUT-17 OntoNotes Avg. CONLL-03 GUM WNUT-17 OntoNotes Avg.

One-stage
Matching Network 19.50±0.35 4.73±0.16 17.23±2.75 15.06±1.61 14.13 19.85±0.74 5.58±0.23 6.61±1.75 8.08±0.47 10.03
ProtoBERT 32.49±2.01 3.89±0.24 10.68±1.40 6.67±0.46 13.43 50.06±1.57 9.54±0.44 17.26±2.65 13.59±1.61 22.61
L-TapNet+CDT 44.30±3.15 12.04±0.65 20.80±1.06 15.17±1.25 23.08 45.35±2.67 11.65±2.34 23.30±2.80 20.95±2.81 25.31

Two-stage
DecomMeta 46.09±0.44 17.54±0.98 25.14±0.24 34.13±0.92 30.73 58.18±0.87 31.36±0.91 31.02±1.28 45.55±0.90 41.53
SpanProto 47.70±0.49 19.92±0.53 28.31±0.61 36.41±0.73 33.09 61.88±0.83 35.12±0.88 33.94±0.50 48.21±0.89 44.79
MSDP 49.14±0.52 21.88±0.29 30.10±0.56 38.05±0.88 34.79 63.98±0.80 36.53±0.81 35.61±0.72 49.99±0.95 46.53

Table 3: F1 scores with standard deviations under 1 shot and 5 shot setting on CrossNER.

All experiments are repeated three times with different random
seeds under the same settings. All the models are implemented with
PyTorch. We will release our code after blind review.

4.4 Main Results
Table 2 and Table 3 report the main results compared with other
baselines. We conduct the following comparison and analysis: 1)
Our proposed method significantly outperforms all the previous
methods in different settings. Specifically, compared with Span-
Proto, MSDP achieves a performance improvement on the overall
averaged results over Few-NERD Intra by 4.3% and Inter by 9.7%.
Meanwhile, MSDP shows a 3.9% increase on CrossNER. Both re-
sults demonstrate the effectiveness of MSDP. 2) All methods in the
two-stage paradigm perform better than those one-stage methods,
which demonstrates the framework advantages of the span-based
approach. 3) The overall performance of the Inter scenario is higher
than Intra, since all entities in the training set/development set/test
set belong to different coarse-grained types in the Intra setting. We
still obtain extraordinary improvement in this challenging situation.
All the results show that MSDP can adapt to a new domain in which
the coarse-grained and fine-grained entity types are both unseen,
which highlights the strong transferring ability of our approach.

4.5 Ablation Studies.
We conduct an ablation study to investigate the characteristics
of the main components in MSDP. Table 4 shows the ablation re-
sults, and “w/o" denotes the model performance without a specific
module. We have following observations: 1) The performance of
MSDP drops when removing any one component, which suggests

Methods
Few-NERD CrossNER
Intra Inter 1-shot 5-shot

MSDP 58.49 78.23 34.79 46.53

w/o Demonstration-based MLM 54.84 75.25 32.57 44.77
w/o Class Contrastive Discrimination 56.97 74.87 31.66 43.54
w/o class-oriented Prototype 55.04 74.58 33.14 44.48
w/o contextual fusion Prototype 56.53 76.15 32.98 45.08

w/o Joint pre-training tasks 53.58 73.03 30.30 41.51
w/o Both two semantic prototypes 54.32 73.32 31.74 43.22

Table 4: The ablation study results (average F1 score %) for
Few-NERD and CrossNER.

that every part of the design is necessary 2) Removing any one
semantic prototype results in great performance degradation. This
is consistent with our conjecture since class-oriented prototypes
and contextual fusion prototypes provide relatively orthogonal se-
mantic information from two perspectives. Missing each part will
make the semantic space more chaotic and make the classification
effect worse. 3) Removing joint pre-training tasks causes obvious
performance degradation compared with removing one of them,
which indicates that jointly pre-training objectives have a mutually
reinforcing effect.

4.6 Effectiveness on Span Over-prediction
Qualitative analysis. Span over-prediction causes the model to
extract redundant candidate spans in addition to predicting the
correct spans. This phenomenon can be reflected in high recall
rate and low precision rate of the span extractor. As shown in
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Method

Inter(1-2shot) Intra(1-2shot)

5 way 10 way 5 way 10 way
Pre. Rec. Pre Rec. Pre. Rec. Pre. Rec.

MSDP (Base) 71.6 100 75.5 100 72.8 100 73.7 100
+ Pre-training 74.3 100 77.5 100 73.9 100 74.8 100

MSDP (Full) 75.2 100 78.1 100 74.3 100 75.3 100

Table 5: The span extractor performance (average Precision
and Recall) on Few-NERD 1-2 shot. MSDP(Base) denotes
MSDP without two pre-training and prototypes.

Figure 4: The cases of Few-NERD. Both wrong and correct
labels are marked in red and green, respectively.

Table 5, compared with the MSDP(Base), joint pre-training tasks
improve the prediction accuracy(2.7% for 5 way and 2.0% for 10
way) while maintaining a high recall rate, which proves that joint
pre-training tasks can bring entity boundary information and better
representation into PLMs. For MSDP(Full), we unexpectedly find
that the semantic decomposing method also improves the precision
rate slightly. Since the joint training of span extractor and entity
classification, both contextual fusion and class-oriented information
also have a positive effect on distinguishing entity boundaries.

Case Study for Span Extractor To further verify the effect of our
MSDP on Span Over-prediction, we randomly sample 100 instances
from outputs and select two representative cases in figure 4. The
baseline model even generates somewrong spans in order to predict
all spans while our method does not require such a cost. These
cases suggest that MSDP captures more reliable entity-boundary
information. In summary, we demonstrate that MSDP can better
solve the over-prediction problem from both statistical and sample
aspects.

4.7 Performance on Classification Disarray
Error AnalysisWe follow [65] to conduct error analysis in Table 6.
Results show that MSDP outperforms other strong baselines with
fewer false positive prediction errors. Specifically, we achieve 9.22%
of “FP-Type” when getting 76.86 F1 scores. Meanwhile, this suggests
our MSDP obtains the lowest error rate and effectively solves the
problem of prototype classification disarray.

Visualization To further explore the effectiveness of MSDP on
prototype classification disarray problems, we investigate how our
MSDP adjusts the representations in the semantic space. We use
500 5-way 1-shot episodes data from Few-NERD Inter for training,

(a) MSDP(Base) (b) MDSP(w. Pre-training)

(c) MSDP (Full)

Figure 5: The t-SNE visualization of the span representations
with 500 5-way 1-shot data from Few-NERD Inter for both
SpanProto andMSDP. The points with different colors denote
the entity span with different types.

and visualize the span representations of 4 types of entity by t-SNE
toolkit [63] in three different settings: MSDP(Base), MSDP(with
Pre-training) and MSDP(Full). As shown in Figure 5, the span repre-
sentations of each class are gathered around the corresponding type
prototype region. Compared with MSDP(Base), joint pre-training
tasks help the model increases the distance between the repre-
sentations of different classes. For the MSDP(full), the intra-class
distance is further compressed due to the optimization of the se-
mantic decomposing method. In this way, both pre-training and
decomposing methods improve the quality of entity representa-
tions from different aspects. Thus, MSDP effectively alleviates the
prototype classification disarray problem in the entity classification
stage.

4.8 Influence of Data Size
To find out the influence of data size, we conduct a comparison
experiment between SpanProto and MSDP under different few-shot
settings of Few-NERD. As shown in figure 6, the performance of
MSDP still has a steady improvement compared with SpanProto
with the increase of data in inter setting while the improvement
is not obvious in intra setting. We think the possible reasons are
as follows: since fine-grained entity types are separated in inter
setting, compared with baseline, MSDP can better assist the model
to capture the fine-grained entity type information, and the effect
is more obvious with the increase of data size. For intra settings
which are separated fine-grained entity types, the MSDP has a
slight increase, but there is still much room for improvement. So
improving the ability of model to capture coarse-grained entity
types is a great challenge for future research.
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Methods F1 FP-Type

ProtoBERT 44.44 13.30
NNShot 54.29 15.30
StructShot 57.33 20.00
ESD 66.46 27.20
DecomMeta 76.11 46.53
SpanProto 73.36 10.90
MSDP 76.86 9.22

Table 6: Error analysis (%) of 5-way 1-shot on Few-NERD
Inter. “FP-Type” represents extracted entities with the right
span boundary but the wrong entity type.

Figure 6: The influence of data size under Inter(left) and
Intra(right) setting of Few-NERD

5 HYPER-PARAMETER ANALYSIS
5.1 The Effect of Temperature Parameter.
Table 7 shows the effect of different 𝜏 values of SCL in class con-
trastive discrimination task. We find that when the temperature
𝜏 = 0.5, MSDP achieves the best performance in the Inter and
Intra setting of Few-NERD. Our method within 𝜏 [0.1, 0.6] outper-
forms sota baselines (SpanProto), and 𝜏 in [0.4, 0.6] brings larger
improvements(above 2% in Inter and 6% in Intra).This experiment
demonstrates the robustness of MSDP, as changes in temperature 𝜏
do not affect its performance.

5.2 The Effect of Number of Demonstrations.
We further examine whether the performance of MSDP changes
over the number(K) of retrieved demonstration and negative demon-
stration in the pre-training stage. As shown in Figure 7, the per-
formance of MSDP improves from 75.76 to 76.86 on Few-NERD
Inter5-1 with the number of retrieved demonstrations from 1 to 10.
However, the performance of negative demonstrations increases
first(75.72 to 76.09) and then decreases(76.09 to 75.58) due to the
increase in the number of demonstrations. The possible reason
is that the introduction of retrieved demonstrations can provide
rich entity-label pairs and factual information, which can assist
the model to learn good representations. A small amount of nega-
tive demonstrations can help the model distinguish the boundary
between entities and non-entities, but too many negative demon-
strations will introduce a large number of non-entities which brings
the noise.

Temperature 𝜏
Few-NERD
Intra Inter

𝜏 = 0.1 56.84 76.33
𝜏 = 0.2 58.03 77.25
𝜏 = 0.3 57.44 76.62
𝜏 = 0.4 58.53 77.89
𝜏 = 0.5 58.74 78.23
𝜏 = 0.6 58.60 78.03

Table 7: The parameter analysis of the temperature hyperpa-
rameter 𝜏 .

Figure 7: The performance of MSDP changes over the num-
ber(K) of retrieved demonstration and negative demonstra-
tion

6 CONCLUSION
In this paper, we propose a Multi-Task Semantic Decomposition
Framework via Joint Task-specific Pre-training (MSDP) for few-
shot NER. Specifically, We introduce two novel pre-training tasks,
Demonstration-based MLM and Class Contrastive Discrimination,
to solve the span over-prediction and prototype classification dis-
array problem. Further, We design a multi-task joint optimization
framework, and decompose class-oriented prototypes and contex-
tual fusion prototypes to integrate two different semantic informa-
tion for entity classification. Experimental results demonstrate that
MSDP outperforms the previous SOTA methods in terms of overall
performance. Extensive analysis further validates the effectiveness
and generalization of our approach.
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