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ABSTRACT
Positive-Unlabeled (PU) Learning is a challenge presented by binary
classification problems where there is an abundance of unlabeled
data along with a small number of positive data instances, which
can be used to address chronic disease screening problem. State-of-
the-art PU learning methods have resulted in the development of
various risk estimators, yet they neglect the differences among dis-
tinct populations. To address this issue, we present a novel Positive-
Unlabeled Learning Tree (PUtree) algorithm. PUtree is designed
to take into account communities such as different age or income
brackets, in tasks of chronic disease prediction. We propose a novel
approach for binary decision-making, which hierarchically builds
community-based PUmodels and then aggregates their deliverables.
Our method can explicate each PU model on the tree for the opti-
mized non-leaf PU node splitting. Furthermore, a mask-recovery
data augmentation strategy enables sufficient training of the model
in individual communities. Additionally, the proposed approach
includes an adversarial PU risk estimator to capture hierarchical
PU-relationships, and a model fusion network that integrates data
from each tree path, resulting in robust binary classification results.
We demonstrate the superior performance of PUtree as well as its
variants on two benchmarks and a new diabetes-prediction dataset.

CCS CONCEPTS
• Computing methodologies→ Semi-supervised learning set-
tings; • Applied computing→ Consumer health; • Information
systems→ Combination, fusion and federated search.
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1 INTRODUCTION
In the context of chronic disease detection, the collection of incom-
plete positive patient data, accompanied by an absence of negative
samples in real-world repositories, poses a formidable challenge.
This is due to the costly annotation process and the unavailability
of negative data. For instance, functions like diabetes screenings
may be able to label patients as “positive” cases, but those who
have not taken the test cannot be identified as “negative” instances.
Instead, they form a mixed population of both positive and negative
outcomes. This issue was initially addressed by positive-unlabeled
(PU) learning ([12]) and has since given rise to numerous solutions
for chronic disease detection [9].

The current PU Learning techniques can be split into two dis-
tinct categories: Sample-Selection and Cost-Sensitive approaches.
The former seeks to identify reliable negative examples from unla-
beled data, thereafter building a supervised learning model utilizing
both the positive and reliable negative data [28, 29, 47]. The spy
technique [29] employs positive instances, known as "spies," to
enhance the accuracy of negative sample identification. By training
a classifier with these labeled positives and unlabeled data, the
technique assigns probabilities to unlabeled samples, aiding in the
selection of reliable negatives based on discerning thresholds. A re-
cent study [31] on this track used reinforcement learning to train a
negative sample selector to consistently select the reliable negative
samples. The other approach is cost-sensitive PU learning, which
was first introduced by uPU [16], which reweights the importance
of positive and negative risks to optimize a risk estimator for PU
learning. However, the flexible deep neural network used in uPU
may cause the overfitting issue. To overcome this problem, [25]
propose non-negative PU learning (nnPU) to control the training
loss to be non-negative. nnPU is the current state-of-art PU learn-
ing method, and many efficient algorithms are built upon nnPU
using deep neural network[9, 36, 48].

Despite existing PU learning models, the needs of chronic dis-
ease detection may not be entirely met. Studies have revealed that
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patients across different communities can display significantly var-
ied profiles, necessitating models which can effectively distinguish
among multiple demographics, vulnerabilities or behaviors [5, 40].
To overcome this issue, we introduce PUtree, a novel model as
shown in Figure 1, which is capable of characterizing PU models
corresponding to each algorithm-detected community in a hierar-
chical structure. Unlike conventional methods, the proposed PUtree
incorporates interdependence of multiple PU models. Rather than
the nodes representing independent communities, those which are
siblings to one another have exclusive model parameters. This ad-
vancement is further amplified by the inheritance of information
on the generational level. By being the beneficiaries of this accumu-
lated knowledge, descendant nodes are equipped with the ancestor
information to generate an enhanced deliverable via the melding of
PU models. Notably, the PUtree is dynamically generated in terms
of the goal of the downstream learning task. As demonstrated in Fig-
ure 1, different tree structures are created when detecting diabetes
and depression. This indicates that the PUtree is highly effective
in fitting various objectives. The proposed Positive-Unlabeled Tree
Local Interpretable Model-Agnostic Explanations (PUTreeLIME)
can be used to interpret each PU model in a meaningful way, al-
lowing knowledge to be gathered from the data structure that is
tailored to the stated task. For example, “regularly buy soda" might
be an indicator of diabetes, and “go to the gym" might have greater
utility when investigating depression detection. Thus, the tree can
be adjusted, as necessary, to extract greater insight from the data.

Moreover, as the PUtree continues to expand, the population size
of sub-communities gradually decreases, presenting the challenge
of limited training resources, particularly in the case of the already
scarce positive instances of chronic disease patients across all popu-
lations. To tackle this problem, a novel cross-model mask-recovery
strategy is introduced to handle the sub-communities scarcity prob-
lem from data-augmentation aspect. It enables effective training
of the community-based PU model on PUtree, even for small com-
munities. For instance, when predicting diabetes within a specific
community like “non-senior, male" we can strategically mask crucial
features such as "regularly purchasing soda" based on the parent
node “male" community PU model, while utilizing the remaining
features to recover the masked information, thus achieving the goal
of data augmentation.

To further leverage the rich information contained in the parent
communities, we designed a hierarchical architecture for tackling
the sub-communities scarcity problem from model-enhancement
aspect. The proposed hierarchical PU model fusion method en-
hanced by an innovative adversarial risk estimator enables us to
accurately assess the predictive capabilities of the model across
varying community demographics. For instance, when predicting
outcomes for a “non-senior male" individual, our “non-senior, male"
PU model should yield predictions that are similar/cognate to the
“male" PU model, while significantly differing from the “senior, fe-
male" PU model. To provide a comprehensive prediction for this
non-senior male individual, we perform model fusion using the
tree path (e.g., “all human"→ “male"→ “non-senior male"→ ...) to
generate an enhanced prediction. By incorporating this interactive
framework among different community PU models, our PUtree
model demonstrates superior robustness and performance.

The contributions of our work can be a threefold:

Figure 1: A toy example of diabetes diagnosis for PUtree al-
gorithm. PUtree uses PUTreeLIME to select optimal splitting
criteria, and then builds PUmodel on each community. Based
on instances’ landing node, PUtree aggregates information
on all the PU models on the path to make prediction.

• In our work, we introduce PUtree, a unique community-
based PU learning algorithm that constructs distinct PU
models for different communities, taking into account the
variations among populations. Unlike existing methods, PU-
tree incorporates community interactions, allowing for a
comprehensive understanding of the relationships and de-
pendencies among diverse populations. This integration en-
ables more accurate and contextually informed PU learning,
enhancing the overall performance of the PUtree algorithm.
• We further introduce the novel PUTreeLIME, which en-
hances the interpretability and usability of PUtree by in-
corporating sibling community interactions to determine
optimal split criteria. To mitigate the low resource prob-
lem in sub-community PU building, we employ a sophis-
ticated mask-recovery data augmentation strategy and an
advanced adversarial PU risk estimator. Additionally, our
hierarchical PU model fusion captures the intricate hierar-
chical relationships among distinct community PU models,
enabling more accurate and comprehensive predictions in
community-based PU learning.
• We validate the effectiveness of the proposed model through
comprehensive testing on a new, real-world evidence dataset
that contains an abundance of features and encompasses a
modest diabetic patient population. Additionally, we evaluate
the model’s generalizability through its performance on two
popular benchmark PU learning datasets.

2 RELATEDWORK
2.1 Positive-Unlabeled (PU) Learning
PU learning has been used to address different problems, including
recent efforts on chronic disease prediction [9], fake news detection
[30], and recommendation system [49], etc. The current state-of-art
methods (e.g. uPU, nnPU [25]) in PU learning use unbiased risk
estimator [15] to adjust the bias over positive and unlabeled data.
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Predictive adversarial learning were introduced by [20, 42]. They
used generator to produce data to fool a discriminator which can de-
termine the generated data is positive or not. Dist-PU [48] focuses
on achieving label distribution consistency and enhancing separa-
bility between positive and negative distributions by minimizing
entropy. Imbalanced PU [36] is an variant of nnPU, which can learn
binary classifier on imbalanced data. Imbalanced PU optimize the
PU learning classifier by assuming that oversampling can tackle
the imbalance issue if both P and N are available. Based on this
assumption, Imbalanced PU proposes a re-weighting strategy to
control the contribution of unlabeled data to conduct PU learning in
a balanced manner. GenPU [19] introduces the GAN network into
PU learning. The generated data is used to train binary classifier.
PAN[20] proposes a new objective based on KL-distance, and opti-
mize the architecture of GAN. In this work, we proposed a PUtree
algorithm which splits PU instances into hierarchical communities,
and then a PU path fusion network is deployed to aggregate differ-
ent level community information, which can be vital for various
PU tasks, especially for chronic disease prediction.

Most existing PU learning methods operate under the assump-
tion of a known class prior, which represents the proportion of
positive instances in unlabeled data. However, the class prior is
often unavailable in real-world data. For instance, when detecting
fraudulent transactions in financial data, the exact proportion of
fraudulent transactions is typically not known in advance. To ad-
dress this challenge, researchers have made significant efforts to
develop techniques for estimating the class prior. For example, [4]
deploys decision tree induction on subdomains of the data to find
the lower bound of the real positive class prior. CAPU [7] jointly
learns a classifier and estimates the class prior. VPU [8] tries to
avoid using the positive class prior in the training process. It pro-
poses a variational principle with Mixup regularization. In contrast
to previous studies, our work tackles a more challenging task of es-
timating the class prior for specific communities (e.g., diabetes rate
for senior males and people who regularly consume alcohol) rather
than the overall population. To accomplish this, our mask-recovery
strategy leverages data augmentation techniques to enhance the
accuracy of class prior estimation.

2.2 Explainable Artificial Intelligence
Machine learning has showcased impressive performance across
diverse domains, including intrusion detection, recommendation
systems, and natural language processing. As the predictive capa-
bilities of machine learning and deep learning models advance, the
need to understand the factors influencing model decision-making
has become more prominent. This demand has led to the emergence
of Explainable Artificial Intelligence (XAI), which focuses on devel-
oping techniques and methodologies for providing transparent and
interpretable explanations of model outputs.

Existing XAI encompasses two main approaches. The first ap-
proach involves designing inherently interpretable algorithms, such
as decision trees, Bayesian Rule Lists (BRL) [27], and Sparse Linear
Models (SLIM) [39]. The second approach, known as the post-hoc
class of XAI, focuses on building complex black-box models with
high performance and then using reverse engineering techniques
to provide explanations. One notable example of this approach is

the Local Interpretable Model-Agnostic Explanation (LIME) [34].
LIME provides local explanations for black-box models based on
the neighborhood of a specific instance of interest. In addition to lo-
cal interpretability methods, there are also research works focused
on achieving global interpretability. For instance, global model in-
terpretation via recursive partitioning (GIRP) [46] constructs an
interpretation tree that applies to various machine learning meth-
ods, providing a global understanding of the model’s behavior. In
contrast to existing interpretation methods, our proposed PUTree-
LIME approach takes into account the interaction among different
community models within our PUtree. By considering this interac-
tion, we are able to determine optimal split criteria for our PUtree,
leading to improved overall performance and robustness. This novel
approach enhances our understanding of the PUtree model and its
decision-making process.

2.3 Enhanced Learning through Augmentation
and Fusion

Data augmentation (DA) has gained significant attention inmachine
learning, driven by research in low-resource domains, emerging
tasks, and the widespread use of large-scale neural networks that
demand extensive training data. Data augmentation techniques
were initially explored in the field of computer vision, where oper-
ations such as image flipping, cropping, and rotation were applied.
For instance, [22] introduced a method of data augmentation by
mixing images through averaging pixel values across RGB channels.
Moreover, data augmentation has also emerged as a captivating av-
enue of exploration within the realm of natural language processing
(NLP). Notable endeavors include Backtranslation [35], which en-
tails translating a sequence into a foreign language and then back
into its original language. Moreover, [2] have leveraged a label-
conditioned generator, fine-tuning the influential GPT-2 [33] model
on the training data, to generate augmented examples tailored to
specific classes. In this study, we propose a data augmentation
approach where we mask the top 15% most important features as la-
bels. We then deploy a multi-label regression model [45] to recover
these masked features using the remaining features. The proposed
mask-recovery data augmentation strategy effectively addresses
the low-resource problem encountered as the PUtree expands to
deeper levels, thereby significantly enhancing the performance of
our PUtree model.

Model fusion serves as another powerful enhancement method,
overcoming limitations faced by conventional machine learning
techniques when dealing with complex datasets characterized by
noise, imbalanced distributions, and other challenging factors. Bag-
ging and boosting are well-established methods in traditional model
fusion. A notable example of the bagging approach is the renowned
random forest algorithm [6], which constructs an ensemble of deci-
sion trees and combines their predictions through a voting mech-
anism. Moreover, the fusion of diverse deep learning models has
exhibited impressive efficacy, exemplified by the groundbreaking
fusion of heterogeneous deep networks [37], which leverages the
diversity of disparate models to achieve superior generalization
capabilities. In our work, we employ a model fusion strategy along
each distinct path of our PUtree model to generate comprehensive
predictions for individual instances based on their corresponding
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landing nodes. This fusion framework endows our PUtree model
with enhanced robustness and stability, leading to improved per-
formance.

3 METHODOLOGY
In this section, we begin by introducing the PU problem definition in
Section 3.1.We then proceed to present the overall PUtree algorithm
in Algorithm 1 and Figure 2 in Section 3.2. Next, we demonstrate the
process of selecting optimal split criteria, constructing PU models
for each child-node, and hierarchical path fusion framework in
detail in Sections 3.3, 3.4, and 3.5, respectively.

3.1 Problem Definition
Assume there is an underlying distribution 𝑃 (𝑋,𝑌 ), where 𝑋 ∈ R𝑑
and 𝑌 ∈ {±1} are the input and output variables, respectively. PU
learning assumes that labeled positive instances P are sampled
independently from P marginal P𝑝 (𝑥) = P(𝑥 |𝑌 = +1), and the
unlabeled instances U are sampled independently from mixed mar-
ginal P(𝑥) = 𝜋P𝑝 (𝑥) + (1 − 𝜋)P𝑛 (𝑥) where 𝜋 is the positive class
prior and P𝑛 (𝑥) = P(𝑥 |𝑌 = −1) is the N marginal. [15] proposed
that minimizing the risk estimator can be used as the objective
function in positive-unlabeled learning, i.e.

𝑅𝑝𝑢 (𝑔) =𝜋E𝑝 (𝑥 |𝑌=+1) [𝑙 (𝑔(𝑥), +1)]+
(E𝑝 (𝑥 ) [𝑙 (𝑔(𝑥),−1)]−
𝜋E𝑝 (𝑥 |𝑌=+1) [𝑙 (𝑔(𝑥),−1)])

(1)

where 𝑙 (·, ·) is any surrogate loss of zero-one loss [15]. According
to Eq.1, an unbiased PU learning (uPU) [15] can be optimized based
on Eq.2.

𝑅𝑝𝑢 (𝑔) =
𝜋𝑝

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑙 (𝑔(𝑥𝑝

𝑖
), +1)+

( 1
𝑛𝑢

𝑛𝑢∑︁
𝑖=1
𝑙 (𝑔(𝑥𝑢𝑖 ),−1) −

𝜋𝑝

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑙 (𝑔(𝑥𝑝

𝑖
),−1))

(2)

where 𝑛𝑝 represents the number of labeled positive instances, 𝑛𝑢
represents the number of unlabeled instances, 𝑥𝑝

𝑖
and 𝑥𝑢

𝑖
denote

instances in the labeled positive set and the unlabeled set, respec-
tively. Theoretically, the second term in Eq.2 should be non-negative
because that is used to estimate risk in negative part. Thus, [25]
proposed non-negative PU (nnPU) methods by optimizing the fol-
lowing non-negative risk

𝑅𝑝𝑢 (𝑔) =
𝜋𝑝

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑙 (𝑔(𝑥𝑝

𝑖
), +1)+

𝑚𝑎𝑥 (0, 1
𝑛𝑢

𝑛𝑢∑︁
𝑖=1
𝑙 (𝑔(𝑥𝑢𝑖 ),−1) −

𝜋𝑝

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑙 (𝑔(𝑥𝑝

𝑖
),−1))

(3)

From then on, many algorithms [9, 44] for PU learning are proposed
based upon nnPU.

3.2 PUtree Framework
In this section, we present an overview of PUtree framework, de-
picted in Figure 2. The algorithm follows a top-to-down construc-
tion of the tree, where each node represents a community. We then
perform hierarchical path fusion for each tree path. For illustration

purposes, we use the red tree path in Figure 2 to demonstrate the
process of tree splitting and the construction of nnPU models for
each child-node (sub-community). Note that the PUtree structure
is contingent upon the assigned task and training data utilized;
meaning that the same dataset can require different tree structures
when used to forecast various chronic illnesses. As is illustrated in
Figure 1, this is especially the case.

The construction of our PUtree begins with the root node 𝑁0
at depth 0, where the training PU data 𝑋0 is augmented using our
mask-recovery data augmentation strategy to obtain augmented
data 𝑋

′
0. Based on 𝑋

′
0, we build the corresponding nnPU model 𝑃𝑈0

using the nnPU algorithm [25].
For each subsequent node 𝑁𝑖 (where 𝑖 represents the 𝑖𝑡ℎ depth

in the tree), we utilize the PUTreeLIME technique to explain the
𝑃𝑈𝑖 model. This process allows us identify the optimal split crite-
ria feature 𝑓𝑖 and its associated threshold 𝑡𝑖 . The data 𝑋𝑖 is then
split into two child-nodes: 𝑁𝑖+1 and 𝑆 (𝑁𝑖+1), where 𝑆 (𝑁𝑖+1) repre-
sents the sibling node of 𝑁𝑖+1. For both nodes, we follow the same
procedure. Firstly, we apply mask-recovery data augmentation to
enhance the learning effectiveness of 𝑁𝑖+1. Next, we utilize our
enhanced class prior estimation method to predict the class prior
𝜋𝑖+1 (e.g., community disease rate), which remains consistent with
𝜋
′
𝑖+1 due to the proportional augmentation of positive (P) and unla-

beled (U) instances. Thereafter, we construct the nnPU model 𝑃𝑈𝑖+1
using our proposed adversarial risk estimator, ensuring prediction
consistency between 𝑃𝑈𝑖+1 and its parent node model 𝑃𝑈𝑖 . This
consistency fosters predictions that are not significantly divergent
between sub-community models and their upper-level community
models. The process is repeated until the termination criterion is
met. Finally, hierarchical model fusion is performed on each path
to generate the final prediction for an instance landing on that
specific path. The detailed implementation is depicted in Algorithm
1. Similar to [43], the termination conditions for PUtree encompass
reaching the maximum tree depth ℎ, the node size dropping below
a specified threshold 𝑆min, or the node consisting exclusively of
unlabeled data (i.e., it is considered pure).

Our proposed PUtree framework presents a novel and compre-
hensive approach to integrating all nodes through leveraging inter-
actions among nodes with their sibling and parent nodes, resulting
in a substantial improvement in overall training performance. One
of the key strengths of the PUtree lies in its remarkable interpretabil-
ity, which provides valuable insights into the decision-making pro-
cess of the model. Moreover, the PUtree effectively bridges the
gap between traditional tree-based algorithms and deep neural
networks, offering exciting opportunities for further research and
application advancements in the field.

3.3 PUTreeLIME Split
In order to better understand the proposed PUTreeLIME split method,
we provide a brief introduction to Local InterpretableModel-Agnostic
Explanations (LIME) [34], which enables local explanations for com-
plex models, including black-box algorithms. Formally, we denote
the model to be explained as 𝑓 , and the original instance to be
locally explained as 𝑥 ∈ R𝑑 . LIME uses 𝑥 ′ ∈ 0, 1𝑑 ′ to represent an
interpretable binary vector. For example, in the context of diabetes
prediction, if the dimensions of 𝑥 represent features such as age
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Figure 2: Illustration of our proposed PUtree network. We provide an example using the red tree path to showcase the PUtree
algorithm. Specifically, we focus on the process of splitting from node 𝑁𝑖 to node 𝑁𝑖+1 and the corresponding sibling node
represented by 𝑆 (𝑁𝑖+1). Notably, when the red path extends to meet the termination criteria, hierarchical path fusion is
conducted, seamlessly integrating information from the root to the leaf PU models.

Algorithm 1 PUtree
Input: positive-unlabeled data 𝐷 , node 𝑘 , nnPU model on current

node𝑀 , feature 𝑓
Output: final classifier set T
1: Initial T as empty list
2: if termination criterion is met then
3: Train path fusion on current path get classifier 𝑇

′

4: T← T + 𝑇
′

5: else
6: PUTreeLIME explains M to choose an optimal split (f,t)
7: Create two child nodes 𝑘𝑓 >𝑡 and 𝑘𝑓 ≤𝑡 for k
8: Mask-recovery data augmentation for 𝐷 𝑓 >𝑡 and 𝐷 𝑓 ≤𝑡
9: Positive class prior estimation for 𝐷 𝑓 >𝑡 and 𝐷 𝑓 ≤𝑡
10: Build nnPU model for 𝐷 𝑓 >𝑡 and 𝐷 𝑓 ≤𝑡
11: Learn PUtree(𝐷 𝑓 >𝑡 , 𝑘𝑓 >𝑡 ,𝑀𝑓 >𝑡 , f)
12: Learn PUtree(𝐷 𝑓 ≤𝑡 , 𝑓𝑓 ≤𝑡 ,𝑀𝑓 ≤𝑡 , f)
13: end if
14: Return T

and income, the dimensions of 𝑥 ′ would represent binary features
such as age <= 60, age > 60, income <= 10k, and income > 10k. The
thresholds for age and income can be obtained using a discretizer,
such as quartiles or deciles, to convert the continuous data into
binary features. Next, LIME randomly samples instances around 𝑥 ′
by drawing nonzero elements of 𝑥 ′ to obtain the set 𝑧′. The set 𝑧′

can then be recovered to 𝑧 ∈ R𝑑 . Finally, the explainer model 𝑔 is

trained using a weighted square loss.

𝐿 (𝑓 , 𝑔, 𝑑𝑥 ) =
∑︁
𝑧,𝑧′∈𝑍

𝑑 (𝑥, 𝑧) ·
(
𝑓 (𝑧) − 𝑔

(
𝑧′

) )2
(4)

where 𝑑 (𝑥, 𝑧) denotes the distance between the sampled instance
𝑧 and the original instance 𝑥 , and 𝑍 represents the set of sampled
instances 𝑧 and 𝑧′.

Unlike LIME, we employ the uncertainty sampling method to
sample instances 𝑧, which ensures that the sampled instances have
a higher degree of responsibility for the model being explained.
Specifically, when splitting node 𝑁𝑖 and explaining its model 𝑃𝑈𝑖 ,
we define the sampled set 𝑍 as follows:

𝑍 = 𝑇𝑜𝑝𝑘

(
argmax
𝑧∈𝐷𝑝𝑜𝑜𝑙

𝑎 (𝑧, 𝑆 (𝑃𝑈𝑖 ))
)

(5)

where 𝐷𝑝𝑜𝑜𝑙 represents a large data pool of randomly sampled
instances 𝑧 around the original instance, 𝑆 (𝑃𝑈𝑖 ) represents the
nnPU model on the sibling node 𝑆 (𝑁𝑖 ), 𝑘 denotes the desired size
of the set 𝑍 , and 𝑎(., .) represents an uncertainty sampling function,
such as least confident sampling [23].

𝑧−𝐿𝐶 = argmin
𝑧∈𝐷𝑝𝑜𝑜𝑙

𝑃𝜃 (𝑦 |𝑧) (6)

where 𝜃 represents a well-trained model, 𝑧−
𝐿𝐶

refers to the instance
with the least confidence explained by 𝜃 . Additionally, 𝑦 represents
the class with the largest predicted probability score for 𝑧.
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𝑦 = argmax
𝑦∈𝐶

𝑃𝜃 (𝑦 |𝑧) (7)

Eq. 5 indicates that the sampled instance 𝑧 used to explain 𝑃𝑈𝑖
is distinct from the instances in the node’s sibling node, thereby
enhancing the quality of the split for 𝑃𝑈𝑖 and facilitating the se-
lection of an optimal split criteria. This approach improves the
effectiveness of the splitting process within the PUtree. The objec-
tive function for training PUTreeLIME is the same as that shown in
Eq. 4. After training the explainer model 𝑔, we define the optimal
split criteria for the PUtree as follows:

𝜓 = argmax
𝛽∈𝜃𝑔

(
𝐾𝐿

(
𝜏𝑖+1, 𝑆 (𝜏)𝑖+1

)
− 𝛿

(
𝐵 (𝑁𝑖+1 ) − 𝐵𝑠 (𝑁𝑖+1 )

)) ����𝛽
(8)

where 𝛽 represents the feature coefficients in the explainer model
𝑔, and 𝜓 denotes the optimal split based on the corresponding
feature with 𝛽 . The term 𝜏𝑖+1 represents the predicted PN (positive-
negative) distribution in node 𝑁𝑖+1, while 𝑆 (𝜏)𝑖+1 represents the
predicted PN distribution in the sibling node 𝑆 (𝑁𝑖+1). Addition-
ally, 𝐵 (𝑁𝑖+1 ) represents the number of instances in node 𝑁𝑖+1, and
𝐵𝑠 (𝑁𝑖+1 ) represents the number of instances in the sibling node
𝑆 (𝑁𝑖+1). Finally, the term 𝛿 corresponds to the logistic function,
which scales the second term in the equation to a range between 0
and 1.

The KL divergence term in the optimal split equation serves
to maximize the dissimilarity between the node 𝑁𝑖+1 and its sib-
ling node, facilitating meaningful and informative splits within
the PUtree framework. By emphasizing split fidelity, the algorithm
can effectively capture distinctive patterns and separate instances
based on their characteristics. Furthermore, the subtraction of the
second term addresses the challenge of tree imbalance by promot-
ing a balanced growth. This term helps control the difference in
the number of instances between the newly split nodes, ensuring
that the overall tree structure remains stable and avoids excessive
disparities.

The optimal split equation, as represented by Eq. 8, strikes a
delicate balance between split fidelity and maintaining a balanced
tree structure. This balance enables the PUtree algorithm to achieve
accurate and interpretable results, making it a powerful and robust
approach for positive-unlabeled learning tasks. By effectively han-
dling both the quality of splits and the growth of the tree, PUtree
offers improved performance and enhanced interpretability, bridg-
ing the gap between traditional tree-based algorithms and deep
neural networks.

3.4 Child-Node PU Model Generation
3.4.1 Mask-recovery Data Augmentation. To mitigate the potential
underfitting concern that arises from the decreasing number of
instances in deeper nodes of the tree, we propose a novel mask-
recovery data augmentation strategy. Taking inspiration from the
widely acclaimed BERT model [13], which employs masked lan-
guage modeling to predict missing tokens, our approach applies a
similar concept to feature masking.

Specifically, we identify the top 15%most important features (for
the target PU model) in each instance and mask them by replacing

their values with placeholders. This masking procedure simulates
the absence of critical information and challenges the model to
infer or recover the masked features using the remaining ones. To
accomplish this, we leverage a multi-label regression model [45]
that takes the non-masked features as inputs and predicts the values
of the masked features. By employing this mask-recovery process,
we effectively generate augmented data that captures a broader
range of feature interactions and potential patterns.

To enhance the diversity and quality of the augmented instances,
we employ perturbations [24] to the original data during the recov-
ery process. These perturbations introduce subtle variations and
noise, which further enrich the training samples and encourage the
model to learn more robust and generalized representations. By
expanding the training dataset with these high-quality augmented
instances, our mask-recovery data augmentation strategy mitigates
the risk of underfitting in the deeper nodes of the tree.

3.4.2 PU Class Prior Estimation. Estimating the positive class prior
(e.g., diabetes rate for the target community) traditionally involves
constructing a coarse binary classifier that assumes all unlabeled
data is negative. This classifier assigns negative prediction scores to
the original unlabeled instances. The subsequent step is to compare
these scores with the mean score of predicted negative instances,
known as 𝑝mean. Instances with prediction scores higher than 𝑝mean
are deemed reliable negatives, allowing us to estimate the propor-
tion of positives in the unlabeled data. However, this approach
suffers from a crucial drawback: it imposes an imbalance in the
classification process by assuming all unlabeled instances are nega-
tive. This imbalance, exacerbated by the limited number of labeled
positive examples in PU learning, can undermine the accuracy of
the estimation.

The proposed mask-recovery data augmentation strategy can
efficiently mitigate this issue, showcased in Figure 2. Our data aug-
mentation strategy empowers the classifier by augmenting the
labeled positive data, thereby enhancing its stability and preci-
sion in estimating the positive class prior within the PU learning
framework. Through this approach, we achieve a more refined and
accurate understanding of the positive class distribution, enabling
improved performance and reliability in PU learning tasks.

3.4.3 Adversarial PU Risk Estimator. PUtree algorithm divides the
original PU data into distinct communities, leveraging the interac-
tions among these communities to enhance the training process
for each community model. To ensure the stability and capture the
hierarchical relations within the PUtree, we propose an adversar-
ial PU risk estimator for training each node’s PU model. Inspired
by knowledge distillation [18], we employ the PU model from the
parent node as a soft label provider, establishing consistency be-
tween the PU models at different levels. This formulation promotes
knowledge transfer and enhances the overall performance of the
PUtree algorithm.

𝑅𝐶𝑜𝑛𝑠𝑖 =
1
𝑁

∑︁
𝑥∈𝑋𝑖

(𝑃𝑈𝑖 (𝑥) − 𝑃𝑈𝑖−1 (𝑥))2 (9)

The variables 𝑃𝑈𝑖 (𝑥) and 𝑃𝑈𝑖−1 (𝑥) represent the prediction re-
sults for instance 𝑥 by 𝑃𝑈𝑖 and 𝑃𝑈𝑖−1, respectively. The variable 𝑁
denotes the number of instances in the data 𝑋𝑖 on the node. Build-
ing upon the nnPU risk estimator proposed by [25], we introduce
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an adversarial PU risk estimator for 𝑃𝑈𝑖 , which is formulated as
follows:

𝑅𝑖𝑠𝑘𝑃𝑈𝑖
= 𝑅𝑖𝑠𝑘′𝑃𝑈𝑖

+ 𝜆𝑅𝐶𝑜𝑛𝑠𝑖 (10)
where 𝑅𝑖𝑠𝑘′𝑃𝑈𝑖

represents the same risk estimator as described
in Eq. 3, and 𝜆 controls the contribution of consistency in the ad-
versarial loss for 𝑃𝑈𝑖 .

The proposed adversarial PU risk estimator for 𝑃𝑈𝑖 training
leverages the concept of knowledge distillation and incorporates
soft labels provided by the parent node model 𝑃𝑈𝑖−1. This innova-
tive approach enhances the consistency between the PU model on
the current node and its parent node. By incorporating hierarchical
relations into the training process, our method ensures improved
stability and performance of the PUtree algorithm.

3.5 Hierarchical Path Fusion Network
Model fusion is a well-established strategy that combines informa-
tion from multiple PU models (on PUtree) to make the prediction
[21]. This approach has found widespread applications in various
domains, including electronic health record analysis [21], temper-
ature forecasting [26], and movie recommendation [11]. While
fusion methods have been extensively studied in supervised learn-
ing scenarios, their application in the PU learning setting remains
relatively unexplored.

To bridge this gap, we propose a novel PU fusion network de-
signed specifically for the PUtree framework. Our approach lever-
ages the hierarchical structure of the PUtree, capturing the rela-
tionships among communities at different depths. By aggregating
the models on each path within the PUtree, our fusion network
can effectively integrate information from multiple levels of the
hierarchy. This enables the network to benefit from the collective
knowledge and insights derived from each community, resulting in
robust and accurate predictions.

When an instance 𝑥 lands on a path {𝑃𝑈0, 𝑃𝑈1, ..., 𝑃𝑈ℎ} on the
PUtree, we feed it into the corresponding PU learning models 𝑃𝑈𝑖 ∈
{𝑃𝑈0, 𝑃𝑈1, ..., 𝑃𝑈ℎ}, where i is the depth of node. This allows us
to obtain the last hidden layer representation 𝑄𝑖 for the instance,
which is computed as follows:

𝑄𝑖 = 𝑃𝑈𝑖 (𝑥) (11)

All the representations 𝑄𝑖 are passed through a gated layer to
obtain a comprehensive embedding that contains the aggregated
information from the nnPU models at each depth. Inspired by the
properties of GRU [10] and GMU [3], we utilize a neuron 𝜙 with a
ReLU function to encode the information from 𝑃𝑈𝑖 for each repre-
sentation𝑄𝑖 . Additionally, a gate neuron 𝜎 with a Sigmoid function
is employed to control the contribution weight 𝐾𝑖 in the fusion
process for each𝑄𝑖 . The gate neuron specific to depth 𝑖 receives the
concatenated feature vector from all depths as input and determines
the significance of depth 𝑖 in the overall fusion. The equations for
the fusion gate are as follows:

𝑉𝑖 = 𝜙 (𝑊 𝑖
𝑉 ·𝑄𝑖 ) (12)

𝐾𝑖 = 𝜎 (𝑊 𝑖
𝐾 · [𝑄0, 𝑄1, ..., 𝑄ℎ]) (13)

𝑄𝐻 =

ℎ∑︁
𝑖=0

𝐾𝑖 ∗𝑉𝑖 (14)

Furthermore, the fusion representation 𝑄𝐻 is passed through a
linear layer to obtain the fusion output 𝑦𝐻 .

𝑦𝐻 = 𝜙 (𝑊𝐻 ·𝑄𝐻 ) (15)

Following the approach of nnPU [25], we utilize a non-negative
risk estimator as our hierarchical path fusion risk estimator.

𝑅𝐻 =
𝜋𝑝

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑙 (𝐹 (𝑥𝑝

𝑖
), +1)+

𝑚𝑎𝑥 (0, 1
𝑛𝑢

𝑛𝑢∑︁
𝑖=1
𝑙 (𝐹 (𝑥𝑢𝑖 ),−1) −

𝜋𝑝

𝑛𝑝

𝑛𝑝∑︁
𝑖=1
𝑙 (𝐹 (𝑥𝑝

𝑖
),−1))

(16)

Here, 𝐹 represents the hierarchical path fusion model, and 𝑅𝐻
corresponds to the overall risk estimator on the path.

Overall, the proposed PU fusion network represents an innova-
tive step towards exploring fusion strategies in the PU learning
context. By capturing the hierarchical relations among communi-
ties and aggregating models on each path, our approach enhances
the prediction performance of the PUtree, advancing the field of
PU learning and paving the way for further research in this area.

4 EXPERIMENT
4.1 Experimental settings
Datasets.We introduced a new diabetes-screening dataset1 that
contains information on the shopping behavior of 53,764 individu-
als over a one-year period in China. The dataset includes attributes
such as dairy purchase frequency, meat purchase frequency, etc. In
this dataset, individuals were labeled as positive instances if they
purchased diabetes-related products, including insulin, syringes,
blood glucose test strips, and diabetes urine test strips. Out of the total
instances, 4,496 are labeled as positive (8.4%), while the remaining
instances are used as unlabeled instance. To simulate the fact that
approximately 12.4% of whole population in China have been diag-
nosed with diabetes [38], we set the positive class prior to 0.124 in
both the train and test sets. Additionally, to evaluate the generaliz-
ability of the proposed PUtree model, we conducted experiments
on two PU-learning benchmarks: UNSW-NB15 [32] and NSL-KDD
[14]. These benchmarks are widely used in intrusion detection tasks
for network security. They consist of instances representing normal
network behavior as well as various types of attacks. The positive
class represents the attacks, while the negative class represents nor-
mal instances. For each benchmark, following other PU baselines,
we randomly selected 20,000 positive instances and 20,000 nega-
tive instances to form the unlabeled set. In the training data, we
included 100 labeled positive instances, following the setup used by
[25]. For the test set, 10,000 positive and 10,000 negative instances
were randomly sampled from each benchmark. Table 1 provides
an overview of the statistical details of the datasets, including the
number of instances, positive instances, negative instances, and
other relevant information.

Implementation details. 2 Following the approach of nnPU
[25], a 6-layer multilayer perceptron (MLP) with ReLU activation
was employed in the nnPU model. During the training process, the
Adap optimizer was utilized with a learning rate of 1𝑒−4, and a batch
1https://github.com/YANGWU001/Putree/tree/main/dataset
2https://github.com/YANGWU001/Putree
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Table 1: Summary of used datasets and their corresponding models.

Dataset Dimension #Train𝑃 #Train𝑈 Train𝜋𝑃 # Test Test𝜋𝑃 Positive Class Model
Diabetes 115 100 25,450 0.124 10,000 0.124 diabetes disease 6-layer MLP

UNSW-NB15 42 100 40,000 0.5 20,000 0.5 attacks (e.g., DoS, worms) 6-layer MLP
NSL-KDD 41 100 40,000 0.5 20,000 0.5 attacks (e.g., DoS, R2L, U2R) 6-layer MLP

Table 2: Classification comparison on diabetes-prediction, UNSW-NB15 and NSL-KDD datasets. Best and second values are
hightlighted as both highlighted. For each cell ‘x(y)’, x, y denote the average value and standard deviation, respectively.

Dataset Method Accuracy (%) Precision (%) Recall (%) F1 (%) F2 (%)

Diabetes

naive 87.76 (0.03) 74.60 (5.55) 1.92 (0.17) 3.74 (0.32) 2.38 (0.21)
uPU 83.85 (0.18) 29.58 (0.77) 21.93 (1.79) 25.17 (1.42) 23.12 (1.67)
nnPU 84.20 (0.69) 34.38 (0.99) 30.02 (4.32) 31.88 (2.49) 30.71 (3.65)
VPU 85.98 (0.78) 42.05 (2.52) 27.41 (2.17) 33.12 (1.76) 29.43 (2.02)
PUtree 81.07 (1.57) 31.77 (1.56) 45.18 (5.52) 37.11 (1.28) 41.66 (3.66)

UNSW-NB15

naive 73.45 (1.61) 79.86 (2.71) 62.84 (3.72) 70.26 (2.29) 65.60 (3.16)
uPU 76.11 (1.05) 87.49 (2.37) 61.01 (2.38) 71.85 (1.52) 64.92 (2.08)
nnPU 80.68 (0.78) 81.37 (1.51) 79.64 (1.94) 80.47 (0.83) 79.91 (1.41)
VPU 81.20 (0.47) 83.77 (6.59) 79.15 (11.26) 80.61 (2.27) 79.54 (7.57)
PUtree 83.49 (0.50) 79.60 (1.11) 90.09 (1.55) 84.51 (0.44) 87.77 (0.98)

NSL-KDD

naive 77.34 (0.69) 87.35 (1.57) 63.97 (2.27) 73.82 (1.19) 67.57 (1.91)
uPU 84.14 (1.34) 97.31 (0.77) 70.23 (2.98) 81.55 (1.92) 74.35 (2.64)
nnPU 89.62 (0.80) 93.45 (0.58) 85.21 (1.57) 89.14 (0.91) 86.74 (1.31)
VPU 90.30 (0.64) 95.93 (1.31) 84.04 (1.33) 89.58 (0.69) 86.17 (1.03)
PUtree 91.34 (0.83) 89.91 (1.66) 92.42 (2.13) 91.12 (0.85) 91.89 (1.49)

size of 4000 was employed for all datasets. All experiments were
conducted using a NVIDIA V100 GPU, with training conducted for
100 epochs.

Evaluation metrics. The performance of the model was as-
sessed across five metrics on the test set, including Accuracy, Preci-
sion, Recall, F1 score, and F2 score. Given that the misclassification
of positive cases as negative can lead to severe repercussions, such
as postponed medical care [41], special emphasis was placed on
the F2 score for diabetes prediction. The F2 score is exclusive in
its consideration of True Positive determinations. Additionally, to
ensure a fair comparison, each experiment is conducted five times,
and the mean and standard deviations of each metric are reported.
This approach helps to account for any variations or fluctuations
in the model’s performance across multiple runs, providing a more
comprehensive assessment of its effectiveness and stableness.

4.2 Overall Comparisons
Baselines.We compare PUtree with the following baseline models:
•Naive. The naive method treats all unlabeled instance as negative
data and then builds a decision tree model.
• uPU [15]. Unbiased Positive-unlabeled learning, which is a classic
cost-sensitive learning approach learning positive and unlabel data
based on unbiased risk estimators.
• nnPU [25]. None-Negative Positive-unlabeled learning addresses
the overfitting issue in uPU by ensuring non-negativity of the

empirical risk on the negative part.
•VPU [8]. Variational PU (VPU) is a novel PU learning method that
utilizes a variational principle to evaluate modeling error directly
from given data without the need for class prior estimation.

Results. Table 2 provides a comprehensive summary of the over-
all performance comparison results. The proposed PUtree model
demonstrates significant superiority over competitors across all
datasets (p < 0.05), exhibiting remarkable improvements in most
metrics. Specifically, for the diabetes-prediction dataset, PUtree sur-
passes the second-best competitor by approximately 15% in recall,
4% in F1 score, and 11% in F2 score. Moreover, PUtree achieves no-
table enhancements of 1% to 2% in terms of accuracy for the UNSW-
NB15 and NSL-KDD datasets. This validates the effectiveness of
our proposed method. Our PUtree algorithm exhibits remarkable
superiority compared to other algorithms for diabetes prediction,
delivering exceptional performance in terms of recall, F1 score, and
F2 score. This outcome aligns precisely with our expectations in
identifying individuals at a high risk of diabetes. Moreover, the
precision achieved by PUtree remains consistently higher than the
extremely low prior probability of randomly selecting a positive
instance from the PU data, which accounts for the 12.4% preva-
lence of diabetes. This finding underscores the ability of PUtree to
provide a stable and dependable prediction for diabetes diagnosis.
Furthermore, VPU is considered as one of the most competitive
baselines. It leverages a variational principle to directly evaluate
modeling error from the given data, enabling efficient optimization



Community-Based Hierarchical Positive-Unlabeled (PU) Model Fusion for Chronic Disease Prediction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 3: Ablation results on UNSW-NB15 with ✓indicating the enabling of the corresponding module.

Variant PUTL MR PF AR Accuracy (%) Precision (%) Recall (%) F1 (%) F2 (%)
I ✓ ✓ ✓ 81.79 (0.39) 78.88 (2.74) 87.23 (5.32) 82.69 (1.01) 85.31 (3.48)
II ✓ ✓ ✓ 81.19 (1.16) 81.40 (5.14) 81.88 (8.87) 81.15 (2.71) 81.49 (6.52)
III ✓ ✓ ✓ 82.41 (0.54) 77.05 (0.81) 92.33 (1.39) 83.99 (0.51) 88.80 (0.94)
IV ✓ ✓ ✓ 81.07 (0.27) 78.81 (1.34) 85.10 (2.91) 81.79 (0.66) 83.73 (1.96)

PUtree ✓ ✓ ✓ ✓ 83.49 (0.50) 79.60 (1.11) 90.09 (1.55) 84.51 (0.44) 87.77 (0.98)

of binary classifiers trained on positive and unlabeled data. Never-
theless, our PUtree model still exhibits more robust performance
compared to the VPU method.

4.3 Ablation Study
To gain a comprehensive investigation of the impact of each mod-
ule in PUtree, namely PUTreeLIME (PUTL), mask-recovery data
augmentation (MR), path fusion (PF), and adversarial risk estimator
(AR), we conducted ablation studies on the UNSW-NB15 dataset.
By comparing PUtree with its four variants, we can explore the
importance of each module:
• Variant I: In this variant, when splitting nodes, PUTreeLIME is
not used, and instead, LIME is employed for node splitting.
• Variant II: This variant does not utilize the mask-recovery data
augmentation strategy. Instead, the original data is used to build
the PU model for each node.
• Variant III: Instead of using the fusioned path model to make the
final prediction, this variant directly utilizes the leaf node to make
predictions.
• Variant 4: In this variant, when building child node PU models,
the effect of the parent node is not taken into consideration. In-
stead, the child model is trained using the nnPU [25] risk estimator
directly.
Comparing PUtree with its variants reveals the crucial role each
module plays in our PUtree framework. The results are shown
in Table 3. PUtree exhibits robustness across all variants, achiev-
ing an accuracy of 83.49% and an F1 score of 84.51%. Notably, in
the comparison of variant IV with PUtree, we observe the signif-
icant impact of the adversarial loss in capturing the hierarchical
relation within PUtree, leading to a substantial enhancement in
overall performance. The comparison between variant I and PU-
tree demonstrates the effectiveness of PUtreeLIME in the PU split
setting. The comparison between variant II and PUtree emphasizes
the significant improvement achieved by the mask-recovery data
augmentation strategy in PUtree. Lastly, the comparison between
variant III and PUtree indicates that path fusion outperforms single
leaf node predictions, showcasing the robustness of this approach.

4.4 PUtree Analysis
The interpretability of PUtree is demonstrated in Figure 3, which
contains a small sub-PUtree generated from the diabetes-prediction
dataset. The findings of this tree structure reveal that an increased
purchase frequency of cheese, consumption of prepared/frozen
foods, and a high intake of candy are correlated with an elevated

Figure 3: A PUtree example for diabetes-prediction dataset.
Where 𝑁0 represents the whole population, and the popula-
tion is consistently split into sub-communities based on our
proposed PUTreeLIME. ‘productfreq’ represents the annual
purchase frequency of the product.

risk of diabetes. These results corroborate the recent evidence sug-
gesting that dairy, processed products, and sugars can alter the
glucose metabolism patterns and potentially result in type 2 dia-
betes. [1, 17].

5 CONCLUSION AND FUTUREWORK
In conclusion, this work has demonstrated the potential of applying
multi-PU model fusion within the context of chronic disease predic-
tion/screening, enabling us to analyze differences among diverse
populations in a way that was previously unfeasible. The PUtree
model has provided a generalizable method for efficiently charac-
terizing PU models in any algorithm-detected population, as well as
considering hierarchical relationships among them. The proposed
PUTreeLIME method enhances interpretability and usability by
considering the interaction with sibling communities. Additionally,
by utilizing hierarchical PU model fusion on the PUtree path, we
are able to make more accurate forecasts which leverage a variety
of zoom-in demographics or behavior characteristics of the gen-
eral population. Overall, the proposed model advances the field
of PU learning to address the challenge of chronic disease detec-
tion, which, as experiment shows, can be generalized to other PU
learning scenarios. In future, we will further optimize the data aug-
mentation method, and conduct more experiments to validate and
explore its effectiveness in diverse real-world scenarios.
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