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ABSTRACT
The sequential recommendation system has been widely studied
for its promising effectiveness in capturing dynamic preferences
buried in users’ sequential behaviors. Despite the considerable
achievements, existing methods usually focus on intra-sequence
modeling while overlooking exploiting global collaborative infor-
mation by inter-sequence modeling, resulting in inferior recommen-
dation performance. Therefore, previous works attempt to tackle
this problem with a global collaborative item graph constructed
by pre-defined rules. However, these methods neglect two crucial
properties when capturing global collaborative information, i.e.,
adaptiveness and personalization, yielding sub-optimal user rep-
resentations. To this end, we propose a graph-driven framework,
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named Adaptive and Personalized Graph Learning for Sequential
Recommendation (APGL4SR), that incorporates adaptive and per-
sonalized global collaborative information into sequential recom-
mendation systems. Specifically, we first learn an adaptive global
graph among all items and capture global collaborative information
with it in a self-supervised fashion, whose computational burden
can be further alleviated by the proposed SVD-based accelerator.
Furthermore, based on the graph, we propose to extract and utilize
personalized item correlations in the form of relative positional
encoding, which is a highly compatible manner of personalizing the
utilization of global collaborative information. Finally, the entire
framework is optimized in a multi-task learning paradigm, thus
each part of APGL4SR can be mutually reinforced. As a generic
framework, APGL4SR can not only outperform other baselines with
significant margins, but also exhibit promising versatility, the abil-
ity to learn a meaningful global collaborative graph, and the ability
to alleviate the dimensional collapse issue of item embeddings. The
code is available at https://github.com/Graph-Team/APGL4SR.
CCS CONCEPTS
• Information systems→ Personalization.
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1 INTRODUCTION
The recommendation system has been an important research di-
rection, aiming to model users’ preferences from their historical
interaction records and further recommend personalized items to
them[52, 53, 65]. However, in a real-world scenario, users’ prefer-
ences exhibit a trend of dynamic changes over time, rendering it
hard to obtain accurate user preference representations. In this con-
text, the sequential recommendation (SR) system has been widely
studied for its promising effectiveness in capturing dynamic prefer-
ences buried in users’ sequential behaviors[8, 16, 20, 40, 45, 46].

Generally speaking, the crux of sequential recommendation
lies in fully discovering the item transition patterns within users’
interaction sequences, and encoding them into user representa-
tions. Recently, with the development of deep learning, enormous
amounts of work are devoted to learning meaningful user represen-
tations with various deep neural networks, including Convolutional
Neural Network[40, 41, 60], Recurrent Neural Network[16, 24, 30],
Transformer[20, 25, 39] andGraphNeural Network (GNN)[4, 54, 58].
Among these works, the Transformer-based methods have been
dominant for their promising representational power, GNN-based
methods have also been widely studied for their capability to cap-
ture complex item transition patterns within interaction sequences.

Despite the promising results achieved by the aforementioned
methods, most of them only focus on mining information from an
individual sequence. However, other sequences with similar item
transition patterns, i.e., sub-sequences, can also contribute to the
recommendation of the current sequence. Overlooking such infor-
mation, which we define as global collaborative information,
will limit the representational power of the learned user repre-
sentations. For instance, Fig. 1 is a sequential recommendation
scenario, wherein four users 𝑢1, 𝑢2, 𝑢3, and 𝑢4 interacted with some
items chronologically. The purpose of an SR model is to predict
one next item for each user according to their historical interaction
records. Based on pre-defined rules like connecting items with co-
occurrence relationships, we can construct a global item graph with
the sequences. In the graph, we can find the T-shirt is relevant to
pants. When recommending a new item to user𝑢1, who just clicked
a T-shirt, the RS can increase the confidence of recommending a
pair of pants to 𝑢1. However, we argue that the global collaborative
information obtained from the rule-based graph is sub-optimal due
to the absence of two essential properties: (1) Adaptiveness. The
graph should be able to adaptively detect noisy and underlying
edges, e.g., the edge weight between the T-shirt and the earphones
could be decreased as they are not relevant intuitively, and we
may add an edge between the intuitively similar earphones and the
smartwatch. (2) Personalization. The global collaborative infor-
mation should have varying effects on distinct users, e.g., a fan of
electronics like user 𝑢4 may insist on clicking another electronic
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Figure 1: A toy example to illustrate the importance of global
collaborative modeling in sequential recommendation sys-
tems. The graph is constructed based on the rules in Sec. 3.2.

even though he or she just clicked a T-shirt. Motivated by these
issues, we intend to incorporate adaptive and personalized global
collaborative information into sequential recommendation systems.

Nevertheless, how to obtain adaptive global collaborative infor-
mation in the form of a graph and meticulously utilize it remains
to be further explored. Several attempts have been made to address
the above issues[27, 48, 66], which we argue is not the optimal so-
lution. Considering the graph acquisition, both GCE-GNN[48] and
GCL4SR[66] construct a fixed global item transition graph with pre-
defined rules, which may include noisy edges or neglect underlying
edges as mentioned above. DGNN[27] proposes to learn explicit
and implicit connections among global items, which can increase
its adaptiveness. However, its modeling scope is limited to items
within a single batch for efficiency rather than all items, thereby
rendering it challenging to capture diverse collaborative informa-
tion among items. As for graph utilization, only a few works have
considered extracting personalized information from the global
graph, e.g., GCL4SR generates user-specific graph representations
and directly combines them with sequential representations. How-
ever, we observe that the combination-based strategy will yield
inferior results. Intuitively, the two representations lie in different
latent spaces, simply combining them with linear projection may
lead to information degeneration.

Therefore, to incorporate global collaborative information into
sequential recommendation systems, we are faced with two main
challenges: (1) How to capture adaptive global collaborative infor-
mation effectively and efficiently. The rule-based graph construc-
tion will lead to biased representations, while directly modeling the
implicit connections between all pairs of items will result in unac-
ceptable time and space complexity. (2) How to extract and utilize
personalized information from the global collaborative information.
As mentioned before, to avoid the information degeneration issue,
we need to realize a personalized utilization of global collaborative
information in a more compatible way.

In order to fully mine the global collaborative information and ad-
dress the above challenges, we propose a graph-driven framework,
named Adaptive and Personalized Graph Learning for Sequential
Recommendation (APGL4SR), that incorporates adaptive and per-
sonalized global collaborative information into sequential recom-
mendation systems with self-supervised learning. Firstly, we pro-
pose an adaptive global collaborative learner, which adaptively
learns a refined global graph among all items and captures global

https://doi.org/10.1145/3583780.3614781
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collaborative information via mutual information maximization,
and then the computational complexity can be reduced with the
proposed SVD-based acceleration strategy, which in total incor-
porate global collaborative information into item representations
effectively and efficiently. Then, we present a personalized graph
extractor, extracting item correlations from the global collaborative
graph in the form of relative positional encoding and transforming
them with user-specific embedding. By injecting obtained relative
position encoding into the Transformer encoder, we can realize
personalized utilization of the global collaborative information for
each user in a highly compatible manner. Finally, we leverage a
multi-task learning paradigm to optimize the entire framework
in an end-to-end fashion, by which the adaptive global collabora-
tive learner and the subsequent sequential model can be mutually
reinforced. Our main contributions are summarized as follows:
• We study a novel problem in the sequential recommendation to
learn adaptive and personalized global collaborative information.
• We develop an adaptive global collaborative learner to capture
global collaborative information. With the aid of the module,
we can learn a global collaborative graph carrying meaningful
information by adaptively refining the graph, whose efficiency is
guaranteed by the proposed SVD-based accelerator.
• We propose a personalized graph extractor to meticulously uti-
lize global collaborative information for each specific user. With
the proposed module, we can extract and leverage personalized
information from the global graph in a highly compatible manner.
• As a generic framework, APGL4SR can not only outperform other
baselines with significant margins on four public datasets, but
also exhibit promising versatility, the ability to learn a mean-
ingful global collaborative graph, and the ability to alleviate the
dimensional collapse issue of item embeddings.

2 RELATEDWORKS
2.1 Sequential Recommendation System
As a main branch of recommendation systems, sequential recom-
mendation (SR) aims to capture dynamic preferences in chrono-
logically organized user behaviors for more accurate and timely
results[8, 29, 45, 46, 50]. Before the dawn of deep learning, conven-
tional methods attempted to employ machine learning approaches
to model item transition patterns in sequences, such as KNN-based
methods[10, 31, 38] and Markov-Chain-based methods[13, 37].

With the development of deep learning, some deep sequential rec-
ommendation models were presented to model the complex sequen-
tial interest with deep neural networks: Caser[40] and CosRec[60]
treated sequences as images and adopted Convolutional Neural Net-
work (CNN) to process the sequences, GRU4Rec[16] and NARM[24]
instead considered Recurrent Neural Network (RNN) and its vari-
ants to capture dynamic user preferences. Among all the deep se-
quential recommendation system models, Transformer[42]-based
approaches like SASRec[20] and BERT4Rec[39] are currently domi-
nant for their powerful modeling capability. Besides, Graph Neural
Networks (GNN) have also been prevalent for their capability to
capture high-order structures[44, 53, 55], which are widely adopted
to model complex item transition patterns in users’ sequences.
For example, SR-GNN[54] transformed each user sequence into a
directed graph with pre-defined rules and then utilized multiple

GatedGNN layers upon the graphs, enabling it to capture more
complicated item transition patterns compared with RNN-based
methods. GC-SAN[58] enhanced the item representations of SR-
GNN with stacked self-attention layers. LESSER[4] further pro-
posed two kinds of session graphs to alleviate the information loss
and long-range dependency capturing problems.

Despite the success, these methods all focused on intra-sequence
modeling while neglecting inter-sequence information, limiting
their representation ability. In this context, GCE-GNN[48] intro-
duced an extra rule-based global graph to model local and global
item relationships simultaneously, while DGNN[27] adopted a
graph neural network with a single gate and an adaptive graph neu-
ral network to capture explicit and implicit dependencies among all
items within a single batch. Unlike both of them, GSL4Rec[49] fo-
cused on session-based social recommendation and learned a global
user-user graph to incorporate global information. In contrast, we
propose to capture the global collaborative information among all
items in a self-supervised learning fashion.

2.2 Self-Supervised Learning in SR
The Self-Supervised Learning (SSL) paradigm has been widely stud-
ied in multiple research communities, e.g., Computer Vision[3, 5, 12,
15, 33, 34], Natural Language Processing[7, 23], and non-sequential
recommendation systems[2, 51, 56, 62–64]. SSL has recently been
introduced into sequential recommendation systems to alleviate the
data sparsity issue. Some pioneer works construct self-supervised
tasks at the data level. S3-Rec[69] devised four auxiliary pre-training
tasks to model correlations among different views of raw data. Un-
like S3-Rec, CL4SRec[57] focused on exploring contrastive learning
on user behavior sequences with sequence level augmentations, e.g.,
crop, mask, or reorder, to yield better user representations. Except
for data level SSL tasks, ICLRec[6] performed contrastive learning
by contrasting user sequence representations and the intent pro-
totype representations, DuoRec[35] constructed augmented repre-
sentations efficiently by treating Transformer output with different
dropout masks as positive samples, GCL4SR[66] and GUESR[11]
leveraged graph contrastive learning on rule-based global item
graphs to capture global collaborative information. Instead, our
approach is to develop an adaptive global collaborative learner to
obtain better global collaborative information and personalize the
utilization of global collaborative information effectively.

2.3 Graph Structure Learning
In this paper, rather than rule-based graphs introduced in Sec.
2.1, we intend to learn an adaptive global item graph to capture
global collaborative information, so we introduce the graph struc-
ture learning technique to achieve this. Graph Structure Learning
(GSL) has been studied recently in pursuit of an optimal graph
structure[70]. There are two critical steps to obtain an optimal
graph: graph structure modeling and post-processing. The graph
structure modeling aims to model the weight of all edges based on
metric-based approaches, neural-based approaches, or direct ap-
proaches. Metric-based methods leverage different kernel functions
like Gaussian kernels[26] or inner-product kernels[67] to measure
node similarities. Neural-based methods incorporate complex deep
neural networks to construct the intrinsic connection of nodes, e.g.,
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GAT[43] or Graphormer[61]. Rather than learning pair-wise node
relationships, direct approaches[9, 18, 59] regard the adjacency
matrix as free variables to learn with some structural hypothesis
on the learned graph. After obtaining an intermediate graph, the
graph will be post-processed to ensure desired properties. General
post-processing techniques include discrete sampling and residual
connection. In this paper, we introduce GSL to address a novel prob-
lem, where we aim to learn an adaptive and personalized global
item graph in the sequential recommendation to capture refined
global collaborative information.

3 PRELIMINARIES
3.1 Problem Definition
In sequential recommendation, the main task is to infer user pref-
erence representations from users’ historical interaction records
and recommend the next item to them. Specifically, considering a
sequential recommendation system, we denoteU as a set of users
andV as a set of items, and |U| and |V| is the number of users and
items respectively. As users’ interaction records can be organized
chronologically, we can define the interaction sequence of a user
𝑢 ∈ U as 𝑠𝑢 = [𝑣1, 𝑣2, . . . , 𝑣𝑡 , . . . , 𝑣 |𝑠𝑢 | ], where 𝑣𝑡 ∈ V is the item
interacted by user 𝑢 at time step 𝑡 , |𝑠𝑢 | is the length of the sequence
and has a maximum length of 𝑁 . Then we can define the next item
prediction task, which aims to predict the item at the next time step
𝑣 |𝑠𝑢 |+1 for each user 𝑢 ∈ U.

3.2 Rule-Based Global Item Transition Graph
Conventional SR methods focus on intra-sequence modeling while
overlooking exploiting global collaborative information modeling
by inter-sequence modeling, resulting in inferior user representa-
tions. To this end, we propose to capture the global collaborative
information with a global item transition graph. However, we are
only given the interaction records of users without an available
global item graph. Therefore, we intend to learn the graph with
GSL introduced in Sec. 2.3, where the noisy edges and underlying
edges mentioned in Fig. 1 can be adaptively detected.

As we intend to obtain an ideal global item transition graph
with GSL, it is essential to construct an initial graph with relatively
adequate prior knowledge for stable training. Therefore, we lever-
age the rule-based graph which is defined and proved useful in
GCL4SR[66] as our primary graph. Then we will elaborate on how
to construct the graph G with its adjacent matrix A ∈ R |V |× |V | ,
which is initialized as an all-zero matrix.

As illustrated in the right part of Fig. 1, considering the user se-
quence 𝑠𝑢 = [𝑣1, 𝑣2, . . . , 𝑣𝑡 , . . . , 𝑣 |𝑠𝑢 | ] defined in Sec. 3.1, we update
the edge weight asA𝑣1,𝑣𝑘 ← A𝑣1,𝑣𝑘 + 1

𝑘
for each item pair (𝑣1, 𝑣𝑘 )

within a sliding window, where 𝑘 is the size of the sliding window
and we set it to 2 empirically. Taking the sequence of user 𝑢1 in
Fig. 1 as an example, for (𝑣1, 𝑣2), we update A𝑣1,𝑣2 ← A𝑣1,𝑣2 + 1,
and for (𝑣1, 𝑣3), we perform the operation A𝑣1,𝑣3 ← A𝑣1,𝑣3 + 1

2 .
Similarly, we can repeat the above operation for each user sequence
to build an intermediate global item graph, and then we normalize
the adjacency matrix as follows,

A𝑣𝑖 ,𝑣𝑗 ← (
1

𝑑𝑒𝑔(𝑣𝑖 )
+ 1
𝑑𝑒𝑔(𝑣 𝑗 )

)A𝑣𝑖 ,𝑣𝑗 , (1)

where 𝑑𝑒𝑔(·) is the degree of some node in the graph A. Finally,
we make the graph G symmetric and add a self-loop for each node.

3.3 LightGCN
Aswe intend to capture global collaborative information in the form
of graphs, we need a graph encoder to generate graph represen-
tations. Specifically, we select LightGCN[14] for its effectiveness.
In detail, given the (𝑙 − 1)-th layer node embedding E(𝑙−1) , the
message-passing process of LightGCN is defined as follows,

E(𝑙 ) = AE(𝑙−1) (2)

whereA ∈ R |V |× |V | is the adjacency matrix. After multiple layers
of message-passing, the final graph representation is obtained by:

E(𝐿) ← 1
𝐿
(E(0) + E(1) + · · · + E(𝐿) ) (3)

where 𝐿 is the number of LightGCN layers.

4 METHODOLOGY
In this section, we first present a general description of the proposed
model. Then we introduce each part of the model in turn and finally
illustrate the optimization of the entire framework.

4.1 Overall Framework
In this paper, we propose the Adaptive and Personalized Graph
Learning for Sequential Recommendation (APGL4SR) framework
to incorporate adaptive and personalized global collaborative infor-
mation into sequential recommendation systems with SSL, which
is illustrated in Fig. 2. Specifically, we first propose a novel adaptive
global collaborative learner (AGCL) in Sec. 4.2. In the AGCL, we
utilize the GSL technique introduced in Sec. 2.3 to learn a refined
global item correlation graph, whose computational complexity
can be further reduced by the proposed SVD-based acceleration
strategy. Given the original graph and the refined graph, we can
generate two representations respectively, then we maximize their
mutual information to incorporate the adaptive global collaborative
information into item representations. With the enhanced item
representations, we utilize a classic Transformer encoder in Sec.
4.3 to generate user representations. However, distinct users may
exhibit different interests in global collaborative information, so
we further propose a personalized graph extractor (PGE) in Sec. 4.4.
The extractor extracts personalized information from the refined
global graph for individual users in the form of relative positional
encoding, thus it can be naturally combined with the sequential en-
coder in Sec. 4.3. Finally, we elaborate on how to optimize the entire
framework via a multi-task learning paradigm in Sec. 4.5. In this
way, the adaptive global collaborative learner and the sequential
model can be mutually reinforced.

4.2 Adaptive Global Collaborative Learner
Despite the considerable results achieved by intra-sequence mod-
eling, the lack of global collaborative information obtained by
inter-sequence exploitation will result in inferior results. Previ-
ous methods[27, 48, 66] have attempted to alleviate this issue by
introducing a global item graph constructed with pre-defined rules.
However, we argue that the rule-based graph may contain noisy
edges or overlook underlying connections as in Fig. 1, thus we aim
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Figure 2: The framework of the proposed APGL4SR model.
to learn an adaptive global item graph and incorporate the refined
global collaborative information into the sequential modeling in an
SSL fashion. The detailed implementations are as follows.

4.2.1 Refined Graph Representation Learning. We construct
a rule-based global item graph as the initial graph in Sec. 3.2. Then
we intend to refine the graph with small perturbation, which is
formalized in a direct approach fashion introduced in Sec. 2.3:

Â = A + 𝛼A′, (4)

where A ∈ R |V |× |V | is the fixed original graph, A′ ∈ R |V |× |V |
is a fully learnable perturbation graph, 𝛼 is the strength of pertur-
bation, and Â ∈ R |V |× |V | is the refined graph, which will be used
to generate graph representations. Specifically, we can leverage
LightGCN[14] in Sec. 3.3 to generate graph representations. We de-
note node embeddings (item embeddings) as V ∈ R |V |×𝑑 , then we
can obtain the original graph representation E(𝐿) by substituting
E(0) with V, and the refined graph representation Ê(𝐿) by further
substituting A with Â in Eq. 4.

4.2.2 SVD-based Acceleration. However, the computational
complexity of Eq. 4 is quadratic with respect to the number of
items, which is unacceptable for large-scale recommendation sys-
tems. Therefore, we propose an SVD-based acceleration method to
accelerate the learning process of the perturbed graph A′. Specif-
ically, we observe that smaller singular values of real-world item
graphs account for the majority of all singular values, so we make
the same assumption for the perturbed graph, which enables us to
accelerate the modeling of A′ as we only need to model a small
portion of dominating singular values. In this way, instead of con-
structing the whole perturbed graph, we alternate to learn the SVD
decomposition of it, which can be formalized as follows,

A′ = (AW𝑈𝑆 ) (AW𝑉 )𝑇 , (5)

where W𝑈𝑆 ∈ R |V |×𝑑
′
and W𝑉 ∈ R |V |×𝑑

′
are both learnable

parameters, 𝑑′ is a hyper-parameter used to control the rank of the
decomposed perturbed graph. With the decomposition form of A′,
we can now re-write Eq. 2 as,

E(𝑙 ) = AE(𝑙−1) + (AW𝑈𝑆 ) (AW𝑉 )𝑇 E(𝑙−1) , (6)

where we can first compute (AW𝑉 )𝑇 E(𝑙−1) , whose complexity is
𝑂 ( |V|𝑑𝑑′), and then left multiply AW𝑈𝑆 onto the result, whose
complexity is also 𝑂 (V𝑑𝑑′). If we choose a small 𝑑′ ≪ |V|, we
can reduce the time and space complexity from quadratic to linear.

4.2.3 Global Collaborative Information Encoding. Previous
methods like GC-SAN[58] directly feed the graph-enhanced item
embedding E(𝐿) into the sequential encoder defined in 4.3, but we
empirically find it ineffective. Thus, we instead leverage an SSL par-
adigm to incorporate the refined global collaborative information
into item representations efficiently, which is accomplished through
mutual information maximization [17, 69]. Formally, the mutual
information between two random variables 𝑋 and 𝑌 is defined as:

𝐼 (𝑋 ;𝑌 ) ≡ 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) ≡ 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ), (7)

where 𝐻 (𝑋 ) and 𝐻 (𝑌 ) are the individual information entropy of 𝑋
and𝑌 respectively while𝐻 (𝑋 |𝑌 ) and𝐻 (𝑌 |𝑋 ) are conditional infor-
mation entropy. Although it is intractable to directly maximize the
mutual information, we can estimate it effectively by InfoNCE[33]:

L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 = −
𝐾∑︁
𝑖=1

log
𝑒 𝑓 (𝑥𝑖 ,𝑦𝑖 )∑𝐾
𝑗=1 𝑒

𝑓 (𝑥𝑖 ,𝑦 𝑗 )
, (8)

where 𝐾 is the number of samples and 𝑓 is a critic function. In
this work, graph representation generated based on the original or
refined graph should possess similar information, so we intend to
maximize the mutual information between the original graph and
the refined graph. Specifically, we compute Eq. 8 within a batch,
and instantiate 𝑓 as the cosine similarity between the original and
refined graph representation, which can be formalized as follows:

L𝑔𝑐𝑒 = −
|𝐵 |∑︁
𝑖=1

log
𝑒𝑐𝑜𝑠 (e

(𝐿)
𝑖
,ê(𝐿)
𝑖
)/𝜏∑ |𝐵 |

𝑗=1 𝑒
𝑐𝑜𝑠 (e(𝐿)

𝑖
,ê(𝐿)

𝑗
)/𝜏
, (9)

where e(𝐿)
𝑖
∈ E(𝐿) and ê(𝐿)

𝑖
∈ Ê(𝐿) are obtained in Sec. 4.2.1, 𝜏 is a

temprature hyper-parameter, which we fix to 0.2 empirically.

4.3 Sequential Modeling
With the global-information-enhanced item embeddings, now we
can incorporate the adaptive global collaborative information into
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the sequential modeling process. Specifically, we follow previous
works[6, 20, 57] to adopt a Transformer[42]-based encoder for its
powerful capability. A Transformer-based encoder takes sequences
of item embedding as input and consists of several multi-head
self-attention (MHSA) layers and feed-forward (FFN) layers.

Considering a sequence 𝑠𝑢 = [𝑣1, 𝑣2, . . . , 𝑣𝑡 , . . . , 𝑣 |𝑠𝑢 | ] defined in
Sec. 3.1, we first project them into a sequence of item embedding
[v1, v2, . . . , v𝑡 , . . . , v |𝑠𝑢 | ], where v𝑡 is the embedding vector of item
𝑣𝑡 . Then we add a learnable positional encoding P ∈ R𝑁×𝑑 onto the
item embeddings to obtain the input of Transformer layers H(0) .
Moreover, given the output H(𝑙−1) ∈ R𝑁×𝑑 at the (𝑙 − 1)-th layer,
output at the 𝑙-th layer H(𝑙 ) can be obtained by:

H(𝑙 ) = 𝐹𝐹𝑁 (𝑀𝐻𝑆𝐴(H(𝑙−1) )), (10)

where a single head of MHSA is defined as follows,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q,K,V) =
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
QK𝑇
√
𝑑

))
V, (11)

where Q, K, and V are the query, key, and value matrix of the
Transformer layers. Assuming the output of the last layer 𝐿 is
H(𝐿) = [h(𝐿)1 , h(𝐿)2 , . . . , h(𝐿)|𝑠𝑢 | ], we treat the last hidden vector h(𝐿)|𝑠𝑢 |
as users’ preference representations.

With the generated user representations and the item embed-
dings, the sequential model can be optimized by the next item
prediction loss as follows,

L𝑟𝑒𝑐 =
|U |∑︁
𝑢=1

|𝑠𝑢 |∑︁
𝑡=2
(− log(𝜎 (h𝑢𝑡−1 · v

𝑢
𝑡 )) −

∑︁
𝑣𝑗∉𝑠𝑢

log(1 − 𝜎 (h𝑢𝑡−1 · v𝑗 ))),

(12)
where h𝑢

𝑡−1 is the preference representation of user 𝑢 at time step
𝑡 − 1, v𝑢𝑡 is the embedding of the target item in 𝑠𝑢 , and we ran-
domly sample one negative item 𝑣 𝑗 at each time step 𝑡 for each
sequence. The purpose of Eq. 12 is to maximize the probability of
recommending the expected next item 𝑣𝑢𝑡 to the user 𝑢 given the
user’s preference representation h𝑢

𝑡−1, which is obtained from the
previous sequences [𝑣1, 𝑣2, . . . , 𝑣𝑡−1].

4.4 Personalized Graph Extractor
The graph introduced in Sec. 4.2 focuses on encoding global collabo-
rative information, reflecting general connections among items. But
in the end, we aim to model the item correlation for each specific
user. So we propose to extract personalized information from the
global graph. Previous work[66] fuses the personalized information
with the sequential information in the representation level. How-
ever, we empirically find it less effective and we suspect it is caused
by the incompatibility between graph and sequential representa-
tions. Therefore, we intend to maintain two required properties of
the extracted information: compatibility and personalization.

Considering compatibility, as the self-attention mechanism can
also be regarded as learning edge weights between item pairs within
a sub-graph, we propose to inject the personalized global collabora-
tive information into the sequential encoder in the form of relative
positional encoding, with which the attention computation in Eq.
11 can be formalized as follows,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q𝑢 ,K𝑢 ,V𝑢 ) =
(
𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
Q𝑢K𝑇𝑢√

𝑑
+ P′𝑢

))
V𝑢 , (13)

Table 1: Statistics of the datasets.

Dataset Beauty Sports Toys Yelp
|U| 22,363 35,598 19,412 30,431
|V| 12,101 18,357 11,924 20,033
# Interactions 0.2m 0.3m 0.17m 0.3m
Avg. length 8.9 8.3 8.6 8.3
Sparsity 99.95% 99.95% 99.93% 99.95%

where𝑢 ∈ U is some user, and P′𝑢 ∈ R𝑁×𝑁 is the relative positional
encoding matrix generated for this user.

Then we need to specify the relative positional encoding for
the consideration of personalization. To meet the requirement, we
introduce a personalized embedding vector s𝑢 ∈ R1×𝑑 for each
user. Specifically, given the user 𝑢’s interaction sequence 𝑠𝑢 =

[𝑣1, 𝑣2, . . . , 𝑣𝑡 , . . . , 𝑣𝑁 ], we can extract a sub-graph Ã ∈ R𝑁×𝑁
from the global item graph according to the interacted items in
𝑠𝑢 , and then we can obtain the personalized relative positional
encoding for the user 𝑢 as follows,

P′𝑢 = 𝑀𝐿𝑃 (s𝑢 )Ã, (14)

where𝑀𝐿𝑃 (·) is used to project the user embedding vector into a
scalar, measuring the importance 𝑢 places on global information.

Through combining Eq. 13 and Eq. 14, we can extract personal-
ized information from the global graph for each user and integrate
them with the sequential encoder in a highly compatible way.

4.5 Model Optimization
4.5.1 Learning Objective. We leverage a multi-task learning
paradigm to simultaneously optimize the entire framework:

L𝑡𝑜𝑡𝑎𝑙 = L𝑟𝑒𝑐 + 𝜆1L𝑔𝑐𝑒 + 𝜆2L𝑠𝑒𝑞, (15)

where L𝑟𝑒𝑐 is the next item prediction loss in Eq. 12, L𝑔𝑐𝑒 is the
global collaborative encoding loss in Eq. 9, L𝑠𝑒𝑞 is the sequence-
level contrastive learning task introduced in CL4SRec[57], which
augments sequences by cropping, masking or reordering, and 𝜆1
and 𝜆2 are hyper-parameters that are used to control the strength
of the two SSL objectives respectively.

4.5.2 Computational Complexity. The computational complex-
ity mainly comes from the adaptive global collaborative learner,
so we only discuss its complexity for brevity. The complexity of
the message-passing operation of LightGCN in Eq. 2 is 𝑂 ( |E |𝑑),
where |E | is the number of edges in the graph A. With the SVD-
acceleration strategy in Sec. 4.2.2, we can reduce the computa-
tional complexity of learning a perturbation graph from 𝑂 ( |V|2)
to 𝑂 ( |V|𝑑𝑑′). And the complexity of the InfoNCE loss in Eq. 9 is
𝑂 ( |𝐵 |2𝑑). Therefore, the entire complexity of the adaptive global
collaborative learner is𝑂 ( |E |𝑑 + |V|𝑑𝑑′ + |𝐵 |2𝑑). As we can choose
𝑑′ ≪ |V| and a small batch size 𝐵, the final computational com-
plexity is linear with respect to the number of interaction records.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Settings
5.1.1 Datasets. To validate the effectiveness of our proposed
method, we conduct experiments on four publicly available and
widely adopted datasets:
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• Beauty, Sports, Toys1: Introduced in [32], the Amazon-review
data is collected from one of the biggest e-commerce website
Amazon and widely used in evaluating recommendation systems.
We select three categories "Beauty", "Sports and Outdoors" and
"Toys and Games" from the collection.
• Yelp2: This is a business review dataset that treats restaurants,
bars, and other local businesses as items.
As for preprocessing the datasets, we follow [6, 57] to ensure

each user and item has at least 5 associated interactions. Afterward,
we group the interaction records by users and sort each interaction
group by the timestamp to get each user’s interaction sequence.
Statistics of the preprocessed datasets are summarized in Table 1.

5.1.2 Evaluation Protocols. To evaluate the top-K recommenda-
tion performance, we consider the commonly used leave-one-out
strategy as [6, 20, 57]. Specifically, we utilize the most recent in-
teraction in each user’s sequence as the test data, the second most
recent interaction as the validation data, and all the remaining inter-
actions as training data. As for the evaluation metrics, we employ
HR and NDCG, which are used in previous works[6, 20, 57]. Besides,
following the suggestion of Krichene and Rendle[22], we adopt the
whole item set as the candidate item set during evaluation to avoid
the sampling bias of the candidate selection.

5.1.3 Compared Baselines. We compare the performance of
our method with several kinds of state-of-the-art baselines, whose
detailed information can be found in Sec. 4.3.
• Non-sequential methods: BPR-MF[36] is a simple yet effective
matrix factorization method with a pair-wise Bayesian Personal-
ized Ranking (BPR) loss function.
• General sequential methods: We include a CNN-based method
Caser[40], a RNN-basedmethodGRU4Rec[16] and a Transformer-
based method SASRec[20].
• Graph-based sequential methods: We choose two local-graph-
based baselines SR-GNN[54] and GC-SAN[58] as our baselines.
As for global-graph-based approaches, we choose GCE-GNN[48]
and a GSL-based method DGNN[27].
• SSL-based sequential methods: As the main competitors of
APGL4SR, we select SSL-based baselines from multiple perspec-
tives. CL4SRec[57] is a sequence-level SSL baseline, DuoRec[35]
performs contrastive learning in the model level, ICLRec[6] pro-
poses an intent-level SSL paradigm, and GCL4SR[66] introduces
graph contrastive learning for graph-level SSL.

5.1.4 ImplementationDetails. We implement SASRec, CL4SRec,
ICLRec, andAPGL4SR based on the framework provided by ICLRec3,
other baselines are implemented with RecStudio[28] and RecBole-
GNN[68]. The maximum number of training epochs is set to 1000
and the training procedure will be early stopped when NDCG@20
on the validation data doesn’t increase for 40 epochs. For all meth-
ods, we adopt the following settings to perform a fair comparison:
the training batch size 𝐵 is fixed to 256, Adam[21] with a learning
rate of 1e-3 is used as the optimizer, the embedding size 𝑑 is set to
64 and the maximum sequence length 𝑁 is set to 50 for all datasets.
For each baseline, all other hyper-parameters are searched as the
1http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/
2https://www.yelp.com/dataset
3https://github.com/salesforce/ICLRec

original papers suggest. Notably, we utilize BCE loss in Eq. 12 as
the next item prediction loss for all the methods rather than CE
loss adopted by previous methods[35, 66] for fair comparisons.

Considering particular hyper-parameters of APGL4SR, we set
the number of LightGCN layers 𝐿 and perturbation strength 𝛼 in
Eq. 3 as 2 and 0.05 respectively, and we set 𝑑′ in Eq. 5 to 256 for
efficiency. As for the sequential encoder, the number of attention
heads is set to 2 and the number of layers is searched among [1, 2, 3].
As for the strength of SSL tasks, we search the strength of global
collaborative encoding loss 𝜆1 among [0.05, 0.1, 0.2, 0.4] and fix the
strength of sequence-level SSL loss 𝜆2 to 0.1.

5.2 Overall Performance
In this subsection, we compare the overall performance of all meth-
ods, which is presented in Table 2. We can draw the following
conclusions from the results: (1) By comparing BPR-MF and other
sequential methods, we can find BPR-MF basically yields worse
results, indicating the significance of capturing dynamic user pref-
erences. (2) By comparing graph-based SR methods, we can observe
that GCE-GNN outperforms SR-GNN,which can be attributed to the
introduced global collaborative information. Though GC-SAN can
yield better results than GCE-GNN, this is mainly due to it adopting
a Transformer-based encoder. So we can observe that DGNN can
beat GC-SAN because it considers global information and stronger
sequential encoders simultaneously. (3) By comparing SSL-based
methods and non-SSL methods, we can observe that SSL-based
consistently perform better than non-SSL baselines, which mainly
comes from the effectiveness of SSL in alleviating the data-sparsity
issue. (4) By comparing the proposed APGL4SR with other SSL-
based methods, APGL4SR consistently outperforms other baselines
on all datasets. On the one hand, our method incorporates global
collaborative information into the sequential modeling process,
yielding better user representations than CL4SRec, DuoRec, and
ICLRec. On the other hand, the proposed two modules realize the
adaptive construction and compatible utilization of the global col-
laborative graph respectively, which generates more refined global
collaborative information than GCL4SR.

5.3 Ablation Study
In this subsection, we intend to demonstrate the effectiveness of
each module of APGL4SR. The results are presented in Table 3,
wherein (B) removes the adaptive global collaborative learner while
(C) removes the personalized graph extractor. By comparing (A) and
(B), we can observe that the performance can be greatly improved by
incorporating global collaborative information into the initial item
representations, demonstrating the importance of modeling global
collaborative information. By comparing (A) and (C), we can find
the personalized global collaborative information injected into the
sequential encoder can help it to learn better user representation.

Besides, we aim to prove the effectiveness of APGL4SR com-
pared with existing graph construction and utilization strategies,
so we further introduce some variants in Table 3. We notice that
LightGCL[2] proposes to directly contrast representations from the
original graph and a reconstructed graph by SVD, so we add a vari-
ant (D) that replaces A′ in Eq. 4 with a fixed graph reconstructed
from SVD decomposition. Moreover, to validate the importance of

http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/
https://www.yelp.com/dataset
https://github.com/salesforce/ICLRec
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Table 2: The overall performance of all baselines. The best result is bolded while the second-best result is underlined in each
row. We run the proposed method and the most competitive baselines with ten different random seeds and analyze statistical
significance, where * represents p-value < 0.01, ** represents p-value < 0.001.

Dataset Metrics BPR Caser GRU4Rec SASRec SR-GNN GC-SAN GCE-GNN DGNN CL4SRec GCL4SR DuoRec ICLRec APGL4SR Improv

Beauty

HR@5 0.0191 0.0228 0.0190 0.0356 0.0231 0.0309 0.0260 0.0371 0.0453 0.0415 0.0449 0.0496±0.0010 0.0543±0.0010 9.47%**
HR@20 0.0527 0.0601 0.0568 0.0855 0.0609 0.0798 0.0653 0.0876 0.1045 0.1012 0.1039 0.1059±0.0013 0.1093±0.0011 3.19%**
NDCG@5 0.0119 0.0135 0.0119 0.0227 0.0133 0.0163 0.0157 0.0240 0.0294 0.0263 0.0284 0.0323±0.0006 0.0372±0.0007 12.8%**
NDCG@20 0.0218 0.0272 0.0224 0.0373 0.0264 0.0302 0.0286 0.0392 0.0461 0.0421 0.0453 0.0480±0.0006 0.0527±0.0006 8.07%**

Sports

HR@5 0.0129 0.0154 0.0110 0.0183 0.0152 0.0161 0.0154 0.0197 0.0261 0.0233 0.0265 0.0272±0.0005 0.0299±0.0007 9.56%**
HR@20 0.0344 0.0399 0.0289 0.0450 0.0405 0.0437 0.0425 0.0470 0.0611 0.0571 0.0615 0.0637±0.0007 0.0664±0.0009 4.30%**
HR@5 0.0091 0.0114 0.0065 0.0135 0.0075 0.0084 0.0082 0.0139 0.0166 0.0145 0.0169 0.0179±0.0002 0.0201±0.0006 12.0%**
HR@20 0.0136 0.0178 0.0115 0.0186 0.0153 0.0162 0.0159 0.0203 0.0263 0.0232 0.0267 0.0281±0.0002 0.0304±0.0007 8.11%**

Toys

HR@5 0.0181 0.0142 0.0178 0.0431 0.0282 0.0417 0.0312 0.0445 0.0535 0.0501 0.0542 0.0577±0.0005 0.0627±0.0009 8.64%**
HR@20 0.0495 0.0431 0.0467 0.0886 0.0645 0.0863 0.0721 0.0921 0.1098 0.1042 0.1121 0.1136±0.0010 0.1176±0.0012 3.43%**
NDCG@5 0.0135 0.0094 0.0114 0.0283 0.0191 0.0253 0.0223 0.0291 0.0365 0.0326 0.0372 0.0393±0.0005 0.0433±0.0005 10.1%**
NDCG@20 0.0225 0.0172 0.0194 0.0409 0.0292 0.0382 0.0343 0.0421 0.0528 0.0487 0.0537 0.0551±0.0003 0.0588±0.0006 6.72%**

Yelp

HR@5 0.0112 0.0137 0.0129 0.0160 0.0117 0.0150 0.0121 0.0166 0.0227 0.0204 0.0215 0.0239±0.0005 0.0248±0.0005 3.82%*
HR@20 0.0371 0.0401 0.0369 0.0437 0.0375 0.0417 0.0382 0.0452 0.0629 0.0587 0.0621 0.0650±0.0004 0.0670±0.0003 3.07%**
NDCG@5 0.0084 0.0088 0.0078 0.0101 0.0087 0.0096 0.0091 0.0105 0.0143 0.0121 0.0137 0.0150±0.0003 0.0157±0.0002 4.43%*
NDCG@20 0.0143 0.0152 0.0145 0.0177 0.0148 0.0171 0.0157 0.0180 0.0255 0.0214 0.0246 0.0264±0.0001 0.0274±0.0002 3.66%**

Table 3: Abalation study of APGL4SR on NDCG@20.

Model Beauty Sports Toys Yelp
(A) APGL4SR 0.0538 0.0308 0.0584 0.0275
(B) w/o AGC 0.0470 0.0271 0.0535 0.0261
(C) w/o PGE 0.0526 0.0297 0.0573 0.0267
(D) A𝑆𝑉𝐷 0.0089 0.0079 0.0525 0.0248
(E) Fusion 0.0370 0.0195 0.0398 0.0178

compatibility, we further introduce a variant (E) that directly fuses
graph representation and sequential representation with an MLP
instead of the graph extractor. By comparing (A) and (D), we can
find the performance of (D) drops severely in several datasets. The
reason might be that our refined graph can be jointly optimized,
by which we can obtain a more adaptive graph to incorporate the
global collaborative information. Besides, by comparing (A) and (E),
we can observe a significant performance drop when we directly
fuse the graph and sequential representations, demonstrating the
necessity of compatibility of personalized graph extraction.

5.4 Hyper-parameter Sensitivity
We investigate the hyper-parameter sensitivity of our method in
this section. Specifically, we focus on how the strength of global
collaborative encoding loss 𝜆1 in Eq. 15 and the strength of graph
perturbation in Eq. 4 influence the recommendation performance.
We only report the results on Beauty and Toys dataset for simplicity.

5.4.1 Strength of Global Collaborative Encoding 𝜆1. We set
𝜆1 in the range of [0, 0.01, 0.05, 0.1, 0.2, 0.4] and the results are de-
picted in Fig. 3. In the figure, we can observe that the performance
exhibits an increasing trend as 𝜆1 increases because the global
collaborative information incorporated into item embeddings can
provide useful information for subsequent sequential modeling.
However, the performance begins to decrease when 𝜆1 exceeds a
threshold. The reason is that the large 𝜆1 will force item embed-
dings to encode excessive global collaborative information, instead
preventing sequential signal modeling in subsequent modules.
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Figure 3: Recommendation Performance w.r.t 𝜆1
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Figure 4: Recommendation Performance w.r.t 𝛼
5.4.2 Strength of Graph Perturbation 𝛼 . We set 𝛼 in the range
of [0, 0.01, 0.05, 0.1, 0.2, 0.5], and the results are illustrated in Fig.
4. We can observe the performance increases at first and then de-
creases, which means that we should control the strength of the
graph perturbation. When 𝛼 becomes too small, the refined graph
is not flexible enough to provide informative training signals. How-
ever, too large 𝛼 will make the refined graph fluctuate greatly,
impairing the final performance.

5.5 Further Experiments
In this subsection, we will conduct some in-depth experiments to
further verify and explain the effectiveness of the proposed method.
First, we intend to demonstrate the versatility of the proposed
framework. Then we verify the effectiveness of the refined graph
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Table 4: Analysis of versatility of APGL4SR on NDCG@20.

Model Beauty Sports Toys Yelp
(A) GRU4Rec 0.0224 0.0115 0.0194 0.0145
(B) GRU4Rec+AGL 0.0290 0.0152 0.0254 0.0180
(C) SASRec 0.0373 0.0186 0.0409 0.0177
(D) SASRec+APGL 0.0452 0.0244 0.0513 0.0195
(E) ICLRec 0.0480 0.0281 0.0551 0.0264
(F) ICLRec+APGL 0.0521 0.0290 0.0581 0.0273
(G) APGL4SR 0.0538 0.0308 0.0584 0.0275

Table 5: Analysis of the effectiveness of the adaptive graph.

Model Beauty Sports Toys Yelp
(A) APGL4SR 0.0538 0.0308 0.0584 0.0275
(B) FPG 0.0532 0.0291 0.0599 0.0271
(C) NP 0.0483 0.0272 0.0535 0.263

in Eq. 4. Finally, we illustrate the superiority of our method in
alleviating the dimensional collapse issue of item embeddings.

5.5.1 Analysis on Versatility of APGL4SR. As a generic frame-
work, the proposed modules can be easily applied to other se-
quential models. So we apply the two modules to other sequential
methods to demonstrate the effectiveness of the proposed method.
The corresponding results are presented in Table 4, where (B) is
GRU4Rec with the global collaborative learner, while (D) and (F)
are models equipped with both of the proposed modules.

In Table 4, from (A) to (F) we can find that the proposed modules
can greatly improve the performance of the backbone model, which
further confirms the effectiveness of APGL4SR. Besides, we can
observe (F) and (G) produce comparable results, which is probably
because the knowledge learned by ICLRec is a subset of knowledge
obtained by APGL4SR. Moreover, (E) and (G) are both built upon
CL4SRec, but our method achieves better performance, which is be-
cause APGL4SR can capture more global collaborative information
complementing the sequence-level SSL task in CL4SRec.

5.5.2 Analysis on Effectiveness of the Refined Graph. To ver-
ify the effectiveness of the refined graph, we first train an APGL4SR
model from scratch and extract the learned refined graph from the
saved model. Then we train a new APGL4SR model by replacing the
learnable refined graph in Eq. 4 with the extracted refined graph.
The corresponding results are presented in Table 5, where (B) is
the one with a fixed perturbation graph, and (C) means setting 𝛼 to
0 so the graph is not perturbed. The table shows that (A) and (B)
both outperform (C), verifying the importance of learning a more
adaptive global collaborative graph. Besides, even with the graph
fixed, we can find that (B) can still yield comparable or even better
results compared with (A), which demonstrates the effectiveness of
the learned refined graph, i.e., we can learn a more adaptive graph
along with the training of the adaptive global collaborative learner.

5.5.3 Analysis on Avoiding Dimensional Collapse. InfoNCE
loss is known to promote the alignment and uniformity of repre-
sentations on the hyper-sphere[47]. The uniformity of representa-
tions prefers a feature distribution preserving maximal information,
which can greatly alleviate the dimensional collapse issue, i.e., the
embedding vectors only span a lower-dimensional subspace instead
of the entire available embedding space[19]. In this subsection, we

(a) SASRec (b) CL4SRec

(c) ICLRec (d) APGL4SR

Figure 5: Distribution visualizations of item embeddings.
intend to validate the superiority of our method in avoiding the
dimensional collapse of the item embeddings, so we project the
item embeddings learned on Beauty to 2D by SVD as in [35].

The visualizations of item embeddings are plotted in Fig. 5. From
Fig. 5, we can observe item embeddings of SASRec coalesce in the
latent space, resulting in less discriminative representations. By
introducing some SSL tasks, item embeddings of CL4SRec achieve
better uniformity. Surprisingly, we find ICLRec exhibits worse uni-
formity than CL4SRec though it yields better results. We suspect the
reason may be that there exists meaningless uniformity in represen-
tations of CL4SRec, i.e., some relevant embeddings are unexpectedly
pushed away. In contrast, our method can achieve more meaningful
uniformity with the incorporation of adaptive global collaborative
information, alleviating the dimensional collapse issue.

6 CONCLUSIONS
In this paper, we proposed a generic framework named APGL4SR
to incorporate adaptive and personalized global collaborative in-
formation into sequential recommendation systems. We designed
a novel learner to incorporate adaptive global collaborative infor-
mation into item representations effectively and efficiently. Then
we proposed a highly compatible personalized graph extractor to
extract personalized information from the learned global graph for
each user. Furthermore, we utilize a multi-task learning framework
to train the entire model in an end-to-end fashion. As a generic
framework, APGL4SR can not only outperform other baselines with
significant margins on four public datasets, but also exhibit promis-
ing versatility, the ability to learn a meaningful global collaborative
graph, and the ability to alleviate the dimensional collapse issue
of item embeddings. In the future, we will attempt to incorporate
item features to construct a feature-based global graph and fuse it
with the refined structural graph studied in this paper.
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