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ABSTRACT
Reviews are valuable resources that have been widely researched
and used to improve the quality of recommendation services. Re-
cent methods use multiple full embedding layers to model various
levels of individual preferences,increasing the risk of the data spar-
sity issue. Although it is a potential way to deal with this issue
that models homophily among users who have similar behaviors,
the existing approaches are implemented in a coarse-grained way.
They calculate user similarities by considering the homophily in
their global behaviors but ignore their local behaviors under a spe-
cific context. In this paper, we propose a two-tier shared embed-
ding model (TSE), which fuses coarse- and fine-grained ways of
modeling homophily. It considers global behaviors to model ho-
mophily in a coarse-grained way, and the high-level feature in
the process of each user-item interaction to model homophily in
a fine-grained way. TSE designs a whole-to-part principle-based
process to fuse these ways in the review-based recommendation.
Experiments on five real-world datasets demonstrate that TSE sig-
nificantly outperforms state-of-the-art models. It outperforms the
best baseline by 20.50% on the root-mean-square error (RMSE) and
23.96% on the mean absolute error (MAE), respectively.The source
code is available at https://github.com/dianziliu/TSE.git.

CCS CONCEPTS
• Information systems → Recommender systems; Collabo-
rative filtering; • Computing methodologies → Neural net-
works.
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1 INTRODUCTION
Recommendation systems have extensively integrated into web
services to improve user experiences [6, 43]. Reviews are impor-
tant user-generated content, reflect users’ sentiments and interests,
and have attracted the attention of many researchers [24, 28, 45].

Recently, an increasing number of review-based methods use
deep neural networks to learn multiple features and latent rep-
resentations. They use multiple full embedding layers to model
various individual preferences from reviews, click data, and rat-
ings [13, 27, 44]. These methods ignore the sparsity of recommen-
dation data that affects the quality of embedding [17, 37, 49]. Sparse
data are far from sufficient to accurately learn individual prefer-
ences using multiple full embedding layers. Homophily regulariza-
tion considers user homophily to address the data sparsity prob-
lem [3, 37]. In these works, similar users are restrictively repre-
sented by similar embedding vectors, making these vectors more
discriminating than the standard full embedding vectors.

However, the existing methods model homophily in a coarse-
grained way, which is insufficient for precisely profiling users. In
some cases, a user’s individual behavior may deviate from their
general behavior, but is similar to other users’ actions in the same
context [2, 12, 47]. Figure 1 gives an example of this phenomenon.
As a pop music lover, Tom likes listening to pop music, and thus
there is a homophily between Tom and pop music lovers. Gener-
ally, popmusic lovers dislike classical music, which leads to coarse-
grained ways hard to recommend classical music to Tom, but Tom
likes to listen to a little classical music sometimes, similar to clas-
sical music lovers in some contexts. Coarse-grained ways ignore
the individuality of each action and thus make error predictions
sometimes.Therefore, it is necessary to model homophily in a fine-
grained way that considers the context of user actions.
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Figure 1: An example of coarse- and fine-grained ways of
modeling homophily.

In this paper, we propose a Two-tier Shared Embedding model
(TSE) for the review-based recommendation, which fuses coarse-
and fine-grained ways of modeling homophily, accurately model-
ing user behavior to improve model performance. Specifically, TSE
consists of a statically shared embedding network and a dynami-
cally shared embedding network, that are used to model coarse-
and fine-grained homophily, respectively.The statically shared em-
bedding network shares embedding vectors to model homophily
through analysis of global behaviors. Shared embedding uses the
same vector to represent similar users, directly using similar users’
data to train one vector. Thus, data from similar users can comple-
ment each other and be used to train the vector, making the vector
generalizes better than a single vector representing users indepen-
dently. The dynamically shared embedding network models the
context of each action by extracting dynamically high-level fea-
tures and then using it to select the most appropriate fine-grained
shared embedding. Because there are some dynamically high-level
features in the process of user-item interaction, explaining the rea-
son for interactions, and similar users could have similar high-level
features in an interaction. At the same time, considering the diver-
sity of user interests [21], we design two strategies to deal with user
interests in different situations, A hard strategy finds the most sim-
ilar embedding, and a soft strategy models situations where users
are influenced by multiple factors when making decisions. To com-
bine with the review-based recommendation, TSE designs a whole-
to-part principle-based process to fuse coarse- and fine-grained
ways of modeling homophily. It gets coarse-grained shared em-
bedding, combines coarse-grained shared embedding and model
input to model fine-grained shared embedding, and combines fine-
grained shared embedding and model input to make predictions.

The main contributions of this paper are as follows:

• We propose a two-tier shared embedding method for the
review-based recommendation, which fuses coarse- and fine-
grained ways of modeling homophily, accurately modeling
user preference to improve model performance.

• Wepropose a dynamically shared embedding network, which
models homophily in a fine-grained way by considering dy-
namically high-level features in user-item interactions.

• Experiments on five real-world datasets demonstrate that
TSE significantly outperforms state-of-the-art models. TSE
achieves an average improvement of 20.50% in RMSE and
23.96% in MAE.

2 RELATEDWORK
2.1 Review-based methods
Reviews are typical features in recommender systems.They have a
strong intrinsic correlationwith user interests. Review-basedmeth-
ods learn individual preferences by full embedding and make pre-
dictions by combining NLP methods, such as LDA in CTR [40],
SDAE in CDL [41]. ConvMF [19] uses convolutional neural net-
work (CNN) to extract local semantic features from reviews. These
methods extract textual features as a vector. The vector is used as
the item latent features in a matrix factorization (MF).

Some researchers have performed complexmodeling of reviews.
CAPR [22] and ARPM [20] perform aspect and sentiment analysis
on textual reviews and then establishes users’ and items’ prefer-
ence feature vectors. A2SPR [16] calculates item relevance by an
item graph that edges are the number of co-reviewer. RGNN [28] is
a type-aware graph attention network that builds a review graph
for each user where nodes are words and edges are word orders.
MRCP [25] extracts word-level, review-level, and aspect-level fea-
tures to represent users and items via a three-tier attention net-
work. SENGR [36] is a sentiment-enhanced neural graph method
that incorporates the information derived from textual reviews and
bipartite graphs.

Modeling interaction behavior is a way of improving model per-
formance. D-attn [34] uses dual local and global attention to model
word-level and review-level features. As global attention is applied
to both the user side and the item side, it learns the interaction
features between the two sides. NARRE [5] filters useless reviews
by using the vector representing each user and item as a part of
attention scores. DAML [24] employs the local and mutual atten-
tion of CNN to learn features from reviews, and then integrates
them with the latent factor model for rating prediction. HTI [44]
captures interactions based on reviews by mutually propagating
textual features at word and review levels and dynamically identi-
fying their importance. NRCA [26] points out two main paradigms
of reviews, i.e., the document level and the review level. It uses
a cross-attention mechanism to aggregate the informative words
and reviews and represent users. TAERT [13] uses three attention
networks to model different features, i.e., word contribution, re-
view usefulness, and latent factors. It designs a temporal convolu-
tional network for learning sequential characteristics and interac-
tions of neighboring features and global features. DSRLN [27] ex-
tracts static and dynamic user interests and by stacking attention
layers that deal with sequence features and attention encoding lay-
ers that deal with of user-item interaction.

Recent methods use multiple full embedding layers. For exam-
ple, HTI has two full embedding layers to determine word- and
rating-level preferences; TAERT has one full embedding layer and
a transfer matrix to calculate rating-level preferences and review-
level attention scores; and DSRLN has one full embedding layer
but multiple transfer matrices in various layers to transfer embed-
ding vectors. TSE uses three shared embedding layers to model
user preferences in reviews, interactions, and ratings. Shares em-
bedding vectors among similar users improves the training degree
of various levels of embedding vectors, and holds great potential
in model complexity and performance.
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2.2 Cluster-based methods
Cluster-based (CB) methods cluster users and items based on be-
haviors [39]. They aggregate all group members’ interests into a
common model [30, 31]. The group representative is then used to
recommend to individual users [18].There are two types, i.e., group
preference aggregation(GPA) and individual preference aggrega-
tion(IPA) [15].

The main research of GPA methods is to design a suitable clus-
tering method to cluster all users into some groups. The recom-
mendation results are calculated based on each individual group.
[31] clusters the tail items while the head items on the ratings are
predicted individually. An adaptive clustering (AC) method [30]
pre-specified the size of each group by a fixed popularity threshold,
which does not cluster head items whose popularity is greater than
a threshold. Some researchers tend to use extra information, such
as trust relationships, to cluster users [11, 29].The final recommen-
dation result comes from a support vector regressionmodel, which
selects the multiple clustering results. 2D-GC [35] is a 2D-graph
clustering method that expands user neighborhoods and searches
for the optimal number of groups. [8] considers the asymmetric
of items and proposes a novel K-medoids clustering recommenda-
tion algorithm based on a probability distribution for collaborative
filtering.

IPA methods aggregate the individual results from group mem-
bers. [47] proposes that users (item) can join multiple clusters (sub-
groups) and represents the problem as a Multiclass Co-Clustering
problem. It proposes a novel loss function resembling graph regu-
larization to find meaningful subgroups. The final prediction score
is the max value of prediction scores on all subgroups. DLGR [15]
argues that the group influences user choices, i.e., user character-
istics are lower-level forms of group characteristics. It includes a
dual-wing restricted Boltzmann machine on the top of the deep be-
lief network to learn group features. [18] blends collaborative fil-
tering and content-based recommendation results to produce the
final group recommendation results. To aggregate collaboration re-
sults, it uses an additive form to obtain a total score for each item.
The content-based item score depends on howmany users the item
was recommended to in a group.The final score is derived from the
product of these two scores. SCoC [23] agrees that users’ interests
are diverse, and a user may belong to multiple groups together.
SCoC first clusters users and items into subgroups, and then ag-
gregates the prediction results of the subgroups. The probabilities
of user grouping are used as weights for the subgroup results in
the aggregation process.

3 METHOD
The framework of TSE is illustrated in Figure 2. Based on existing
works [13, 27], TSE utilizes a three-stages to make predictions, in-
cluding review feature learning, interaction feature learning based
on review features, and rating predictions. In each stage, TSE mod-
els homophily both in coarse- and fine-grained ways. For brief-
ness, we summarize them into two networks, i.e., a dynamically
shared embedding network (DSEN) models the fine-grained ho-
mophily, and a statically shared embedding network (SSEN) mod-
els the coarse-grained homophily.

3.1 Problem of Formalization
In a recommendation problem, assume that a user setU = {𝑢1, 𝑢2,
· · · , 𝑢𝑚} and an item set I = {𝑖1, 𝑖2, · · · , 𝑖𝑛} contains𝑚 users and
𝑛 items, respectively. 𝑟𝑢𝑖 denotes the true rating of a user 𝑢 of an
item 𝑖 , which is one element of rating matrix 𝑅 ∈ R𝑚∗𝑛 . We denote
D𝑢 = {𝑑𝑢,1, 𝑑𝑢,2, · · · , 𝑑𝑢,𝑧𝑢 } as the set of user reviews and D𝑖 =
{𝑑𝑖,1, 𝑑𝑖,2, · · · , 𝑑 𝑗,𝑧𝑖 } as the set of item reviews, where 𝑧𝑢 and 𝑧𝑖
denote the sizes of the sets D𝑢 and D𝑖 , respectively. The model
must make an accurate prediction 𝑟𝑢𝑖 using user-item pair (𝑢, 𝑖)
and its reviews D𝑢 and D𝑖 .

3.2 Statically shared embedding network
SSEN uses global behavior data to learn homophily in a coarse-
grained way and produces statically shared embedding of differ-
ent levels for users and items. TSE uses three similarity measures
to calculate the similarity matrix. These measures consider review,
interaction, and rating features to calculate similarity, respectively.
After getting the similarity matrix, we use K-means to cluster the
matrix (each row represents a user) and then get the users’ group
id. The statically shared embeddings are the embedding vectors of
group ids. We use s𝑟𝑒𝑢 , s𝑖𝑛𝑢 , s𝑟𝑎𝑢 to denote review-level, interaction-
level, and rating-level shared embedding vectors, respectively. The
symbols of items are similar to users. In the remainder of this sec-
tion, we describe three similarity measures.

3.2.1 Review statically shared embedding . The review-based simi-
laritymeasure includes two parts, a word frequency similarity(WF)
and a sentiment similarity(SS). The word frequency similarity cal-
culates the difference of eachword frequency.We use𝑚𝑎𝑥 (𝛾𝑢𝑤 , 𝛾𝑣𝑤)
operation to normalize the words’ difference. The formula of the
first expression is

𝑠𝑖𝑚𝑊𝐹
𝑢𝑣 =

1
|𝑊 | ∗

∑
𝑤∈𝑊

𝑒𝑥𝑝 (− |𝛾𝑢𝑤 − 𝛾𝑣𝑤 |
𝑚𝑎𝑥 (𝛾𝑢𝑤 , 𝛾𝑣𝑤)

), (1)

where𝑊 denotes a dictionary used in our method, 𝛾𝑢𝑤 denotes
the frequency of word𝑤 in reviews of user 𝑢. To get the sentiment
similarity, we use a pre-train model to predict the sentiment scores.
Then, the sentiment similarity expression is

𝑠𝑖𝑚𝑆𝑆
𝑢𝑣 =

1
|I𝑢 ∩ I𝑣 |

∗
∑

𝑖∈I𝑢∩I𝑣
𝑒𝑥𝑝 (− |𝑠𝑒𝑢𝑖 − 𝑠𝑒𝑣𝑖 |

𝑚𝑎𝑥 (𝑠𝑒𝑢𝑖 , 𝑠𝑒𝑣𝑖 )
), (2)

where 𝑠𝑒𝑢𝑖 denotes the sentiment score predicted by senta[38].The
final formula of the review-based user similarity is:

𝑠𝑖𝑚𝑟𝑒
𝑢𝑣 = 𝑠𝑖𝑚

𝑊𝐹
𝑢𝑣 ∗ 𝑠𝑖𝑚𝑆𝑆

𝑢𝑣 . (3)

3.2.2 Interaction statically shared embedding . To calculate the in-
teraction similarity, we use a difference-based similarity measure
(SMD) [1].

𝑠𝑖𝑚𝑖𝑛
𝑢𝑣 =

1 − 𝑓
𝑚 + 𝑛12

𝑛1+𝑛2

2
(4)

where 𝑓 = |I𝑢 ∪I𝑣 | − |I𝑢 ∩I𝑣 |, 𝑛12 = |I𝑢 ∩I𝑣 |, 𝑛1 = |I𝑢 |, 𝑛2 = |I𝑣 |.
1 − 𝑓

𝑚 discovers the differences in user behaviors, and 𝑛12
𝑛1+𝑛2

em-
phasizes the importance of intersection.The two parts complement
each other and get the exact similarity. We reduce full reliance on
the co-click items through the SMD, making full use of interaction
information that includes all clicked and non-clicked items.
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Figure 2: The overall architecture of the proposed model. The above three networks construct the main process of TSE. The
statically shared embedding network and the dynamically shared embedding network are used to calculate embedding vectors
from various features.
3.2.3 Rating statically shared embedding . The rating similarity
measure has two parts[9]. TGhe first part considers the intersec-
tion of ratings, called the percentage of non common ratings (PNCR),
and following:

𝑠𝑖𝑚𝑃𝑁𝐶𝑅
𝑢𝑣 = 𝑒𝑥𝑝 (− |I| − |I𝑢 ∩ I𝑣 |

|I | ) . (5)

𝑒𝑥𝑝 (−𝑥) is a good kernel function for elementary similaritymeasure[9].
As a non-linear function, it can map the rating-based distance to a
similarity score.There has the same trend of similarity and distance[10].
The second part calculates the absolute differences between the rat-
ings (ADR), following:

𝑠𝑖𝑚𝐴𝐷𝑅
𝑢𝑣 =

∑
𝑖∈I 𝑒𝑥𝑝 (−

|𝑟𝑢𝑖−𝑟𝑣𝑖 |
𝑚𝑎𝑥 (𝑟𝑢𝑖 ,𝑟𝑣𝑖 ) )

|I𝑢 ∩ I𝑣 |
(6)

The final formula of rating-based user similarity is:
𝑠𝑖𝑚𝑟𝑎

𝑢𝑣 = 𝑠𝑖𝑚
𝑃𝑁𝐶𝑅
𝑢𝑣 ∗ 𝑠𝑖𝑚𝐴𝐷𝑅

𝑢𝑣 (7)

3.3 Dynamically shared embedding network
The dynamically shared embedding network models homophily in
a fine-grained way by capturing and sharing dynamic preferences
for each user-item pair. Figure 1 identifies that similar users have
similar actions, and similar users could have similar dynamically
high-level features in interactions. Thus, we share high-level fea-
tures in the process of user-item interaction. G denotes a shared
embedding table in a dynamically shared embedding layer. e𝑞 de-
notes a high-level feature, which is used as the query to select their

own dynamically shared embedding vector e𝑔 from some presup-
posed feature vectors. Considering the diversity of user interests,
we design two strategies for selection: a hard strategy that selects
one out of the |G| groups, and a soft strategy that combines all
embedding vectors with attention.

Hard strategy. The intuition behind our hard strategy is that
only a single preference takes effect when a user makes a decision
over items. It uses a query input vector to select the most similar
shared embedding vectors. The final output is obtained as follows:

𝑖𝑑𝑥 = argmax 𝑒𝑥𝑝 (q ∗ G), (8)

we select the 𝑖𝑑𝑥-th row in G as the layer output.

e𝑔 = G𝑖𝑑𝑥 . (9)

Soft strategy. Sometimes, a user might like an item for various
reasons, which have no distinct boundary. Instead of selecting the
most prominent preference, the soft strategy is to combinemultiple
preferences via the attention mechanism:

e𝑔 =
∑
𝑔′∈𝐺

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (q ∗ e𝑔′) ∗ e𝑔′, (10)

Independence regularization. Different from full embedding,
shared embedding keeps a small embedding table, and each em-
bedding vector represents a typical group. Embedding unique in-
formation will offer a useful dimension to characterize the behav-
ioral patterns of groups.We use (11) as an independence regulariza-
tion to constrain shared embedding, because (11) calculates mutual
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information between embedding vectors and minimizing it con-
strains the similarity between embedding [42].

L𝐼𝑁𝐷 =
∑
e𝑔 ∈G

−𝑙𝑜𝑔(
𝑒𝑥𝑝 (e𝑔 ∗ e𝑔)∑

e′𝑔 ∈G
𝑒𝑥𝑝 (e𝑔 ∗ e′𝑔)

) (11)

where G is the embedding table, and e𝑔 is one row of G and repre-
sent one embedding vector in G.

3.4 Fusing two shared embedding networks in
review-based recommendation

In TSE, RCAN, ILN, and RPN construct a general process. RCAN
models the review features based on not only CNN but also review-
level shared embedding; ILN models the interaction features based
on not only review features but also interaction-level shared em-
bedding; RPN makes predictions based on not only interaction fea-
tures but also rating-level shared embedding. Each network in the
process communicates with the two shared embedding networks.
To fuse coarse- and fine-grained homophily, TSE adopts a whole-
to-part principle. In each network, coarse-grained shared embed-
ding and input data are used to calculate high-level features, which
are used to select fine-grained shared embedding.The fine-grained
shared embedding participates in the same process as the coarse-
grained features to get the final output.

3.4.1 Review convolutional attention network. RCANembedswords,
produces feature vectors of reviews, and aggregates these vectors
to represent users and items. First, we embed words of a review
into a sequence of low-dimension dense embedding. 𝑑 = {𝑤𝑥 }𝑝𝑥=1
denotes a reviewwith 𝑝 words. {w𝑥 }𝑝𝑥=1 is the word embedding se-
quence of 𝑑 . Second, we apply CNN to capture the high-level word
features c𝑥 . Third, an attention mechanism is used to summarize
those word vectors with statically shared embedding vectors s𝑟𝑒𝑢
and s𝑟𝑒𝑖 into a review representation. Four, we use a recurrent ag-
gregated attention layer to aggregate users’ and items’ reviews to
represent themselves. Five, we input the representations into the
review-level dynamically shared embedding layer to get the dy-
namically shared embedding d𝑟𝑒𝑢 and d𝑟𝑒𝑖 . Six, d𝑟𝑒𝑢 , d𝑟𝑒𝑖 and CNN-
based features are input into attention layer. Seven, the result are
input into the recurrent aggregated attention layer. We obtain the
final review-based representation of users and items. We describe
the details of the attention layer and the recurrent aggregated at-
tention layer. Others are omitted for space reasons.

Attention. Different users may have different writing behav-
iors. Here we use the review-level shared embedding as a part of
attention. The vector representation of a review 𝑑 is as follows:

d =
𝑝∑

𝑥=1

𝛼𝑥c𝑥 , (12)

𝛼𝑥 =
𝑒𝑥𝑝 (𝜔𝑇 c𝑥 )∑𝑝
𝑥=1 𝑒𝑥𝑝 (𝜔𝑇 c𝑥 )

, (13)

𝜔 = 𝜙𝑡𝑎𝑛ℎ ( [s𝑟𝑒𝑢 : s𝑟𝑒𝑖 ]), (14)

where 𝜙𝑡𝑎𝑛ℎ is a neural perceptron with 𝑡𝑎𝑛ℎ as the activation
function, and s𝑟𝑒𝑢 and s𝑟𝑒𝑖 are the review-level shared embedding.

Recurrent aggregated attention. Users could refer to other
people’s opinions when reviewing items [46]. Based on this, the re-
current aggregated attention layer models the correlation between
users’ and items’ reviews using a mutual learning method. In the
mutual learning method, textual semantic features are propagated
to all users and items. As the output of the recurrent aggregated
attention layer, the aggregated representation of users and items
contains the wisdom of the public.

We first calculate the least Euclidean distance between {d𝑢,𝑘 }𝑧𝑢𝑘=1
and {d𝑖,𝑡 }𝑧𝑖𝑡=1 as attention scores to adjust the representation of the
reviews, where {d𝑢,𝑘 }𝑧𝑢𝑘=1 and {d𝑖,𝑡 }𝑧𝑖𝑡=1 are the 𝑢’s review vectors
and 𝑖’s review vectors, respectively.

𝑒
(𝜂)
𝑘,𝑡

= |d(𝜂−1)
𝑢,𝑘

− d(𝜂−1)𝑖,𝑡 |,
𝑘 = 1, ..., 𝑧𝑢 ; 𝑡 = 1, ..., 𝑧𝑖 ;𝜂 = 1, ..., 𝐻

(15)

where 𝑒𝑘,𝑡 is the Euclidean distance between the 𝑘-th user review
and the 𝑡-th item review. It determines the review features trans-
ferred between each user-item pair.

Then we aggregate review representations into a vector by the
attention scores to represent the review information. We get the
attention scores a(𝜂) and b(𝜂) from the negative of the minima
distance.The initial representations d(0)

𝑢,𝑘
and d(0)𝑖,𝑡 generated by the

review convolutional attention network in parallel. The recurrent
representation of the user side is as follows:

𝛿
(𝜂)
𝑢,𝑘

=
𝑒𝑥𝑝 (𝑎 (𝜂)

𝑘
)∑𝑧𝑢

𝑘=1 𝑒𝑥𝑝 (𝑎
(𝜂)
𝑘

)
, (16)

where 𝛿𝜂
𝑢,𝑘

is the 𝜂-th attention score of the review 𝑑𝑢,𝑘 .

t(𝜂)𝑢 =
𝑧𝑢∑
𝑘=1

𝛿
(𝜂)
𝑢,𝑘

d(𝜂−1)
𝑢,𝑘

, (17)

where t(𝜂)𝑢 is the 𝜂-th aggregation of user 𝑢.

d(𝜂)
𝑢,𝑘

= 𝛼d(𝜂−1)
𝑢,𝑘

+ (1 − 𝛼)t(𝜂)𝑢 , (18)

where d(𝜂)
𝑢,𝑘

is the 𝜂-th representation of the review 𝑑𝑢,𝑘 .

h(𝜂)
𝑢 = 𝛼h(𝜂−1)

𝑢 + (1 − 𝛼)t(𝜂)𝑢 . (19)

where h(𝜂)
𝑢 is the 𝜂-th output of user𝑢 and it aggregates the output

of the current layer and the previous𝜂−1 layer.The item side calcu-
lation is similar to that of the user side. The initial representations
h1𝑢 = t(1)𝑢 and h1𝑖 = t(1)𝑖 . Through multiple iterative computations,
this layer learns how reviews learn from each other. We use the
final𝐻 -th output as the representations over the user and the item
reviews, respectively.

d𝑢 = h(𝐻 )
𝑢 , d𝑖 = h(𝐻 )

𝑖 . (20)

3.4.2 Interaction learning network . Overfitting the review infor-
mation is not always good for prediction [48]. As user click data are
observational rather than experimental, bias is easily introduced
into the data [7]. These biases cannot be learned from the char-
acteristics of reviews. ILN tries to implicitly learn bias by using
interaction-level shared embedding s𝑖𝑛𝑢 and s𝑖𝑛𝑖 .
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Wefirst useMLP to aggregate review-based features and interaction-
level shared embedding vectors to get the interaction feature.

e′ = 𝑀𝐿𝑃1 (d𝑢 , s𝑖𝑛𝑢 , d𝑖 , s𝑖𝑛𝑖 )

= 𝜙𝑒𝑙𝑢𝑥 (...𝜙𝑒𝑙𝑢2 (𝜙𝑒𝑙𝑢1 ([d𝑢 ; s𝑖𝑛𝑢 : d𝑖 : s𝑖𝑛𝑖 ])) ...),
(21)

where 𝜙𝑒𝑙𝑢𝑥 denotes the mapping function of 𝑥-th neural network
layer. The interaction feature is used to select the interaction dy-
namically shared embedding d𝑖𝑛 . Finally, we use MLP to aggregate
review-based features and d𝑖𝑛 to get the final interaction feature.

e = 𝑀𝐿𝑃1 (d𝑢 , d𝑖𝑛𝑢 , d𝑖 , d𝑖𝑛𝑖 ) . (22)

3.4.3 Rating prediction network. Deep learning methods’ superi-
ority validates the advantage of nonlinearity, so we use MLP to
make predictions [14]. We concatenate the interaction feature e
and rating-level embedding vectors s𝑟𝑎𝑢 and s𝑟𝑎𝑖 to get a rating fea-
ture vector e𝑟 .

e𝑟 = 𝑀𝐿𝑃1 (e, s𝑟𝑎𝑢 , s𝑟𝑎𝑖 ) . (23)
Then e𝑟 is input into the dynamically shared embedding network
and gets the rating-level dynamically shared vector d𝑟𝑎 . We com-
bine the interaction feature and d𝑟𝑎 through an MLP to get the
final prediction rating. The prediction function is as follows:

𝑟𝑢𝑖 = 𝑀𝐿𝑃2 (e𝑟 , d𝑟𝑎𝑢 , d𝑟𝑎𝑖 )

= 𝜙𝑒𝑙𝑢𝑜𝑢𝑡 (𝜙𝑒𝑙𝑢𝑥 (...𝜙𝑒𝑙𝑢2 (𝜙𝑒𝑙𝑢1 ([e : s𝑟𝑎𝑢 : s𝑟𝑎𝑖 ])) ...)),
(24)

where 𝜙𝑒𝑙𝑢𝑜𝑢𝑡 notes the output layer.

3.5 Objective function
The objective function of TSE is defined as

minL =
∑

(𝑢,𝑖,𝑟𝑢𝑖 ) ∈𝑑𝑎𝑡𝑎𝑠𝑒𝑡
(𝑟𝑢𝑖 − 𝑟𝑢𝑖 )2 + 𝜆𝐹 | |Θ| |𝐹+

𝜆𝐼𝑁𝐷 (L𝐼𝑁𝐷 (G𝑟𝑒 ) + L𝐼𝑁𝐷 (G𝑖𝑛) + L𝐼𝑁𝐷 (G𝑟𝑎)),
(25)

whereΘ is themodel parameters, | | | |𝐹 is the Frobenius norm,L𝐼𝑁𝐷

is the independence regularization which we discussed in 3.3. 𝜆𝐹
and 𝜆𝐼𝑁𝐷 are the regularized coefficient for the Frobenius norm
and independence regularization, respectively. G𝑟𝑒 , G𝑖𝑛 , and G𝑟𝑎

are the embedding table in the review-, interaction-, and rating-
level dynamical shared embedding layers, respectively. We use an
Adam optimizer to optima our objective function.

4 EXPERIMENTS
4.1 Experimental setup
4.1.1 Datasets. We choose five datasets that came from Amazon1
to validate the performance of ADSE, i.e., Sports andOutdoors(SO),
Video Games(VG), Grocery and Gourmet Food(GGF), Office Prod-
ucts(OP), Music Instruments(MI). All words in reviews are pro-
cessed into the lower cases, and the stop words are filtered [45]. A
vocabulary includes 20,000 commonwords that come fromdatasets.
The review length was standardized to cover 90% of reviews. Re-
views in the test are not available [4]. Table 1 shows the statistics
of the datasets.
1http://jmcauley.ucsd.edu/data/amazon/

Table 1: Statistics of the datasets.
Dataset #user #item #rating Density
MI 1,429 900 10,261 0.798%
OP 4905 2420 53,228 0.449%
GGF 14,681 8,713 151,254 0.118%
VG 24,303 10,672 231,780 0.089%
SO 35,598 18,357 296,337 0.045%

4.1.2 Baselines. To demonstrate the advantage of the proposed
model, we compare it with the followingmodels, PMF [33], GNMF [3],
SVR-TC [30], SVD-MCOC [2], KL-KM [8], NeuMF [14], CDL [41],
ConvMF [19], DeepCoNN [50], D-attn [34], NARRE [5], CARL [45],
DAML [24], HTI [44],TAERT [13], and DSRLN [27].

4.1.3 Experimental setup. We use GloVe-100 [32] to initialize the
word embedding.The kernel sizes of two CNN are 3 and 5, which is
one of the best choices in existing methods [5, 19, 24]. The neural
network has 3 hidden layers and the output dimension of these
layers are 300, 200, and 100. The dropout rate is 0.5, the batch size
is 128, and the initial learning rate of the Adam optimizer is 0.0001.
In TSE, each user has three embedding vectors, but we calculate
interaction-based similarities based on ratings, which leads it to
be similar to rating-based similarities. Thus, we set the 𝐾 in each
shared embedding layer to the square root of its scale of the input,
making the representation of each user to keep personalized.

We choose two types of metrics to evaluate the model perfor-
mance, including two error-basedmetrics and a ranking-basedmet-
ric. The error-based metrics are Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE), which are used in most related
works [13, 24, 33]. Each dataset is randomly split into three parts,
i.e., training set, validation set (10%), and test set (10%).The ranking-
based metric is normalized discounted cumulative gain NDCG@K
(𝐾 = 10 in this paper). For each user, 80% of the ratings are ran-
domly selected for training, and the remaining 20% are selected
for testing. All experiment results are the mean of 5 times.

4.2 Experiment result
4.2.1 Error-basedmetric. To identify the outstanding aspect of TSE,
we give a full performance comparison with all baselines.The over-
all performances of all baseline methods and TSE are reported in
Table 2. The best results and the best baseline are highlighted in
boldface and underlined, respectively.

TSE outperforms the baselines on the five datasets. TSE (H) de-
notes the TSE with hard strategy and TSE (S) denotes TSE with
soft strategy. On RMSE, TSE(H) outperforms the best baseline by
16.79% (MI), 18.86% (OP), 10.87% (GGF), 28.09% (VG), and 18.50%
(SO). TSE (H) achieves an average improvement of 18.62% in RMSE
and 22.99% in MAE over the TSE (S) outperforms the best base-
line by 20.50% in RMSE and 23.96% in MAE on average. The result
implies that TSE effectively predicts ratings on datasets. Existing
methods learn one or more embedding tables for users and items.
The high sparsity of the recommendation dataset makes them dif-
ficult to converge to the optimal result. Through TSE, embedding
vectors are fully trained sufficiently and achieve good performance.
The fusion of coarse- and fine-grained homophily has significantly
improved the quality of recommended service.

Except in MI, TSE(S) is better than TSE(H). The five datasets
represent five different fields. In MI, people usually focus on the
price, quality, and sound of musical instruments, which leads to
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Table 2: Performance comparison across the dataset for all models. The best results and the best baseline are highlighted in
boldface and underlined respectively. We also compare the best results with the best baseline and report the improvement
(Best Imp.).

Dataset MI OP GGF VG SO
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

PMF 1.352 1.137 1.43 1.265 1.572 1.397 1.606 1.395 1.376 1.203
GNMF 0.921 0.702 0.932 0.745 1.086 0.871 1.203 0.946 0.990 0.772
SVR-TC 1.051 0.599 1.031 0.662 1.138 0.708 1.269 0.877 1.087 0.637

SVD-MCOC 0.955 0.715 0.917 0.710 1.041 0.789 1.163 0.933 0.955 0.737
KL-KM 1.024 0.672 0.936 0.671 1.077 0.775 1.149 0.848 1.004 0.696
NeuMF 0.904 0.720 0.921 0.730 1.197 0.943 1.103 0.870 0.979 0.752
CDL 1.080 0.834 1.223 1.062 1.190 0.967 1.165 0.902 1.089 0.852

ConvMF 1.026 0.786 0.952 0.728 1.092 0.863 1.145 0.899 1.013 0.824
DeepCoNN 1.003 0.759 0.901 0.711 1.036 0.802 1.168 0.875 0.885 0.719

D-attn 0.956 0.742 0.923 0.716 1.070 0.824 1.062 0.842 0.997 0.784
NARRE 0.922 0.695 0.867 0.681 0.963 0.747 1.039 0.799 0.882 0.690
CARL 0.878 0.677 0.834 0.647 0.961 0.753 1.029 0.798 0.888 0.686
DAML 0.848 0.651 0.811 0.612 0.938 0.735 1.045 0.788 0.883 0.667
HTI 0.813 0.611 0.731 0.552 0.877 0.672 0.966 0.731 0.826 0.629

TAERT 0.793 0.592 0.829 0.561 0.816 0.646 0.921 0.647 0.807 0.599
DSRLN 1.036 0.620 0.890 0.621 0.952 0.721 0.983 0.754 0.900 0.651
TSE(H) 0.679 0.506 0.615 0.477 0.736 0.523 0.719 0.524 0.681 0.443
TSE(S) 0.723 0.511 0.568 0.464 0.697 0.520 0.707 0.518 0.691 0.441

Best Imp.(%) 16.79 17.00 28.70 18.97 17.07 24.23 30.27 24.90 18.50 35.83

Table 3: NDCG@10 performance for all models.
MI OP GGF VG SO

DeepCoNN 0.977 0.973 0.969 0.971 0.975
NARRE 0.978 0.976 0.967 0.968 0.977
CARL 0.980 0.978 0.969 0.969 0.977
DAML 0.982 0.978 0.972 0.974 0.981
HTI 0.982 0.980 0.973 0.976 0.981

TAERT 0.980 0.981 0.967 0.979 0.975
DSRLN 0.978 0.974 0.967 0.971 0.977
TSE(H) 0.985 0.981 0.979 0.979 0.986
TSE(S) 0.983 0.981 0.978 0.979 0.986

TSE(H) having the best performance. In other files, users are usu-
ally willing to try some other types of items in addition to their
main interests. This is the reason why TSE(S) performs well.

4.2.2 Ranking-based metric. We further compare TSE with the lat-
est deep learning-basedmodels, includingDeepCoNN,NARRE, CARL,
DAML,HTI, TAERT, andDSRLN.TheNDCG@10 results are shown
in Table 3. TSE outperforms the baselines on the five datasets. NDCG
is less sensitive to the accuracy of the prediction results. Even if
the prediction error is large, as long as the ranking results are not
affected, NDCG remains unchanged. The impact of data sparsity
leads to fewer test samples, which also leads to overall higher re-
sults. TSE significantly outperforms the baseline on the rating pre-
diction task, which is very important for recommender systems.
In practical application scenarios, the revenue of recommending
an item is unknown. Therefore, accurate rating prediction is very
important for estimating the revenue of recommendation results.

4.3 Model complexity
A major problem with deep learning is model complexity which
increases with performance improvement. Some experimental re-
sults show a positive correlation between models’ performance

and complexity [44]. Therefore, we compare TSE with the latest
deep learning-based models which have at least one embedding
layer and study the model complexity of these models. The com-
paredmodels includeDeepCoNN,NARRE, CARL, DAML,HTI, TAERT,
RGNN, and DSRLN. All models were trained using an i7-11700K
CPU with 128 GB RAM and an RTX-3090 GPU with 24 GB RAM.
The results are shown in Table 4. TSE(H) and TSE(S) have the same
network structures so they have the same parameters.

From Table 4, we can see that TSE has the smallest number of
parameters on four datasets. The number of parameters in most
models is increased with the size of the dataset. The parameters
of a model can be divided into two parts, prediction parameters,
and embedding tables. The increment due to the scale of users and
items makes a large embedding table. The number of parameters
in TSE is stable as it uses shared embedding to replace full embed-
ding.The number of parameters of shared embedding is decided by
the number of groups, not the scale of users and items. This is the
reason why the number of parameters in TSE has a small change
with the increasing dataset scale. In conclusion, TSE has a good
performance of rating predictions with small model complexity.

4.4 Analysis
4.4.1 Impact of the independence regularization. To demonstrate
the sensitivity of independence regularization, we experimentally
investigate the effect of regularization.The regularization of shared
embedding is important for the performance of the recommen-
dation task. Therefore, we study the effect of regularization by
varying its value. We explored the coefficient of the regularization
𝜆𝐼𝑁𝐷 from {0.01, 0.001, 0.0001, 0.00001}. The regularization effect
on the model’s performance is shown in Figure.3.

The hard strategy is sensitive to changes in the regularization co-
efficient. Moreover, TSE(H) achieves the best performance at 0.001
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Table 4: Trainable parameters of various models. We merge
the results of TSE(H) and TSE(S) as they have the same
parameter. The best and the second-best results are high-
lighted by boldface and underlined respectively.

MI OP GGF VG SO
DeepCoNN 2.42M 2.92M 4.53M 5.69M 7.59M
NARRE 3.19M 7.89M 11.8M 29.4M 19.6M
CARL 3.15M 3.23M 3.49M 3.67M 6.98M
DAML 2.45M 2.95M 4.56M 5.72M 7.62M
HTI 2.45M 2.95M 4.56M 5.71M 7.61M
TAERT 3.07M 3.58M 5.22M 6.40M 8.33M
DSRLN 2.55M 3.55M 6.76M 9.08M 12.9M
TSE 2.63M 2.66M 2.71M 2.74M 2.78M

(a) MAE on hard strategy

(b) MAE on soft strategy

Figure 3: Impact of the independence regularization.
in most datasets. For example, the style differences between mu-
sical instruments are significant. The reasonable use of indepen-
dent regularization can enable the model to learn the differences
between different musical instruments. The results of TSE(S) are
less differentiated because the soft strategy mixes different feature
vectors. In conclusion, the model performs best when the regular-
ization coefficient is fixed at 0.001.

4.4.2 Impact of the embedding dimension. Since embedding users
or items contains rich user preferences and product feature infor-
mation, the dimension of embedding vectors is essential for repre-
senting users and items. We explore the impact of the embedding
dimension. Because we use GloVe to embed all words, we experi-
ment to identify the effect of four dimensions, {50, 100, 200, 300},
used in GloVe. The experiment results are reported in Figure 4.

By comparing the performance difference between the four di-
mensions, we find that the effect of embedding dimension on per-
formance are 5.77% (TSE(H)) and 5.63%(TSE(S)) on average. In the
meantime, as the embedding dimension increases, the model per-
formance first increases and then decreases in some datasets.

In summary, TSE will achieve the best performance in most
datasets when its embedding dimension is 100. Big embedding di-
mensions have great performance but with big model complexity.

4.4.3 Impact of the statically shared embedding network. To demon-
strate the effect of the statically shared embedding network in TSE,
we design two variants and do a comparison experiment. The first
variant is a global adaptive model (GA). GA keeps a full embed-
ding for users and items as the query input for shared vectors. The

(a) MAE on hard strategy

(b) MAE on soft strategy

Figure 4: Experiment results on embedding dimensions.

Figure 5:TheMAE performance of TSE and the two variants
is compared to verify the impact of the statically shared em-
bedding network.
computational flow of this method is similar to that we use full em-
bedding instead of the statically shared embedding network. The
second variant, an adaptive signal model (AS), predicts without
the statically shared embedding network. In TSE, the output of the
statically shared embedding network is used to calculate the query
vectors. However, in AS, we calculate the query vectors by using
review features.

Figure 5 illustrates the experiment results. Overall, TSE achieves
the best results on the five datasets. TSE performs better than GA
and SA showing that the statically shared embedding network uses
extra knowledge to give pre-groups, helping TSE achieve better
performance than without it. Through shared embedding, users
are also allowed to transfer knowledge and benefit from their own
group,which improves recommendation performances.Themodel’s
learning of one user can benefit from the behavior of similar users,
as the sparse history data of one user is not enough to train that per-
son’s preference vector with full embedding. Shared embedding
aggregates the data of several users to train one vector, providing
more opportunities to realize better performance. AS is better than
GA indicating that insufficiently trained fully embedding vectors
are harmful to model performance. In conclusion, TSE improves
prediction results by combining extra knowledge andmodel inputs
to adjust shared vectors based on various information.

4.4.4 Impact of the dynamically shared embedding network. Dy-
namically shared embedding network models homophily in a fine-
grained way. To identify its effect, we first compare TSE with a
variant that is without the dynamically shared embedding network.
We use TSE(-D) to denote it. The experiment results are shown
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(a) RMSE on soft strategy

(b) MAE on soft strategy

Figure 6: Impact of various dynamically shared embedding
layers.

in Table 5, which illustrates the effectiveness of the dynamically
shared embedding network.

To further get deep insights into the dynamically shared em-
bedding network and its effect based on three features, we do an
ablation study to investigate its impact on different features, i.e.,
three shared embedding layers. For the sake of simplicity, we write
TSE(C) as the layer only used to adjust the group result based on re-
views, adaptively TSE(I) is the layer only used for interaction, and
TSE(R) is the layer only used for rating. Also, we study some com-
binations of these layers, i.e., TSE(CI), TSE(CR), TSE(IR). Figure 6
plots the performance comparison of those methods.

Figure 6 illustrates the influence of different layers on the fi-
nal result. The corresponding features can be learned using a sin-
gle dynamic layer. Moreover, the order of performance of these
three methods is TSE(C) < TSE(I) < TSE(R). The reason is that
the search space for features is different. The text feature space is
larger than the interaction space between users and items. The in-
teraction space is larger than the rating space. Sometimes, review
and rating information have a degree of discrepancy. The results
are usually not as good as using either of the two alone when di-
rectly fusing the group result based on the review feature and rat-
ing feature together. TSE introduces and successfully fuses three
dynamically shared embedding layers, achieving the best perfor-
mance. Overall, TSE performs better than its variant, identifying
that through the dynamically shared embedding network success-
fully models homophily in a fine-grained way.

4.4.5 Case study for rating distribution. Data sparsity manifests it-
self as items, where a small number of items occupy many ratings,
and the rest have very few ratings. These items with few ratings
are referred to as long-tail items. To further validate the effective-
ness of TSE, we analyzed the prediction results of TSE on different
rating distributions. We chose VG dataset to do this experiment as
TSE achieved better improvements on RMSE than other datasets.
The distribution of VG is long-tailed. The top 6.11% of items hold
34.76% ratings.

Table 5: Comparison results of TSE and a variant that is with-
out the dynamically shared embedding network.

MI OP GGF VG SO
TSE(-D) 0.518 0.499 0.534 0.540 0.462
TSE(H) 0.506 0.477 0.523 0.524 0.443
TSE(S) 0.511 0.464 0.520 0.518 0.441

Figure 7: Model performance on different groups after
grouping by rating distribution.

In this experiment, we first counted the number of ratings for
each item and grouped the items according to the results by Log
Base 2. Then we counted the proportion of the total number of
ratings in each grouping to the total ratings and the prediction
performance of the model in that grouping. The experiment re-
sults are shown in Figure 7. Their RMSE and MAE performances
are better than average in the whole dataset (0.707 on RMSE and
0.518 on MAE). When items have at least 32 ratings, they will
achieve average performance. Compared with TAERT achieving
0.921 on RMSE, TSE significantly improves the performance of
long-tail items. By sharing embedding vectors, the prediction per-
formance of TSE for long-tail items is improved with the help of
head items.

5 CONCLUSION
In this work, we propose a novel review-based recommendation
model, namely two-tier shared embedding (TSE), which incorpo-
rates the advantages of coarse- and fine-grained ways of modeling
homophily. TSE considers global behaviors to model homophily in
a coarse-grained way, and the high-level feature in the process of
each user-item interaction to model homophily in a fine-grained
way. In the review-based recommendation, TSE fuses these two
ways, making accurate predictions. The experimental results on
five real-world datasets show that TSE consistently outperforms
state-of-the-art review-based recommendation methods in terms
of RMSE and MSE. In future work, we plan to investigate graph-
based clustering algorithms to propose amore lightweight and flex-
ible model. In addition, group recommendationmethods give some
insight that can be used to improve our solution further.
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