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ABSTRACT
Survival analysis plays a crucial role in many healthcare decisions,
where the risk prediction for the events of interest can support an
informative outlook for a patient’s medical journey. Given the exis-
tence of data censoring, an effective way of survival analysis is to
enforce the pairwise temporal concordance between censored and
observed data, aiming to utilize the time interval before censoring
as partially observed time-to-event labels for supervised learning.
Although existing studies mostly employed ranking methods to
pursue an ordering objective, contrastive methods which learn a dis-
criminative embedding by having data contrast against each other,
have not been explored thoroughly for survival analysis. Therefore,
in this paper, we propose a novel Ontology-aware Temporality-
based Contrastive Survival (OTCSurv) analysis framework that
utilizes survival durations from both censored and observed data
to define temporal distinctiveness and construct negative sample
pairs with varying hardness for contrastive learning. Specifically,
we first use an ontological encoder and a sequential self-attention
encoder to represent the longitudinal EHR data with rich contexts.
Second, we design a temporal contrastive loss to capture varying
survival durations in a supervised setting through a hardness-aware
negative sampling mechanism. Last, we incorporate the contrastive
task into the time-to-event predictive task with multiple loss com-
ponents. We conduct extensive experiments using a large EHR
dataset to forecast the risk of hospitalized patients who are in dan-
ger of developing acute kidney injury (AKI), a critical and urgent
medical condition. The effectiveness and explainability of the pro-
posed model are validated through comprehensive quantitative and
qualitative studies.

CCS CONCEPTS
• Information systems → Data mining; • Applied computing
→ Health informatics.
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1 INTRODUCTION
The increasingly abundant electronic health records (EHRs) have
provided an unprecedented opportunity to apply predictive analyt-
ics to support healthcare decisions [27, 36]. To achieve the optimal
outcomes for a patient’s medical journey, an important question
faced by healthcare providers is how to precisely anticipate the
adversarial events (e.g., kidney injury, heart failure, and stroke),
so that these critical incidents can be responded to timely with
sufficient clinical attention. Therefore, it is crucial to investigate
the application of survival analysis (SA) in longitudinal EHR data,
which aims to identify the significant factors that influence the
degree of risks and to further forecast the time to events of interest.

For survival analysis, a key challenge is how to deal with the ex-
istence of censored data for time-to-event modeling. In the case of
censoring, events of interest may not be observed for some patients
due to the limited duration of observation or the withdrawal of
patients during the study. In order to address this challenge, various
traditional survival analysis models have been developed although
they suffer from multiple limitations. Parametric survival models
[25] assume a specific distribution for the baseline hazard function,
such as the exponential, Weibull, or log-normal distribution. How-
ever, events in the real world are usually too complex to be captured
by such predefined distributions. On the other hand, although the
semi-parametric Cox model [5] makes no assumptions about the
baseline hazard function, it requires the hazard function to be mul-
tiplicatively proportional to the covariates. Moreover, most of these
approaches (e.g., Cox-based models) only focus on predicting the
relative ordering of survival durations of individuals, overlooking
their actual event time. Therefore, the capability of time estimation
for future event occurrences is unfortunately compromised.

To overcome the limitations of early studies, deep learning tech-
niques have been increasingly applied to survival predictive tasks
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[12, 22, 30] which offer the capacity to capture complex survival
patterns without making explicit distributional assumptions. While
some studies have explored the enforcement of patient concor-
dance by survival probabilities to accommodate both observed and
censored survival data, there exists very limited literature on con-
trastive learning (CL) methods aimed at learning a discriminative
representation of patient records to achieve better predictive per-
formance. In contrastive learning, data are contrasted against each
other in self-supervised [3], semi-supervised [39], or supervised
[19] settings. Generally, it trains an objective to distinguish the
subtle characteristics in data, by maximizing the similarity between
positive pairs (instances that belong to the same labels) and mini-
mizing the similarity between negative pairs (instances that have
different labels). Although the positive vs. negative labeling strat-
egy for contrasted pairs has been defined by self-augmentation (i.e.,
whether the pair originates from a single data point) or supervised
classes [13] (i.e., whether the pair belongs to the same class), the ex-
ploration of contrasting labeling based on temporal distinctiveness
(which is based on the time difference between the two survival
durations) for survival analysis is still lacking. Furthermore, given
that survival duration is a numerical entity, accounting for the
hardness defined by the time difference for contrastive labels can
help the model learn the survival data with more flexibility.

Another challenge associated with survival analysis in EHR is
the possible data insufficiency. Usually, a large variety of medi-
cal codes are recorded in a dataset, but many codes may have a
relatively small number of occurrences (e.g., rare diseases). As a
result, for patients with rare codes or sparse visits, the embedding
of their medical history is often sub-optimal. One way to address
this issue is to incorporate the domain-specific knowledge inherent
in medical ontology into the representation of EHR features [37].
Medical ontology is a hierarchical classification structure of medical
concepts (e.g., diagnosis, medications, etc.), which can serve as an
auxiliary categorization for knowledge representation [4, 24, 32].
For example, GRAM [4] proposes a graph-based attention model
that employs the attention mechanism on hierarchical levels of
each medical code to learn medically meaningful EHR feature em-
beddings. With ontological encoding, survival models can better
build the association between codes or patients, and transfer the
medical knowledge from one sample to another. Therefore, to fur-
ther improve the quality of patient profiling, the ontology learning
of EHR features can be integrated with the contrastive learning
core of survival analysis.

In this paper, we introduce an Ontology-aware Temporality-
based Contrastive Survival analysis framework called OTCSurv,
which combines the ontology-enhanced EHR data encoder, the con-
trastive learning of temporal distinctiveness, and the survival prob-
ability predictor with multiple loss components, for interpretable,
data-efficient, and discriminative survival analysis. Specifically, the
main contributions of this study can be summarized in three-fold:

• We design a Supervised Weighted Contrastive (SupWCon)
Learning loss function that uses survival duration as its
pairing criteria which is able to utilize both observed and
censored observations. SupWCon considers the hardness of
negative pairs based on the survival duration differences to
enrich the grain of contrastive learning.

• We used a sequential attention-based ontological encoder to
learn medically informed embeddings for sequential hospital
visits of patients. Ontology information brings data efficiency
to our model by referring to higher-level medical concepts
when the observation is sparse.

• We optimize survival prediction through multiple loss com-
ponents, focusing on two key goals: accurately predicting
survival duration time and precisely ranking the risks or
survival probabilities of patients at each time point. We train
our model with a meticulous configuration of SupWCon, ac-
companied by three more loss functions, guiding the training
towards an optimum point satisfying these two goals.

Finally, we evaluate our proposed method and demonstrate the
strength of our model on a real-world EHR dataset for Acute Kidney
Injury (AKI) by performing baseline comparison, ablation study,
and interpretability analysis.

2 RELATEDWORK
In this section, we provide an overview of key contributions and ad-
vancements in the survival analysis field, concentrating on relevant
methodologies and techniques in the literature.

One of the most widely used statistical methods in survival
analysis is the Kaplan-Meier (KM) estimator [16] which is a non-
parametric survival analysis method, calculating the survival prob-
ability by dividing the number of individuals who have survived up
to a given time by the number of patients at risk just before that time.
However, KM does not take into account the covariates of patients.
Early works in survival analysis primarily revolved around the Cox
proportional hazards (CPH) model [6], which assumes a propor-
tional relationship between covariates and the hazard function. Due
to the advantages of CPH, such as simplicity and interpretability,
many survival analysis models have been proposed based on CPH,
such as incorporation of time-varying covariates [23], accounting
for competing risks [9], and CoxTime [20] which expands upon
Cox model by extending its capabilities beyond the assumption of
proportional hazards.

In recent years, there has been an increasing interest in applying
machine learning techniques to survival analysis. Random Sur-
vival Forests [15], Deep Exponential Families [28, 29], and semi-
parametric Bayesian models based on Gaussian Processes [8], offer
flexibility in capturing complex survival patterns and handling
non-linear relationships. As for deep learning-based approaches,
DeepSurv [17] introduced the application of deep neural networks
for survival prediction, capturing complex relationships between
covariates and survival outcomes using the Cox partial likelihood
loss function. This has opened up many doors for utilizing deep
learning in survival analysis, leading to the development of models
like DeepHit [22], which is a multitask deep learning model capable
of handling competing risks, DRSA [30] and RNN-SURV [12], both
of which exploiting a recurrent neural network (RNN) to handle
sequential data, and N-MTLR [10] which leverages deep neural
networks to replace the linear core of the MTLR [38].

Some more recent state-of-the-art deep learning-based SA mod-
els are Dynamic-DeepHit [21], Survtrace [35], and Deep-CSA [13].
An extension of DeepHit is Dynamic-DeepHit which instead of
the simple neural network, uses a recurrent neural network to
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dynamically capture longitudinal dependencies in the presence
of competing risks. Survtrace proposes a transformer-based SA
model that handles competing risks and benefits from a multi-
task learning framework to learn a strong shared representation.
Transformer-Based Deep Survival Analysis [14] tries to make a
trade-off between time predictive power and risk ranking power
using both the absolute error as well as ranking evaluation metrics.

Generally, the existing architectures suffer from multiple lim-
itations. Some works, such as Cox-based survival models, show
suboptimal performances due to certain assumptions for the un-
derlying stochastic process. Violations of these assumptions can
lead to incorrect conclusions. Some of the deep learning methods
are black boxes and do not offer sufficient interpretability. Also,
many works only employ ranking methods to reach survival rate
concordance and, to the best of our knowledge, there is no explo-
ration of the use of contrastive methods based on the temporality
for healthcare survival analysis. OTCSurv managed to mitigate the
aforementioned challenges and support interpretable, data- effi-
cient, and discriminative survival analysis. As demonstrated in the
following sections, OTCSurv exhibits an enhanced performance
compared to its predecessors.

3 PROPOSED METHOD
In this section, we first describe the notations and formulate the
EHR survival analysis problem. We then present the overview of
the model. Last, we introduce each module in detail.

3.1 Problem Formulation
Electronic healthcare records (EHRs) usually contain comprehen-
sive information about a patient’s medical history. Each patient
normally hasmultiple hospital visits where diagnoses, prescriptions,
and procedures are recorded using standardized codes in the hospi-
tal’s database. EHRs can be exploited in three sets of information to
be used in survival analysis: 1) covariates, 2) time to the event, and
3) a label indicating the type of the event (censored/observed). A
discrete and finite time window with a maximum length of 𝑇max is
considered for the time prediction. Therefore, our goal is to predict
in which time interval 𝑡 ∈ {0, . . . ,𝑇max} the event of interest is
most likely to happen, or to determine the probability of survival
in each time interval. We show the event label by a binary variable
𝑘 . If the instance is observed 𝑘 = 1, otherwise (censored) 𝑘 = 0.
We can consider each instance (i.e., patient) as a triple of (𝑉 , 𝑡, 𝑘)
where 𝑉 = {𝑣𝑛}𝑁𝑛=1 is a sequence of covariates showing 𝑁 visits,
and 𝑣𝑛 = {𝑐1, 𝑐2, . . . , 𝑐 |𝐶 | , 𝑑1, 𝑑2, . . . , 𝑑 |D | } indicating the existence
of both binary and continuous features. Binary medical codes are
denoted by 𝑐𝑖 , and continuous features such as demographics are
denoted by 𝑑 𝑗 where |𝐶 | and |D| represent the sizes. For each med-
ical code 𝑐𝑖 , we extract the set of its ancestor codes (higher level
concepts) in the hierarchy of the medical ontology, represented as
a directed acyclic graph (DAG).

We denote the probability by 𝑃 , the hazard function by 𝜆(𝑡), the
probability density function by 𝑓 (𝑡), and the survival probability by
𝑆 (𝑡). By adding the caret symbol to each notation, we indicate their
estimated forms, e.g., 𝑆 (𝑡) is the estimated survival probability.

Task: Given the patient’s sequential medical history in terms
of longitudinal hospital visits containing medical codes, we aim

to build a model to estimate the survival probability of patients in
each time interval inside the prediction time window in the future.

3.2 Model Overview
In this subsection, we introduce an overview of our proposed
OTCSurv model architecture. As shown in Figure 1, the model
consists of three main components. The first component is Se-
quential attention-based ontological encoder that consists of
two main blocks. The first one is the ontological encoder which
effectively utilizes the inherent valuable information within the
medical ontologies to generate informed embedding vectors for
medical codes. Next is the sequential attention encoder which con-
sists of three attention-based parts: visit-level attention-pooling,
transformer encoder, and instance-level attention-pooling. The visit-
level attention-pooling uses the attention mechanism to reduce the
dimension of the visit representations. Then, the output of the visit-
level attention-pooling integrates with demographic information
inside a data integration block to produce a representation contain-
ing all the patient’s information. This representation along with
positional encoding of visits is fed to the transformer encoder. The
multi-head attention of the transformer will extract the interac-
tions of medical visits to produce a rich representation of a patient
that encompasses all the meaningful information. Instance-level
attention-pooling is implemented on the output of the transformer
encoder, to compress and combine the information of different vis-
its of an instance using the attention mechanism and produce the
ultimate instance representation. This ultimate instance representa-
tion will go through the second and the third main components of
OTCSurv parallelly. One is Contrastive Learning component (the
second main component) where a projection head which is a non-
linear transformation, e.g., a simple multilayer perceptron (MLP)
with a nonlinear activation function, transfers the ultimate instance
representation to a different latent space. This is where our pro-
posed SupWCon loss comes into play, adding temporal distinctive
refinements to the ultimate representations. In parallel, the ultimate
representation is fed into the Survival Prediction component (the
third main component) which consists of a fully connected neural
network. This neural network predicts 𝑇max number of probabili-
ties, which are the complement of the hazard rates, for each of the
𝑇max predefined time intervals. To train this model, combined with
SupWCon, three loss functions of Loglikelihood Loss, Pairwise
Ranking Loss, Mean Squared Error loss are implemented to
guide the model towards an optimum point regarding predictive,
discriminating, and ranking ability in survival analysis.

3.3 Sequential Attention-based Ontological
Encoder

The sequential attention-based ontological encoder is responsible
for generating instance representations using attention-based com-
ponents which are explained hereunder.

3.3.1 Ontological Encoder. In order to address the challenge of
data limitation in the healthcare domain, acquire comprehensive
representations of medical codes, and increase predictability, we
utilize the attention-based graph representation approach known as
GRAM [4]. First, an initial embedding vectorℎ 𝑗 ∈ R𝑑𝑐 is assigned to
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Figure 1: Architecture of the proposed OTCSurv model. There are three main components: 1) Sequential attention-based
ontological encoder, which mainly consists of an ontological encoder, two attention-pooling blocks, and a transformer encoder
to learn the ultimate instance-level representations of patients. 2) Contrastive Learning, which uses an intermediary transfor-
mation to transfer the ultimate representations to another latent space where SupWCon is functioning. 3) Survival prediction,
which is a fully connected neural network and outputs the probabilities necessary for survival analysis calculation.

each medical code as well as its ancestors (higher lever concepts) in
the medical ontology, where 𝑑𝑐 is the code embedding dimension.
Then, each code’s final representation 𝑞𝑖 ∈ R𝑑𝑐 is calculated as
a convex combination of the initial embeddings of itself and its
ancestors using the attention mechanism:

𝑞𝑖 =
∑︁

𝑗∈𝐴(𝑖 )
𝛼𝑖 𝑗ℎ 𝑗 ,

∑︁
𝑗∈𝐴(𝑖 )

𝛼𝑖 𝑗 = 1, 𝛼𝑖 𝑗 ≥ 0 𝑓 𝑜𝑟 𝑗 ∈ 𝐴(𝑖) (1)

where𝐴(𝑖) is the set containing the indices of the code 𝑐𝑖 and its an-
cestors. 𝛼𝑖 𝑗 ∈ R+ shows the attention weight given to ancestor code
embedding 𝑐 𝑗 when calculating 𝑞𝑖 , which is the final representation
of 𝑐𝑖 . Using a Softmax function, 𝛼𝑖 𝑗 is formulated as:

𝛼𝑖 𝑗 =
exp(𝑓 (ℎ𝑖 , ℎ 𝑗 ))∑

𝑘∈𝐴(𝑖 ) exp(𝑓 (ℎ𝑖 , ℎ𝑘 )
(2)

𝑓 (ℎ𝑖 , ℎ𝑘 ) = 𝜔𝑇
𝛼 tanh(𝑊𝛼𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑖 ;ℎ𝑘 ) + 𝑏𝛼 ) (3)

where 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑖 ;ℎ𝑘 ) is the concatenation of ℎ𝑖 and ℎ 𝑗 in a child-
ancestor order. 𝑓 (·) is an MLP operator with learnable parameters
of 𝜔𝛼 ,𝑊𝛼 , 𝑏𝛼 .

3.3.2 Attention-Pooling. We used two attention-pooling compo-
nents in our architecture, one after the ontological encoder, which
is the visit-level attention-pooling, and one after the transformer
encoder, which is the instance-level attention-pooling, to compress
the information flow using the attention mechanism.

Assumes that the input of visit-level attention-pooling for a
patient 𝑖 is a tensor 𝐸𝑖 ∈ R𝑁×𝑀×𝑑𝑐 , where 𝑁 ,𝑀 , 𝑑𝑐 are the number
of visits, the specified maximum number of possible codes inside
each visit, and the dimension for the code embedding1, respectively.
Using the attention mechanism, we assign a weight to each code
in a visit and use those weights to calculate the weighted average
1We omit the patient index 𝑖 in the following notation for easier demonstration.

of medical code vectors. Thus instead of having a vector of size
(𝑁 ×𝑀 × 𝑑𝑐 ) for each patient, we reduce its dimension to a vector
of size (𝑁 ×𝑑𝑐 ). So, given the 𝑛-th visit representation 𝑣𝑛 ∈ R𝑀×𝑑𝑐 ,
which is the concatenation of M code embeddings 𝑞𝑛𝑚 (1 ≤ 𝑚 ≤ 𝑀),
we calculate an attention energy 𝑒𝑛𝑚 ∈ R for each of 𝑀 medical
code embedding:

𝑒𝑛 = 𝑙 (𝑣𝑛) =𝑊2𝜎 (𝑣𝑛𝑊1 + 𝛽1), 1 ≤ 𝑛 ≤ 𝑁 (4)

where 𝑒𝑛 ∈ R𝑀×1 contains M attention energies for the codes
within 𝑛-th visit, and 𝑙 (·) is a MLP operater with a ReLU activation
function 𝜎 and learnable parameters of𝑊1,𝑊2, 𝛽1. Using softmax
on attention energies, we calculate attention weights 𝛼𝑛 ∈ R𝑀×1:

𝛼𝑛 = softmax(𝑒𝑛) (5)
where 𝛼𝑛 is the concatenation of M attention weights 𝛼𝑛𝑚 (1 ≤ 𝑚 ≤
𝑀). Finally, we have

𝑝𝑛 =

𝑀∑︁
𝑖=1

𝛼𝑛𝑚𝑞𝑛𝑚 (6)

where 𝑝𝑛 ∈ R𝑑𝑐 (1 ≤ 𝑛 ≤ 𝑁 ) represents the 𝑛-th visit of the pa-
tient. So, for each patient, we have 𝑃 ∈ R𝑁×𝑑𝑐 as the concatenation
of 𝑁 visit representations 𝑝𝑛 ∈ R𝑑𝑐 . The output of the visit-level
attention block 𝑃 ∈ R𝑁×𝑑𝑐 is concatenated with each patient de-
mographic embedding 𝑠 ∈ R𝑁×𝑑𝑠 (𝑑𝑠 is the dimension for the de-
mographic feature embedding) to obtain 𝐹 = Concat(𝑃, 𝑠) ∈ R𝑁×𝑑

where 𝑑 = 𝑑𝑐 + 𝑑𝑠 .
For the instance-level attention-pooling which is implemented

on the output of the transformer encoder, we use the same technique
described above to reduce the dimensionality. The output of the
transformer encoder for a patient is 𝑈 ∈ R𝑁×𝐷 , where 𝐷 is the
transformer dimension. 𝑈 is fed to the instance-level attention-
pooling, where using the attention mechanism, 𝑁 attention weights
for each of the visit representations are generated. These weights
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are used to calculate the weighted average of visit representations,
thereby reducing the dimension of 𝑈 , outputting 𝑢 ∈ R𝐷 as the
ultimate instance (patient) representation to be used in both the
contrastive task and the survival prediction downstream task.

3.3.3 Transformer Encoder. The encoder of the transformer archi-
tecture serves as the primary block for obtaining representations
for survival analysis. For each patient, the input to the encoder
of the transformer is a sequence of final visits’ embeddings. The
transformer’s multihead-attention mechanism captures complex
relationships among different hospital visits of a patient, enabling
the model to encode comprehensive information about their de-
pendencies over time. This results in rich representations that can
capture survival patterns and time-dependent features.

3.4 Temporal Distinctiveness with Supervised
Weighted Contrastive Learning

Contrastive learning aims to learn meaningful representations by
maximizing agreement between similar examples while minimizing
agreement between dissimilar examples. One technique to measure
the similarity between two vectors is the cosine similarity, which
can be calculated by the dot product of two vectors. It calculates
the cosine of the angle between two vectors, representing their
similarity by assessing how closely the two vectors align in the
vector space. In this study, we formulate a contrastive learning loss
function featuring an adaptive temperature parameter, referred to
as Supervised Weighted Contrastive (SupWCon) loss. SupWCon is
an extended version of the method proposed in [19] and has been
tailored for survival analysis, particularly for handling censored
data. We formulate

𝐿SupWCon =
∑︁
𝑖∈𝐼

−1
|𝑃 (𝑖) |

∑︁
𝑝∈𝑃 (𝑖 )

log
exp

(
𝒛𝑖 · 𝒛𝑝/𝜏

)∑
𝑎∈𝐴(𝑖 ) exp (𝒛𝑖 · 𝒛𝑎/𝜏𝑖𝑎)

(7)

where 𝐼 is the set of indices of all the instances, 𝑃 (𝑖) is the set of
indices of the instances that make a positive pair with the instance
𝑖 , and 𝐴(𝑖) ≡ 𝐼\{𝑖}. The dot (·) operator in the formulation repre-
sents the dot product of two vectors. 𝜏 ∈ R+ is the constant scalar
temperature parameter for positive pairs and 𝜏𝑖𝑎 ∈ R+ is the adap-
tive scalar temperature parameter for negative pairs which will be
explained shortly. The instance with the index 𝑖 is called the anchor.
Positive and negative pairs were particularly generated considering
both the survival duration times and the labels of instances (ob-
served/censored). For anchor 𝑖 , which is an observed instance, any
other observed instance with the survival duration time 𝑡 (which is
the duration from day one to the day before the event time) inside
the time window of 𝑇𝑖 −𝑇 /2 ≤ 𝑡 < 𝑇𝑖 +𝑇 /2 (referred to as positive
window) makes a positive pair with the anchor and belongs to 𝑃 (𝑖).
Time window length 𝑇 is a hyperparameter that needs to be tuned
with respect to the 𝑇max, data distribution, and the nature of the
problem. Any observed instance with a survival duration time 𝑡
outside the positive window (𝑡 < 𝑇𝑖 −𝑇 /2 or𝑇𝑖 +𝑇 /2 ≤ 𝑡 ) plus any
censored instance with the survival duration time (which is the
duration from day one to the day of censoring) greater or equal to
𝑇𝑖 +𝑇 /2 (𝑇𝑖 +𝑇 /2 ≤ 𝑡 ) makes a negative pair with the anchor. We
do not consider censored instances with a censoring time smaller
than𝑇𝑖 +𝑇 /2 for both positive and negative pair generation because
what happened to the patient after censoring is unknown (whether

they were diagnosed with AKI or not, and if so when that hap-
pened). In fact, if, after censoring, the event (AKI) happens inside
the positive window of the anchor, making a negative pair is wrong.
Conversely, for patients with a censoring time greater or equal to
𝑇𝑖 +𝑇 /2, we are sure that their survival duration is outside of the
positive window of the anchor, so they are safe to be considered
for negative pair generation.

The temperature parameter for positive pairs 𝜏 is a constant
positive scalar for all positive pairs and will be chosen by hyper-
parameter tuning. However, we adjusted the temperature parame-
ter for each negative pair to encourage our model to regulate the
amount of dissimilarity between the representations of negative
pairs that exhibit various differences in survival duration. Hence,
the model can better capture the distinction for negative pairs of
various hardness. For example, if patient 𝑖 and patient 𝑗 make a
negative pair, the adjusted temperature parameter for this negative
pair is calculated as follows:

𝜏𝑖 𝑗 = |𝑇𝑖 −𝑇𝑗 |−1 (8)

which is the inverse of their difference in survival duration. The
more distant their survival duration is, the more SupWCon pulls
their representations apart in the latent space. This is the first time
in the context of survival analysis, to the best of our knowledge,
that contrastive learning is used to make hardness-aware temporal
distinctiveness based on the known survival duration of subjects.

We used two more tricks that have been established as effective
in the literature regarding contrastive learning. First, introducing a
learnable nonlinear transformation, such as a simple two-layer fully
connected neural net with a nonlinear activation function, between
the ultimate instance representation and where the SupWCon loss
performs. This trick substantially improves the quality of the ul-
timate instance representations compared to when the SupWCon
performs directly on them [3]2. Second, we normalized the vector
representations of instances onto the unit sphere (𝑙2 normalization)
prior to using them in SupWCon, which also experimentally proved
to be effective [3].

It is noteworthy that the contrastive learning component is only
used during training to add hardness-aware distinctive refinements
to the ultimate representations and is discarded during inference.

3.5 Survival Prediction
For continuous survival models, the hazard function, denoted as
𝜆(𝑡), represents the instantaneous probability of an event occurring
at time 𝑡 , given that the individual has survived up to time 𝑡 . How-
ever, in the discrete setting, where time is considered as a sequence
of distinct points, the hazard function is defined differently. Instead
of dealing with infinitesimal intervals, the hazard function repre-
sents the conditional probability that the patient dies at a specific
time 𝑡 , given he/she was alive before 𝑡 . Given that training data
consists of pairs of covariates and time (𝑥, 𝑡), our goal is to model
the distribution of event times. The probability density function
𝑓 (𝑡 |𝑥), the survival function 𝑆 (𝑡 |𝑥), and the hazard function 𝜆(𝑡 |𝑥)
respectively are defined as:

𝑓 (𝑡 |𝑥) = 𝑃𝑥 (𝑇 = 𝑡) (9)

2The work in [3] conjectures that the importance of using the representation before
the nonlinear projection is due to loss of information induced by the contrastive loss
on the direct vectors that contrastive loss is working on.
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which represents the probability mass assigned to an event occur-
ring exactly at time 𝑡 ,

𝑆 (𝑡 |𝑥) = 𝑃𝑥 (𝑇 > 𝑡) (10)

which gives the probability that an event has not occurred up to
and including time 𝑡 , and finally the hazard function formulation,

𝜆(𝑡 |𝑥) = 𝑃𝑥 (𝑡 = 𝑇 |𝑇 > 𝑡 − 1)

=
𝑓 (𝑡 |𝑥)

𝑆 (𝑡 − 1|𝑥) =
𝑆 (𝑡 − 1|𝑥) − 𝑆 (𝑡 |𝑥)

𝑆 (𝑡 − 1|𝑥)
(11)

Using the above formulation, we can rewrite the survival func-
tion formulation as follows:

𝑆 (𝑡 |𝑥) = (1 − 𝜆(𝑡 |𝑥))𝑆 (𝑡 − 1|𝑥) (12)

If we show the complement of hazard function by 𝑟 (𝑡 |𝑥) = 1 −
𝜆(𝑡 |𝑥), we have:

𝑆 (𝑡 |𝑥) = 𝑟 (𝑡 |𝑥)𝑆 (𝑡 − 1|𝑥) (13)

By recursively expanding on equation 13, the survival function
can be expressed as:

𝑆 (𝑡 |𝑥) =
𝑡∏

𝑠=1
𝑟 (𝑠 |𝑥) (14)

A feed-forward neural network (FFN) is the core of the survival
prediction component, which predicts the complement of the hazard
function 𝑟 (𝑡 |𝑥) for all times up to 𝑇𝑚𝑎𝑥 . Thus, the output of the
survival prediction component for a patient 𝑖 is a vector of size
𝑇𝑚𝑎𝑥 as follows:

𝑦𝑖 = [𝑟𝑖 (𝑡 |𝑥)]𝑇max
𝑡=1 (15)

In continuous-time survival analysis, the mean lifetime of a
patient or the expected value of the random variable 𝑇 , which
represents the average time until an event occurs, can be calculated
by integrating the survival function over time. Mathematically, the
mean lifetime 𝜇 (also known as the expected lifetime or average
survival time) is derived in the following manner:

𝜇 =

∫ ∞

0
𝑡 · 𝑓 (𝑡 |𝑥) 𝑑𝑡 =

∫ ∞

0
𝑡 · (𝑆 (𝑡 |𝑥).ℎ(𝑡 |𝑥)) 𝑑𝑡 (16)

Using the technique of integration by parts, we arrive at,

𝜇 =

∫ ∞

0
𝑆 (𝑡 |𝑥) 𝑑𝑡 (17)

which is the area under the survival curve. In the discrete-time
formulation, we can approximate it by the sum of the survival
probabilities up to 𝑇𝑚𝑎𝑥 as follows:

𝜇 ≈
𝑇max∑︁
𝑡=1

𝑆 (𝑡 |𝑥) =
𝑇max∑︁
𝑡=1

𝑡∏
𝑠=1

𝑟 (𝑠 |𝑥) (18)

We consider 𝜇 as our predicted survival time duration.

3.6 Loss Functions
In this section, we will expand upon different loss functions im-
plemented to train our model. Besides the SupWCon loss which
was explained in 3.4, we have three more losses working in com-
bination with SupWCon. The motivation is to optimize the model
with respect to the two important objectives of survival analysis: 1)
accuracy in the prediction of survival duration for observed data,
and 2) accurately ranking patients (both observed and censored) in
terms of their risk and survival rate in different time points.

3.6.1 Loglikelihood Loss. Loglikelihood loss is the main loss used
to train the survival task. For observed data points, we minimize
the following loss:

𝐿
Loglikelihood
ob = −

𝑇−1∑︁
𝑡=1

log 𝑆 (𝑡 |𝑥) −
𝑇max∑︁
𝑡=𝑇

log(1 − 𝑆 (𝑡 |𝑥)) (19)

and for censored data, the loss is defined as follows:

𝐿
Loglikelihood
cen = −

𝑇∑︁
𝑡=1

𝑆 (𝑡 |𝑥) (20)

𝐿Loglikelihood = 𝐿
Loglikelihood
cen + 𝐿

Loglikelihood
ob (21)

where 𝑇 is either event time or censoring time. In other words, for
observed data points, we maximize the summation of the survival
probabilities for 1 ≤ 𝑡 < 𝑇 (since the patient has survived in
this time window) and minimize the summation of the survival
probabilities for 𝑡 ≥ 𝑇 (which means there is no survival starting
from the occurrence of the event). For censored data points, we only
maximize the summation of the survival probabilities for 1 ≤ 𝑡 ≤ 𝑇 .
In essence, for observed instances, the survival probabilities of all
the time intervals are optimized, whereas for censored data, only
the survival probabilities up to 𝑇 , which is the time of censoring,
are optimized. This is because, after censoring time, we do not have
any information about the survival of the patients.

3.6.2 Pairwise Ranking Loss. We employ a pairwise ranking loss
function that incorporates the concept of concordance and is based
on the method used in [14]. Such ranking losses have been widely
used in the literature [21, 22] for survival analysis. According to
this idea, a patient who experiences an event at time 𝑠 should have
a shorter predicted survival duration time (a higher risk) at time s
compared to a patient who survives beyond time s. In other words,
we want to penalize the discordant pairs. Let𝑇𝑖 and𝑇𝑗 represent the
observed event times for patients i and j, and respectively, 𝑇𝑖 < 𝑇𝑗 .
The predicted survival durations 𝑇𝑖 and 𝑇𝑗 (obtained from Eq. 18)
are considered discordant if 𝑇𝑖 > 𝑇𝑗 . Our aim is to minimize the
number of such discordant pairs. For every observed patient 𝑖 in
the training set, we randomly select (with replacement) another
patient 𝑗 , ensuring that 𝑇𝑖 < 𝑇𝑗 . we only compare them with one
other randomly selected data point since comparing with all the
possible data points is too computationally expensive. As 𝑇𝑗 can
be subject to censoring, the actual survival duration for patient 𝑗
cannot be smaller than 𝑇𝑗 . Consequently, the difference between
the predicted durations 𝑇𝑖 and 𝑇𝑗 should be at least 𝑇𝑗 −𝑇𝑖 . Hence,
the ranking loss formulation is as follows:

𝐿Ranking = max(0, (𝑇𝑗 −𝑇𝑖 ) − (𝑇𝑗 −𝑇𝑖 )) (22)
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Table 1: Dataset Statistics

Number of patinets 56779
Number of censored patients 47773 (84.1%)
Number of observed patients 9006 (15.8%)
The average age of patients 59.47
Sex of patients distribution (52% M, 48% F)

Average number of medical codes in a visit 13.29
Average number of medical codes in a patient 66.46

3.6.3 Mean Squared Error (MSE) Loss. MSE Loss penalizes wrong
predicted survival duration times for only observed data points.
This loss ensures that the proposed model performs well at accurate
time prediction for observed patients instead of only being able to
rank patients in terms of their risk. Therefore, for observed patients,
MSE is calculated as follows:

MSE =
1

𝑁ob

𝑁ob∑︁
𝑖=1

(𝑇𝑖 −𝑇𝑖 )2 (23)

where 𝑁ob is the number of observed instances, 𝑇𝑖 is the true sur-
vival duration, and𝑇𝑖 is the predicted survival duration obtained as
𝜇 from equation 18.

4 EXPERIMENTS
4.1 Dataset and Preprocessing
We test our model on a real-world EHR dataset acquired from the
University of Kansas Medical Center (KUMC) gathered from early
2009 to late 2021 for the purpose of the Acute Kidney Injury (AKI)
study. In this dataset, each patient has a history of one year of hospi-
tal visits before the final hospital visit, called the onset visit, which
was monitored for the occurrence of AKI. Each hospital visit com-
prises a collection of documented medical codes. Diagnosis codes
were recorded using the International Classification of Diseases
system in both the ninth and tenth Revisions (ICD-9 & ICD-10).
The prescription codes follow the RxNorm format, which provides
standardized names for clinical drugs. After preprocessing, we ac-
quired a dataset with the statistics demonstrated in table 1. Since
the dataset is highly imbalanced, we balance the training dataset
by duplicating the observed data so we have a 50% censored-50%
observed train set. For implementing the GRAM method, we used
the hierarchical ontology of ICD-93 and the Anatomical Therapeu-
tic Chemical (ATC) classification system respectively for diagnosis
codes and prescription codes.

4.2 Experimental Setting
Conducting a hyperparameter tuning, we chose 128 as the dimen-
sion of code embeddings for the ontological encoder. Two layers of
transformer encoder each with two heads of multihead-attention
are selected for the main encoder with a hidden dimension of 512,
which outputs a representation vector of size 256. The survival pre-
diction part is a three-layered fully connected neural network with
hidden dimensions of [256, 128, 9] which outputs 9 probabilities
3In preprocessing, all the ICD-10 codes were converted to ICD-9.
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Figure 2: Comparison of the mean survival curves of pro-
posed model and baselines with Kaplan-Meier curve (for all
patients).

for each instance (𝑇max = 9). Every probability is for a unit of time
interval as one day. 𝑇max was chosen 9 because 96% of hospitalized
patients were diagnosed with AKI or discharged (censored) in 9
days. RMSprop optimizer with a learning rate of 1𝑒 − 3 and weight
decay of 2𝑒 − 5 was employed for training the proposed model. For
implementing SupWCon, after a thorough hyperparameter search,
we chose a time window length of 2 as the positive contrastive
pairing criteria. As for the training strategy, We let the model first
run for 40 epochs with loglikelihood, ranking, and MSE losses, and
then add the SupWCon loss and train for 50 more epochs. This
strategy gives us the best performance. As mentioned earlier, the
contrastive component is discarded during inference. We released
the GitHub implementation code of OTCSurv.4

4.3 Evaluation Metrics
Themodel was evaluatedwith twomainmetrics: the time-dependent
discrimination index 𝐶𝑡𝑑 [1], and the Mean Absolute Error (MAE).
The time-dependent discrimination index 𝐶𝑡𝑑 , which is one of the
most widely used evaluation metrics in survival analysis, is an ex-
tension of Harrell’s concordance index (C-index). 𝐶𝑡𝑑 , unlike the
conventional c-index, assesses the model’s discriminatory ability
at specific time points, capturing changing predictive performance
over time. Also, we used the MAE of the predicted survival duration
to express the model’s performance in estimating the exact survival
duration for observed data.

4.4 Results and Discussion
4.4.1 Baselines. We compare the results of our model with various
popular baselines, which are introduced below briefly. Table 2 shows
the performance of each model on the AKI survival analysis task. It
is evident that our proposed model outperforms all of the baselines
regarding both evaluation metrics. Also, Figure 2 and Figure 3
exhibit the comparison of the mean survival curves of each model
with the Kaplan-Meier curve, which is the survival curve based on

4https://github.com/mohsen-nyb/OTCSurv.git
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Figure 3: Comparison of the mean survival curves of pro-
posed model and baselines with Kaplan-Meier curve (only
for observed patients).

true data. Our proposed model’s mean survival curve is the closest
to the Kaplan-Meier curve considering all the data as well as only
observed data, indicating that our model accurately captures the
survival behavior and provides survival predictions that are more
consistent with the actual outcomes.

• Nnet-survival [11]: Nnet-survival which is trained with
stochastic gradient descent employs parameterization of dis-
crete hazards and optimization of survival likelihood and
allows for non-proportional hazards.

• N-MTLR [10]: The Neural Multi-Task Logistic Regression
uses the Multi-Task Logistic Regression (MTLR) [38] model
as its base and a deep learning architecture as its core.

• DeepHit [22]: DeepHit is a deep learning-based survival
analysis that uses a multi-task learning framework to si-
multaneously estimate the survival time and the event type
probabilities, thereby handling competing risks.

• CoxTime [20]: Cox-Time is an extension of Cox regression
that goes beyond the proportional hazards assumption and
incorporates the concept of relative risk.

• DeepSurv (CoxPH) [17]: DeepSurv, a personalized treat-
ment recommender system, is a Cox proportional hazards
deep neural network, modeling interactions between a pa-
tient’s covariates and treatment effectiveness.

Table 2: Evaluation based on 𝐶𝑡𝑑 and MAE for AKI survival
prediction

Model Name 𝐶𝑡𝑑 MAE

Nnet-survival 0.6332 3.165
MTLR (N-MTLR) 0.6712 4.081

DeepHit 0.6929 3.012
CoxTime 0.6912 2.980

DeepSurv (CoxPH) 0.6898 3.007
Our model 0.6990 1.890

Table 3: Contributions of loss functions

Loss functions 𝐶𝑡𝑑 MAE

𝐿Loglikelihood 0.6647 2.30
𝐿Ranking 0.6907 2.80

𝐿Loglikelihood, 𝐿SupWCon 0.6808 1.90
𝐿Loglikelihood, 𝐿Ranking 0.6951 2.43

𝐿Loglikelihood, 𝐿Ranking, 𝐿SupWCon 0.7030 1.91
𝐿Loglikelihood, 𝐿Ranking, 𝐿SupWCon, 𝐿MSE 0.6990 1.89

Table 4: Ontological encoder and attention-pooling contribu-
tions

Window size 𝐶𝑡𝑑 MAE

w/o ontology 0.6888 2.11
w/o attention-pooling 0.6795 2.21

Full model 0.6990 1.89

4.5 Ablation Study
The ablation study was conducted to determine the contribution
of each component in the model to the performance. We experi-
mented with different combinations of loss components and show
the results in Table 3. Training the model with 𝐿Loglikelihood alone
performs relatively poor, particularly in 𝐶𝑡𝑑 . Having only ranking
loss makes the model much stronger in terms of 𝐶𝑡𝑑 , but the ac-
curate time predictive ability of the model is reduced since MAE
increases by 0.5 compared to training only with 𝐿Loglikelihood. Using
𝐿SupWCon along with 𝐿Loglikelihood increases the 𝐶𝑡𝑑 by 0.0161 and
decreases the MAE by 0.4, demonstrating the prominent effective-
ness of our SupWCon loss on improving both evaluation metrics.
We also tried adding 𝐿Ranking to 𝐿Loglikelihood which results in a sub-
stantial increase in 𝐶𝑡𝑑 by 0.026 but an undesired increase in MAE
by 0.13. The last two combinations bring the best performances.
With 𝐿Loglikelihood, 𝐿Ranking, and 𝐿SupWCon, we achieve the highest
𝐶𝑡𝑑 . With all four loss components, we achieve the best trade-off
in the performance with a small compromise on 𝐶𝑡𝑑 but an im-
provement to the lowest MAE. Eventually, we utilized a weighted
summation of these four losses as follows:

𝐿Total = 𝜆1𝐿
Loglikelihood + 𝜆2𝐿Ranking + 𝜆3𝐿SupWCon + 𝜆4𝐿MSE (24)

where 𝜆1, 𝜆2, 𝜆3, 𝜆4 are hyperparameters.
From Table 4, which is the ablation study of the ontological

encoder and the attention-pooling blocks, we can realize that they
play a significant role in improving the final results.We first, remove
the ontological encoder from the architecture, which leads to a drop
in the𝐶𝑡𝑑 index and an increase inMAE, indicating the effectiveness
of incorporating the knowledge domain from medical ontologies in
the overall model performance. The same result happens when we
remove both attention-pooling parts, which results in increasing
the number of the model’s parameters, making the model complex
and less generalizable, and also losing the advantage of attention’s
performance boosting and Interpretability.
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Figure 4: Analysis of the attention weights of the visits and
the medical codes (ICD-9) inside each visit. The height of
each stacked bar is the attention weight of the corresponding
visit and each bar inside the stacked bars presents a medical
code inside the visit and its attention weight.

5 INTERPRETABILITY
Our proposed model can be interpreted by analyzing the atten-
tion weights learned in each of the model’s components. In the
ontological encoder, we can find the attention weights assigned to
each medical code and its ancestors to realize their importance in
generating the medical code embeddings. The weights learned in
the visit-level attention-pooling determine the relative significance
of each diagnosis or prescription code in calculating the visit-level
representations. Also, by examining the attention weights learned
in the instance-level attention-pooling, we can infer the relative
importance of each of the visits inside the patient’s medical history
in composing the instance (patient) representations that will be
used in the SA downstream task.

To illustrate the interpretability of our model, we select a random
patient diagnosed with AKI on the second day of hospitalization
from the test set. Extracting the visits’ attention weights from the
instance-level attention-pooling and codes’ attention weights from
the visit-level attention-pooling, we plot Figure 4. Therefore, we
can realize the most important visits and the medical codes inside
each visit for the model’s decision-making. In Figure 4, we have
five stacked bars representing the five hospital visits of the patient.
The height of each stacked bar shows the attention weight assigned
to each visit. Each stacked bar associated with a visit has some bars
indicating different codes and their attention weights. It is clear
that visit 5 has the highest attention weight and consequently is
the most important hospital visit for this patient. Among all the
codes in this visit, "572", "410", and "287" have the highest atten-
tion weights. "572" is the ICD-9 code associated with liver abscess
and sequelae of chronic liver disease, which can potentially lead to
AKI [2, 7, 26]. ICD-9 code "410" is for acute myocardial infarction
(AMI), commonly known as a heart attack. AMI also can be closely
associated with the onset of AKI which is discussed carefully in
the medical literature [31, 33]. ICD-9 code "287" represents purpura

Figure 5: Attention weights which GRAM assigned to the
ICD-9 diagnosis code 𝑐1: 514 and its ancestors (𝑐2: 510-519, 𝑐3:
460-519). The size of each node as well as the height of their
bar plots show the amount of attention they received.

and other hemorrhagic conditions. Some hemorrhagic conditions,
including certain types of purpura and other bleeding disorders,
can potentially result in acute kidney injury (AKI) as a complication
[18, 34]. Furthermore, in Figure 5, we demonstrate how the ontolog-
ical encoder learns code representations and refers to higher-level
medical concepts when it comes to a rare medical code. Clearly,
the "460-519" ICD-9 code which is the most general ancestor of the
"514" ICD-9 code, receives the highest attention weight because
first, the "514" code is not a frequent code across the train set and
second, there are enough samples with the children of "460-519"
(as their parent) in the train set.

6 CONCLUSION
This paper introduces a novel survival model on the basis of lon-
gitudinal healthcare data, termed Ontology-aware Temporality-
based Contrastive Survival analysis (OTCSurv), which combines
the benefits of a contrastive learning approach adapted for survival
analysis as well as attention-based methods. Specifically, we de-
signed a supervised weighted contrastive learning (SupWCon) loss
function which is specifically formulated to handle data censor-
ing and improve patients’ representations using the time labels as
the contrastive pairing criteria. SupWCon regulates the weights
(temperature parameters) assigned to each negative pair by con-
sidering their differences in survival duration. Also, we used a
sequential attention-based ontological encoder, which consists of
an ontological encoder block to incorporate domain knowledge
through medical ontologies, and a sequential attention encoder
to capture temporal dependencies while making the model inter-
pretable. Along with SupWCon, three other losses are employed
to guide the training towards two goals of survival analysis which
are risk ranking ability and precise time prediction capability. Ex-
perimental results, including baseline comparison and ablation
study, on a real-world EHR dataset, showcase the superiority of the
proposed model compared to existing approaches regarding both
mentioned goals. Also, an attention analysis study was conducted
to demonstrate the interpretability of the OTCSurv.
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