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ABSTRACT
In recent years, heterogeneous graph few-shot learning has been
proposed to address the label sparsity issue in heterogeneous graphs
(HGs), which contain various types of nodes and edges. The existing
methods have achieved good performance by transferring general-
ized knowledge extracted from rich-labeled classes in source HG(s)
to few-labeled classes in a target HG. However, these methods only
consider the single-heterogeneity scenario where the source and
target HGs share a fixed set of node/edge types, ignoring the more
general scenario of cross-heterogeneity, where each HG can have
a different and non-fixed set of node/edge types. To this end, we
focus on the unexplored cross-heterogeneity scenario and propose
a novel model for Cross-heterogeneity Graph Few-shot Learning,
namely CGFL. In CGFL, we first extract meta-patterns to capture
heterogeneous information and propose a multi-view heteroge-
neous graph neural network (MHGN) to learn meta-patterns across
HGs. Then, we propose a score module to measure the informative-
ness of labeled samples and determine the transferability of each
source HG. Finally, by integrating MHGN and the score module
into a meta-learning mechanism, CGFL can effectively transfer gen-
eralized knowledge to predict new classes with few-labeled data.
Extensive experiments on four real-world datasets have demon-
strated the superior performance of CGFL over the state-of-the-art
methods.
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Figure 1: Scenarios of heterogeneous graph few-shot learning
(HGFL).

1 INTRODUCTION
Heterogeneous Graphs (HGs) consisting of diverse node types and
diverse edge types, are pervasive in a wide variety of real-world sys-
tems, such as social networks, citation networks, and e-commerce
networks [15]. When learning the representations of nodes and
edges in HGs, label scarcity is a common issue due to the expense
and difficulties of data annotation in practice [26]. To address this
issue, heterogeneous graph few-shot learning (HGFL) has been de-
veloped recently, which combines few-shot learning methods [27]
with heterogeneous graph neural networks [22]. The aim of HGFL
is to transfer the generalized knowledge extracted from rich-labeled
classes in source HG(s), to learn few-labeled classes in a target HG.
HGFL has been successfully applied to various applications, such
as few-shot node classification [28], few-shot link prediction [1],
and few-shot graph classification [8].

Existing studies on HGFL mainly focus on the scenario of single-
heterogeneity, where the source and target HGs share a fixed set
of node/edge types. In such a case, the knowledge of common
node/edge types can be extracted from source HGs and transferred
to the target HG to predict classes with few-labeled data. For in-
stance, in Fig. 1, the source HG 𝐺1 and target HG 𝐺2 both contain
node types of "paper", "workshop" and "author". The knowledge of
the "paper" node type can be learned from 𝐺1 and transferred to
𝐺2 to predict the class of the "paper 𝑃3" (i.e., biology). Similarly, the
knowledge of "movie" node type can be transferred from 𝐺3 to 𝐺4
to predict the class of the "movie𝑀3" (i.e., cartoon).

However, in real-world scenarios, source HGs with rich-labeled
classes may not always have the single-heterogeneity. In such a case,
existing HGFL methods will be ineffective because they are unable
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to extract generalized knowledge across HGs through common
node/edge types. For example, as shown in Fig. 1, if there are only
two source HGs 𝐺1 and 𝐺3, existing HGFL methods cannot extract
knowledge of "user" and "organization" from G1 and G3, thereby
limiting their capability to predict the class of "users" in G5.

Based on the above discussion, a question arises: is it possible to
extract generalized knowledge from other source HGs with differ-
ent heterogeneities? In fact, different HGs may share relations that
do not rely on specific node/edge types [4, 13]. These shared rela-
tions can facilitate the extraction of generalized knowledge across
HGs with different heterogeneities. One typical relation is the affil-
iation relation [13, 16], which represents the association between
nodes with individual properties and nodes with set properties. For
instance, despite the disparate node types in 𝐺1, 𝐺3, and 𝐺5, they
all contain affiliation relations such as "paper-workshop", "movie-
director", and "user-organization". By leveraging the similarities
and patterns derived from the affiliation relations existing in source
HGs 𝐺1 and 𝐺3 (e.g., "papers" published in the same "workshop"
tend to have similar research topic labels, and "movies" directed
by the same "director" tend to have similar theme labels), we can
extract generalized knowledge that nodes with the same affiliation
relation tend to have similar labels. This knowledge can be trans-
ferred to the target HG 𝐺5 to classify "users" based on their work
"organizations", e.g.,𝑈1 and𝑈2 working at the same "organization"
(i.e., lab) may have similar professions (i.e., researchers).

In addition to the affiliation relation, another important relation
is the interaction relation [13, 16], which represents the connection
between nodes with individual properties. For instance, in Fig. 1,
𝐺1, 𝐺3, and 𝐺5 all contain interaction relations such as "author-
author", "audience-audience" and "user-user". Specifically, "authors"
𝐴1 and 𝐴2 in 𝐺1 "collaborate" with each other, "audiences" 𝐶1 and
𝐶2 in 𝐺3 "attend screenings" together, and 𝑈1 and 𝑈3 in 𝐺5 "play
tennis" together. By analyzing the labels of these nodes (e.g., both
𝐴1 and 𝐴2 focus on data mining, while both 𝐶1 and 𝐶2 are sci-fi
fans), and the semantics of these connections (e.g., "collaborate" and
"attend screenings" both represent forms of partnership), we can
infer that nodes connected through interaction relations, which
imply partnerships, are likely to share similar personal interests
and preferences. This inference can be applied to the target HG 𝐺5
to identify "users" (i.e.,𝑈1 and𝑈3) who potentially share hobbies.

The above-mentioned example illustrates the existence of com-
mon relations in HGs with different heterogeneities. These relations
can be considered as general patterns that reflect the underlying
connections among these HGs. We refer to these general patterns as
meta-patterns. Meta-patterns in real-world HGs may exhibit more
complex structures and encompass a wider range of categories.
Therefore, by further exploring various meta-patterns, we can dis-
cover generalized knowledge across HGs in the cross-heterogeneity
scenario.

In light of the above discussion, the generalizability across HGs
with different heterogeneities should be explored to handle a more
general scenario of cross-heterogeneity graph few-shot learning,
namely, transferring generalized knowledge extracted from source
HGs with multiple heterogeneities, to make predictions on the tar-
get HG with a different heterogeneity and few-labeled data. This is
a novel problem, which, however, has the following key challenges.

CH1. How to normalize information from HGs with different het-
erogeneities to extract generalized knowledge implied in these HGs?
HGs with different heterogeneities typically exhibit significant vari-
ations in terms of node/edge features, node-node interactions, and
graph structures. Therefore, in order to enable the extraction of gen-
eralized knowledge implied in these HGs, it is essential to develop
a comprehensive framework that can normalize the heterogeneous
information derived from HGs with various heterogeneities.
CH2. How to achieve effective knowledge transfer from source HGs
to the target HG? Since source HGs and the target HG differ in
their structural similarities and heterogeneity relevance, not all
source HGs contain sufficient generalized knowledge that can be
transferred to the target HG. Additionally, even within the same
HG, different samples may exhibit varying degrees of generalized
knowledge due to their distinct surrounding heterogeneous envi-
ronments. Therefore, to achieve effective knowledge transfer, it
is crucial to select samples and HGs that encompass generalized
knowledge across various HGs.
CH3. Given few-labeled samples from a new heterogeneity, how to ef-
fectively learn the classes associated with these samples? In the target
HG, since the few-labeled samples interact with various types of
nodes and edges, each sample plays a distinct role in characterizing
its respective class. However, measuring the importance of these
samples from the new heterogeneity is challenging, because the
knowledge of these interacted node/edge types cannot be trans-
ferred from source HGs. Consequently, to mitigate the influence
of noise and outliers in these few-labeled samples, a robust and
effective few-shot learning model is required.

To address the above three challenges, we propose a Cross-
heterogeneity Graph Few-shot Learning model, namely CGFL. In
order to address CH1, we propose a general approach to extract
meta-patterns across HGs with different heterogeneities, and adopt
a novel multi-view heterogeneous graph neural network (MHGN)
module to effectively generalize the information of these meta-
patterns. To address CH2, we propose a three-level score module to
evaluate (1) the transferability of source HGs, (2) the consistency
of few-shot tasks, and (3) the informativeness of labeled samples.
This module allows CGFL to perform hierarchical and preferential
learning from the source HG data, facilitating the extraction of
generalized knowledge in a stable manner and achieving effective
knowledge transfer. To address CH3, we propose a novel meta-
learning module that transfers the knowledge of measuring node
informativeness from source HGs to the target HG. This module
can effectively estimate the importance of few-labeled samples and
generate highly robust class representations for accurate prediction
in the target HG.

To the best of our knowledge, our work is the first to propose
the novel problem of cross-heterogeneity graph few-shot learning.
Our contributions can be summarized as follows:

• We propose the CGFL model, which can learn transferable
knowledge across HGs with multiple heterogeneities and
adapt to predicting new classes with a different heterogeneity
and few-labeled data;

• We propose a novel multi-view heterogeneous graph neural
network module that can be generalized to HGs with differ-
ent heterogeneities, and propose a novel three-level score
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module that can evaluate the source HG data to achieve
effective knowledge transfer;

• We conduct extensive experiments on four real-world datasets.
Since our approach is the first to address this novel problem,
we compare it against 12 representative and state-of-the-art
baselines from four categories. The experimental results illus-
trate that CGFL outperforms the best-performing baselines
by an average of 5.56% in accuracy and 4.97% in macro-F1
score.

2 RELATEDWORK
Heterogeneous Graph Neural Networks (HGNNs). HGNNs
have shown promising results in learning representations of HGs.
Some HGNNs directly model various types of nodes and edges.
For example, HGT [10] calculates heterogeneous attention scores
for 1-hop neighboring nodes w.r.t. edge types. Simple-HGN [14]
incorporates learnable edge type embeddings in edge attention,
while HetSANN [9] employs a type-aware attention layer. SGAT
[12] extends GAT [20] to HGs using simplicial complexes and up-
per adjacencies. Other HGNNs focus on modeling meta-paths to
extract hybrid semantics in HGs. For instance, HAN [23] designs
node-level attention and semantic-level attention to hierarchically
aggregate features from meta-path based neighbors. MAGNN [7]
further considers intermediate nodes along the meta-paths on the
basis of HAN. However, existing HGNNs focus on learning specific
node types and meta-paths within a single heterogeneity, which
limits their ability to handle HGs with multiple heterogeneities.
Graph Few-shot Learning.Most studies on graph few-shot learn-
ing focus on homogeneous graphs [27]. For example, Meta-GNN
[30] applies the MAML [6] algorithm to address the low-resource
learning problem on graphs. G-Meta [11] samples local subgraph
surrounding the target node to transfer subgraph-specific informa-
tion. TENT [21] proposes to reduce the variance among tasks for
generalization performance. Some recent studies have extended
few-shot learning paradigms to heterogeneous graphs. For instance,
HINFShot [31] and HG-Meta [29] target few-shot problems on a
single citation network. CrossHG-Meta [28] focuses on transfer-
ring knowledge across HGs with different graph structures but the
same node/edge types. These approaches rely on the transfer of
generalized knowledge through shared node/edge types between
source and target HGs. Consequently, they are not applicable to
the cross-heterogeneity scenario where the source and target HGs
have completely different node/edge types.

Recently, MetaGS [4] transfers knowledge between two HGs to
predict semantic relations, it focuses on capturing comprehensive
relationships between two nodes and requires the existence of
semantic relations in the two HGs. Therefore, MetaGS cannot be
generalized to deal with cross-heterogeneity few-shot problems.

3 PRELIMINARIES
Heterogeneous Graph. A heterogeneous graph, denoted as𝐺 =
(V, E, 𝜙,𝜓 ), consists of a node set V , an edge set E, a node type
mapping function 𝜙 :V ↦→ A, and an edge type mapping function
𝜓 : E ↦→ R. A and R represent the set of node types and the set of
edge types, respectively, where |A| + |R| > 2. The notations used
in this paper are summarized in Table 1.

Table 1: Notations used in this paper.

Notation Explanation

𝐺 heterogeneous graph
V set of nodes
E set of edges
𝜙 node type mapping function
𝜓 edge type mapping function
A set of node types
R set of edge types
H single heterogeneity
𝑇𝑖 set of few-shot tasks onH𝑖

Gsrc set of source HGs
𝐺𝑡 target HG
S set of few-shot tasks on source HGs
T set of few-shot tasks on the target HG

𝜏 = (𝜏spt, 𝜏qry) single few-shot task
P set of meta-patterns
I set of instances matching meta-patterns in P

proto𝑐 prototype embedding of class 𝑐

Heterogeneity. The heterogeneity of𝐺𝑖 , denoted asH𝑖 = (A𝑖 ,R𝑖 ),
contains the node type set A𝑖 and the edge type set R𝑖 . 𝐺𝑖 and 𝐺 𝑗
have different heterogeneities if A𝑖 ∩ A 𝑗 = ∅ and R𝑖 ∩ R 𝑗 = ∅.
Problem Formulation. We focus on the problem of few-shot
node classification across HGs with different heterogeneities. To
mimic the few-shot scenario, the data of each heterogeneityH𝑖 is
considered as a collection of𝑚 few-shot tasks 𝑇𝑖={𝜏1, 𝜏2, . . . , 𝜏𝑚}.
• Input: Source HGs Gsrc = {𝐺1,𝐺2, . . . ,𝐺𝑛} and their sets of few-
shot tasksS={𝑇1,𝑇2, . . . ,𝑇𝑛}. Target HG𝐺𝑡 with a set of few-shot
tasks T . Each graph in Gsrc has a different heterogeneity to 𝐺𝑡 .

• Output: A model with good generalization ability to few-shot
tasks on the target HG (i.e., T ), after training with few-shot tasks
on source HGs (i.e., S).

Few-shot Task Construction. Few-shot tasks 𝑇={𝜏1, 𝜏2, . . . , 𝜏𝑚}
in 𝐺 are constructed as follows. Firstly, under the 𝑁 -way 𝐾-shot
setting, each task 𝜏 = (𝜏spt, 𝜏qry) is sampled by randomly choosing𝑁
different classes 𝐶𝜏={𝑐1, 𝑐2, . . . , 𝑐𝑁 } from the label space 𝐶 . Specifi-
cally, the support set 𝜏spt = {𝜏𝑐1 , 𝜏𝑐2 , . . . , 𝜏𝑐𝑁 } is created by sampling
𝐾 labeled nodes per class, i.e., 𝜏𝑐𝑖 = {(𝑣1, 𝑐𝑖 ), (𝑣2, 𝑐𝑖 ), . . . , (𝑣𝐾 , 𝑐𝑖 )}.
The query set 𝜏qry = {𝜏𝑐1 , 𝜏𝑐2 , . . . , 𝜏𝑐𝑁 } is formed from the remaining
data of each class, where 𝜏𝑐𝑖 = {(𝑣1, 𝑐𝑖 ), (𝑣2, 𝑐𝑖 ), . . . , (𝑣K, 𝑐𝑖 )}. After
sufficient training iterations overS with the proposedmethodology,
the obtained model is expected to conduct 𝑁 -way classification in
T given only 𝐾 labeled examples per class.

4 THE PROPOSED CGFL
Fig. 2(a) shows the structure of our proposed CGFL model, which
contains three main steps: (1)Meta-pattern Extraction:meta-patterns
are extracted and classified into several general categories to capture
heterogeneous information across HGs; (2) Multi-view Learning:
a new multi-view heterogeneous graph neural network (MHGN)
module is proposed to aggregate meta-pattern information from
three general views: sum, max and mean; (3) Meta-learning: In the
meta-training process, a three-level score module is proposed to
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assess the transferability of source HGs, the consistency of few-shot
tasks, and the informativeness of labeled nodes. In the meta-testing
process, the node-level score submodule is generalized to the target
HG to evaluate the importance of each few-labeled node. Overall,
CGFL can be well initialized from few-shot tasks in source HGs and
adapt to the target HG, enabling accurate prediction of few-labeled
classes from a different heterogeneity.

4.1 Meta-pattern Extraction
In existing methods, the extraction of heterogeneous information
from HGs typically relies on the utilization of predefined patterns
referred to as meta-paths [19] or meta-graphs [5]. These patterns
consist of diverse node types and have specific semantics, such as
"author-paper-author" indicating author collaboration. Bymatching
the HG with multiple pre-defined patterns, various types of het-
erogeneous information embedded in the HG can be extracted for
further analysis. However, the process of mining patterns for a sin-
gle HG typically requires domain expertise [2], thereby presenting
challenges in extracting general patterns in the cross-heterogeneity
scenario. On the one hand, mining useful patterns for all source HGs
is impractical due to the extensive domain knowledge required. On
the other hand, mining valuable patterns in the target HG becomes
arduous due to limited knowledge regarding the new heterogeneity.

To tackle this challenge, we propose a novel method for extract-
ing heterogeneous information across HGs automatically. Specif-
ically, we first extract important patterns in HGs and form meta-
patterns. These meta-patterns are then classified into four general
categories, enabling the extraction of generalized knowledge across
HGs with different heterogeneities.
Procedure for Extracting Meta-patterns. For a single HG𝐺 , we
propose a random walk-based approach to capture prevalent local
structures and formmeta-patterns: (1) Starting from each node in𝐺 ,
𝑁path paths with a length of 𝑙 are randomly chosen for each node,
and these paths are aggregated into a set Spath. (2) For every node
type Φ𝑖 ∈ A (Φ𝑖 denotes the 𝑖-th node type), subpaths that connect
nodes with the same node type Φ𝑖 are extracted from Spath, forming
the set S𝑖path. (3) S

𝑖
path is then partitioned into distinct groups based

on the type patterns of the subpaths (e.g., subpaths with the "author-
paper-author" pattern and the "author-venue-author" pattern are
assigned to different groups). (4) Meta-patterns for Φ𝑖 are identified
by selecting the patterns with the top-𝐾mp highest counts. Hence,
the meta-patterns in 𝐺 can be represented as P = {P𝑖 |Φ𝑖 ∈ A}.

By identifying and summarizing patterns in HGs to form meta-
patterns, we can effectively compress a large volume of diverse
heterogeneous information into a more concise format. In addition,
applying a uniform approach to deal with various HGs can facilitate
extracting generalized knowledge from these HGs.
Categorization for Meta-patterns. Our categorization approach
firstly divides meta-patterns into two main categories: affiliation
patterns (APs) and interaction patterns (IPs). Within each category,
we further classify the patterns into two subcategories based on the
strength of the relationship they represent. For instance, APs can
be further categorized as either strong affiliation patterns (SAPs) or
weak affiliation patterns (WAPs). This categorization is inspired by
existing studies that adopt two general types of relations to classify
various relationships in HGs [13, 16]: the affiliation relation between

nodes with individual properties and nodes with set properties (e.g.,
"paper-venue"), and the interaction relation between nodes with
individual properties (e.g., "author-author").

However, these relations can only capture generalized node-
node connections and are incapable of capturing generalized graph
structures across HGs. Moreover, in the cross-heterogeneity sce-
nario, each relation category may contain diverse information that
requires further classification. To overcome these limitations, CGFL
extends the two types of relations from node-level to a more intri-
cate meta-pattern level and provides a more detailed categorization
of meta-patterns. Specifically, we first categorize meta-patterns into
APs and IPs as follows.

𝐷𝑚𝑝 (𝑝) = max({𝐷 (Φ𝑖 ,Φ𝑗 ) | (Φ𝑖 ,Φ𝑗 ) ∈ 𝑝}), (1)

𝐷 (Φ𝑖 ,Φ𝑗 ) =
max(𝑑Φ𝑖

, 𝑑Φ𝑗
)

min(𝑑Φ𝑖
, 𝑑Φ𝑗

) , (2)

where 𝑝 is a single meta-pattern, dΦ𝑖
and 𝑑Φ𝑗

are average degrees of
node types Φ𝑖 and Φ𝑗 respectively.𝐷 (Φ𝑖 ,Φ𝑗 ) determines the type of
relationship between Φ𝑖 and Φ𝑗 [16]. A large value of𝐷 (·) indicates
an affiliation relation, while a low value suggests an interaction
relation. Then, we set a threshold 𝜃mp to classify meta-patterns,
with those having 𝐷mp (·) ≥ 𝜃mp classified as affiliation patterns
and those with 𝐷mp (·) < 𝜃mp classified as interaction patterns. The
classification is based on whether the meta-pattern contains the
affiliation relation or not. 𝜃mp is typically set to 10, which is in line
with previous studies on the classification of affiliation relations
and interaction relations [16].

Next, we categorize affiliation patterns (APs) and interaction
patterns (IPs) based on the strength of the relationships they rep-
resent. For APs, we analyze whether the pattern is symmetric, as
symmetrical patterns typically indicate stronger relationships [19].
For instance, the symmetric AP "user-company-user" indicates that
two "users" are connected through the same type of affiliation re-
lation (i.e., "user-company"), suggesting that these two "users" are
likely to be colleagues working in the same "company". Conversely,
the asymmetric AP "user-company-item-user" indicates that two
"users" are connected through different types of affiliation relations
(i.e., "user-company" and "company-item-user"). In this case, one
"user" may be an employee of the "company" while the other could
be a customer of its products. These two "users" may have distinct
roles, which weakens the relationship between them compared
to the "user-company-user" pattern. Consequently, a symmetrical
AP is classified as a strong affiliation pattern (SAP), whereas an
asymmetrical AP is categorized as a weak affiliation pattern (WAP).

Regarding IPs, since each IP does not contain affiliation relations,
nodes in IPs interact with each other on an equal basis. Nodes
exhibit strong interaction relationships when they are closely con-
nected, either directly or through a few common neighbors. There-
fore, IPs with shorter lengths represent strong interaction relation-
ships and are considered strong interaction patterns (SIPs), while
IPs with longer distances do not indicate a close interaction rela-
tionship and are classified as weak interaction patterns (WIPs). We
set a length threshold 𝜃lp to specify SIPs and WIPs.

Categorizing APs and IPs allows for a more comprehensive study
of diverse meta-patterns. This categorization helps discover latent
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Figure 2: (a) The overall architecture of CGFL. (b) The three-level score module.

correlations within meta-patterns from each category, thereby facil-
itating the extraction of generalized knowledge. The categorization
of meta-patterns yields four distinct groups: PSAP, PWAP, PSIP, and
PWIP, each with its own set of instances, e.g., ISAP.

4.2 Multi-view Learning
Each meta-pattern category can be represented by aggregating
the information from its individual instances. However, directly
aggregating meta-pattern instances may result in a loss of valuable
information due to the different structures and node types in each
category. To address this issue, we propose a multi-viewmechanism
inspired by widely used graph aggregation methods [25]. This
mechanism captures information from three perspectives: the sum-
view, max-view, and mean-view. These views have been proven to
be general enough to encompass the capabilities of various graph
aggregators [25], thereby enabling CGFL to extract comprehensive
and generalized knowledge across HGs.

• In the sum-view, we capture the complete information of in-
stances for each meta-pattern category, i.e., Isum-SIP = ISIP, here
we use SIP as an example for the three views.

• In the max-view, we focus on extracting information related to
the most prevalent meta-pattern within each category:

Imax-SIP = {𝐼 |𝐼 ∈ ISIP,P(𝐼 ) = 𝑝SIPN-max}, (3)

where P(𝐼 ) represents the meta-pattern associated with instance
𝐼 , 𝑝SIPN-max is the meta-pattern in PSIP that has the maximum
number of instances.

• In themean-view,we capture the distributions of all meta-patterns
by averagely sampling 𝑁mean instances for each meta-pattern
𝑝 ∈ PSIP and forming the set Imean-SIP.

Thus, we can create instance sets for the three views: Isum, Imax

and Imean. Each set consists of instances corresponding to different
meta-pattern categories, e.g., Isum={Isum-SAP, Isum-WAP, Isum-SIP,
Isum-WIP}. By leveraging these views to learn meta-patterns from
different categories, we can extract comprehensive and generalized
knowledge across HGs. Next, we adopt the following three func-
tions to aggregate the information of meta-patterns and compute
node representations.
Meta-pattern Instance Aggregation. To begin with, we perform
the aggregation of instances belonging to the same meta-pattern
category and the same view (e.g., Isum-SIP). Let Isum-SIP

𝑣 represent
a set of instances that start from node 𝑣 and are extracted from
Isum-SIP. An instance encoder is employed to transform the node
features of each instance into a single vector:

hsum-SIP
𝑣-𝑖 = 𝑓 SIP

𝜃
({x𝑢 |𝑢 ∈ 𝐼 sum-SIP

𝑣-𝑖 }), (4)

where xu is the feature of node u, 𝐼 sum-SIP
𝑣-𝑖 represents the 𝑖-th in-

stance in Isum-SIP
𝑣 , and 𝑓 SIP

𝜃
(·) denotes the shared encoder function

for SIP instances. Since each instance contributes differently to the
representation of the target node, we learn the importance weight
for each instance and utilize a multi-head attention mechanism to
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calculate weighted sums of the instance representations:

𝛼sum-SIP
𝑣-𝑖 =

exp
(
𝜎

(
aTsum-SIP ·

[
x𝑣 ∥hsum-SIP

𝑣-𝑖
] ))

∑ | Isum-SIP
𝑣 |

𝑗=1 exp
(
𝜎

(
aTsum-SIP ·

[
x𝑣 ∥hsum-SIP

𝑣-𝑗

] )) , (5)

hsum-SIP
𝑣 =

𝐾att
∥
𝑘=1

𝜎

(∑︁ | Isum-SIP
𝑣 |

𝑖=1
𝛼sum-SIP
𝑣-𝑖,𝑘 · hsum-SIP

𝑣-𝑖

)
, (6)

where 𝛼sum-SIP
𝑣-𝑖,𝑘 denotes the importance of 𝑖-th instance at the 𝑘-

th attention head, ∥ denotes the concatenation operation, asum-SIP
represents the trainable attention parameter shared among SIP
instances obtained from the sum-view, 𝐾att corresponds to the
number of attention heads, and 𝜎 (·) denotes an activation function.
Meta-pattern Category Aggregation. Next, we aggregate the
information from the four meta-pattern categories under the same
view. Specifically, we adopt an attention mechanism to aggregate
information from these meta-pattern categories:

𝑤sum-SIP = 𝜎

((
Wsum · hsum-SIP

𝑣 + bsum
)
· asum

)
, (7)

𝛽sum-SIP = exp(𝑤sum-SIP)/
∑︁

i∈Smp
exp(𝑤sum-i), (8)

hsum𝑣 =
∑︁

𝑖∈Smp
𝛽sum-i · hsum-i

𝑣 , (9)

where Smp = {SAP, WAP, SIP, WIP} is the set of meta-pattern cat-
egories, Wsum and bsum are trainable parameters, asum denotes
the shared attention parameter for meta-pattern categories in the
sum-view.
View Aggregation. Finally, we aggregate the information from
the three views to obtain the final embedding:

𝑧sum = 𝜎
( (
Wview · hsum𝑣 + bview

)
· aview

)
, (10)

𝛾sum = exp(𝑧sum)/
∑︁

𝑖∈Sview
exp(𝑧𝑖 ), (11)

h𝑣 =
∑︁

𝑖∈Sview
𝛾𝑖 · h𝑖𝑣, (12)

where Sview = {sum, max, mean} is the set of views,Wview and bview
are trainable parameters, and aview denotes a view level attention
parameter.

4.3 Meta-learning
The meta-learning module consists of two steps: meta-training and
meta-testing. During meta-training, to achieve effective knowledge
transfer from source HGs, we propose a three-level score module
(as shown in Fig. 2(b)) that evaluates the source HGs’ data from
three perspectives: HG transferability, task consistency, and node
informativeness. Subsequently, we adopt a prototypical network to
transfer the generalized knowledge from source HGs to the target
HG. In meta-testing, the node-level score submodule, which has
been learned from the source HGs, is adapted to the target HG. This
adaptation enables the evaluation of the importance of few-labeled
nodes in the target HG, thereby facilitating the generation of more
stable representations for classes in the target HG.
Graph-level Score Submodule. This submodule is proposed to
evaluate the transferability of each source HG. By comparing the
similarity of heterogeneous information between the source HG
and the target HG, we determine whether the source HG contains
sufficient generalized knowledge for effective knowledge transfer.
Specifically, we calculate the transferability of each source HG by

comparing the meta-pattern distributions between this source HG
and the target HG. Since the mean-view in the multi-view learning
module captures the distributions of all meta-patterns, we utilize
the vector hmean

𝑣 output by the mean-view (cf. Eq. 9) to compute
the representation of the meta-pattern distribution for each HG:

h𝐺𝑖
= mean({hmean

𝑣 |𝑣 ∈ 𝜏, 𝜏 ∈ 𝑇𝑖 }), (13)

where 𝜏 is an 𝑁 -way 𝐾-shot task, 𝑇𝑖 is the set of tasks for 𝑖-th
source HG 𝐺𝑖 , and mean(·) denotes the averaging operation. For
the target HG𝐺𝑡 , we randomly select 𝑁 ×𝐾 × |𝑇𝑖 | nodes and input
them into the current model to obtain ℎmean

𝑣 and form ℎ𝐺𝑡
using

themean(·) operation. Note that this process is solely for obtaining
representations of different HGs in the same vector space, and
therefore the gradients during the vector acquisition process are
not optimized. Next, we concatenate the representations of each
source HG and the target HG and adopt softmax to compute the
graph-level score for each source HG:

𝑔𝑠𝑖 =
exp

(
𝜎
(
W𝑔

[
h𝐺𝑖

| |h𝐺𝑡

] ) )∑ | Gsrc |
𝑗=1 exp

(
𝜎

(
W𝑔

[
h𝐺 𝑗

| |h𝐺𝑡

] )) , (14)

whereW𝑔 is the trainable parameter.
Task-level Score Submodule. This submodule is proposed to
evaluate the consistency of each task. In meta-learning, each task
consists of a support set and a query set. The support set is utilized
to adapt the model to a specific task, while the query set is employed
to evaluate the model’s performance on unseen examples from the
same task. When it comes to few-shot learning on HGs, there may
exist meta-pattern differences between nodes in the support and
query sets, even if they are sampled from the same class. These
discrepancies in meta-patterns can impact the feedback provided
by the query set, potentially resulting in inaccurate evaluations
of the model’s ability to acquire knowledge from the support set.
However, existing methods solely consider the graph structure
to assess the task importance [18, 29], disregarding the influence
of meta-pattern differences. Therefore, we propose to assess the
importance of each task by examining the consistency between
the meta-patterns surrounding nodes in the query set and support
set. Similar to the mean-view vector hmean

𝑣 used for comparing
meta-pattern distributions at the graph-level score, we utilize the
sum-view vector hsum𝑣 to represent all meta-patterns surrounding 𝑣
and generate representations for the support set and query set:

h𝜏𝑖spt = mean({hsum𝑣 |𝑣 ∈ 𝜏𝑖spt}), (15)

h𝜏𝑖qry = mean({hsum𝑣 |𝑣 ∈ 𝜏𝑖qry}), (16)

where 𝜏𝑖 = {𝜏𝑖spt, 𝜏𝑖qry} is a single task. Then, we concatenate the
representations of the support set and query set and apply the
softmax function to compute the task-level score for each task:

ts𝑖 =
exp

(
𝜎

(
W𝑡

[
h𝜏𝑖spt | |h𝜏𝑖qry

] ))
∑ |𝑇 |
𝑗=1 exp

(
𝜎

(
W𝑡

[
h
𝜏
𝑗
spt
| |h
𝜏
𝑗
qry

] )) , (17)

where W𝑡 is the trainable parameter. Since we only compare tasks
within the same HG, 𝑇 is the set of tasks of a single source HG.
Node-level Score Submodule. This submodule is proposed to
evaluate the informativeness of each labeled node. We consider
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that the informativeness of the node is highly correlated to the
importance of its meta-pattern instances. Consequently, we first
calculate the importance of each instance as follows (here we take
𝑖-th SIP instance of node 𝑣 , i.e., 𝐼SIP

𝑣-𝑖 , as an example):

𝜖SIP𝑣-𝑖 =
exp

(
LeakyReLU

(
aTSIP ·

[
𝑠𝑣 ∥𝑠SIP𝑣-𝑖

] ))
∑ | ISIP

𝑣 |
𝑗=1 exp

(
LeakyReLU

(
aTSIP ·

[
𝑠𝑣 ∥𝑠SIP𝑣-𝑗

] )) , (18)

where ISIP
𝑣 is the set of instances that start from 𝑣 and match

patterns in PSIP, aSIP is the trainable attention parameter shared
by SIP instances. 𝑠𝑣 and 𝑠SIP𝑣-𝑖 denote the initial scores of 𝑣 and 𝐼

SIP
𝑣-𝑖 ,

respectively, which are computed as follows:

𝑠𝑣 = tanh (W𝑠 · x𝑣) , (19)

𝑠SIP𝑣-𝑖 = tanh
(
WSIP · 𝑓agg

({
x𝑢 |𝑢 ∈ 𝐼SIP𝑣-𝑖

}))
, (20)

where W𝑠 and WSIP are trainable parameters. The function 𝑓agg (·)
is used to aggregate the information of nodes in each instance,
such as operations like𝑚𝑒𝑎𝑛(·),𝑚𝑎𝑥 (·), or 𝑠𝑢𝑚(·). Then, we utilize
|ISIP
𝑣 | to quantify the popularity of node 𝑣 , and then apply a sigmoid

non-linearity to calculate the node-level score for the SIP category,
which can be expressed as follows:

𝑛𝑠SIP𝑣 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
log

(
|ISIP
𝑣 | + 𝜂

)
·
∑︁ | ISIP

𝑣 |
𝑖=1

𝜖SIP𝑣-𝑖 · 𝑠
SIP
𝑣-𝑖

)
, (21)

where 𝜂 is a small constant. Next, we calculate the average score
for all meta-pattern categories to obtain the node-level score:

𝑛𝑠𝑣 = (𝑛𝑠SAP𝑣 + 𝑛𝑠WAP
𝑣 + 𝑛𝑠SIP𝑣 + 𝑛𝑠WIP

𝑣 )/4. (22)

Prototypical Network. After obtaining the node-level score for
each node sample, CGFL follows the idea of prototypical networks
[17] and calculates the weighted average of𝐾-shot embedded nodes
belonging to class 𝑐 to obtain the prototype of that class:

proto𝑐 =
∑︁𝐾

𝑖=1
𝑠𝑐𝑖 · h𝑖 , (23)

where 𝑠𝑐𝑖=𝑛𝑠𝑖/
∑𝐾
𝑖=1 𝑛𝑠𝑖 is the normalized node-level score, h𝑖 is the

embedding of node 𝑖 that is output by multi-view learning. The
node-level score submodule is trained through meta-training and
used to compute the class prototype in meta-testing.
Loss Function. During meta-training, the prototype for each class
is computed by utilizing the nodes in the support set 𝜏 spt. To deter-
mine the class of a query node 𝑢 in the query set 𝜏qry, we calculate
the probability for each class based on the distance between the
node embedding h𝑢 and each prototype:

prob(𝑐 |𝑢) =
exp

(
−𝑑 (h𝑢 , proto𝑐 )

)∑
𝑐′ exp

(
−𝑑 (h𝑢 , proto𝑐′ )

) , (24)

where 𝑑 (·) is a distance metric function and we adopt squared
Euclidean distance [17]. Under the episodic training framework, the
objective of each meta-training task is to minimize the classification
loss between the predictions of the query set and the ground truth.
The training loss of a single task 𝜏 can be defined as the average
negative log-likelihood probability of assigning correct class labels:

L𝜏 = − 1
𝑁 × 𝐾

∑︁𝑁×𝐾
𝑖=1

log(prob(𝑦∗𝑖 |𝑣𝑖 )), (25)

Table 2: Statistics of Datasets.

Datasets Node Type Labeled Node Type
#Nodes #Classes

DBLP Paper/Author/Venue Paper
4,057 / 14,328 / 20 4

IMDB Movie/Director/Actor Movie
4,661 / 2,270 / 5,841 4

YELP Business/User/Service/Star/Reservation Business
2,614 / 1,286 / 9 / 2 / 2 3

PubMed Disease/Gene/Chemical/Species Disease
20,163 / 13,561 / 26,522 / 2,863 8

where 𝑦∗
𝑖
is the ground truth label of 𝑣𝑖 . Then, by incoporating the

graph-level score and task-level score, the total meta-training loss
can be defined as:

Lmeta =
∑︁ | Gsrc |

𝑖=1

∑︁ |𝑇𝑖 |
𝑗=1

𝑔𝑠𝑖 · 𝑡𝑠 𝑗 · L𝑖𝜏 𝑗 , (26)

where L𝑖𝜏 𝑗 denotes the training loss on 𝑗-th task of 𝑖-th source HG.

4.4 Efficiency Analysis
Targeting the novel and complex cross-heterogeneity scenario
where there may exist multiple large-scale source HGs with various
node types, CGFL is efficient due to the following properties:
Few-shot learning based on local subgraphs: CGFL extracts
subgraphs around 𝑁 -way 𝐾-shot labeled nodes for learning, rather
than processing the entire graph structure. This approach ensures
the input graph size for CGFL remains small and consistent dur-
ing computation, resulting in stable memory consumption and
improved computational efficiency.
Independent of node type for heterogeneous information
extraction: CGFL does not rely on specific node types to capture
heterogeneous information; instead, it focuses on capturing four
widely existing meta-pattern categories across HGs. This ensures
that the computational complexity of CGFL remains unaffected
when the number of node types increases.

5 EXPERIMENTS AND ANALYSIS
We conduct extensive experiments on four real-world datasets to
answer the following research questions: RQ1: How does CGFL
perform compared with representative and state-of-the-art meth-
ods? RQ2: How do the three proposed modules (i.e., meta-pattern
extraction module, multi-view learning module, and meta-learning
module) contribute to the overall performance? RQ3: How does
the number of source HGs affect the performance of HGFL? RQ4:
How does CGFL perform under different parameter settings?

5.1 Experimental Settings
Datasets.We adopt four real-world datasets: DBLP, IMDB, YELP,
and PubMed. These datasets are publicly available and have been
widely used in studies of node classification in HGs [16, 23]. Details
of the datasets are provided in Table 2.
Meta-learning Settings. Since the node types in any two of the
four datasets are completely different, we choose to use one dataset
as the target HG formeta-testing, while the remaining three datasets
are used as source HGs for meta-training. This setting yields the
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Table 3: Node classification accuracy on four datasets.

DBLP IMDB YELP PubMed
2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way

1-shot
GAT 0.7814 0.6443 0.5092 0.3421 0.5839 0.3938 0.5023 0.3318
SGC 0.7745 0.6599 0.5142 0.3423 0.5964 0.4039 0.5072 0.3360
GIN 0.7804 0.6503 0.5173 0.3499 0.5902 0.4172 0.4961 0.3393
HAN 0.6828 0.5497 0.5153 0.3514 0.5681 0.3896 0.5080 0.3367

MAGNN 0.7006 0.5552 0.5144 0.3505 0.5774 0.3935 0.5092 0.3375
SGAT 0.7897 0.6631 0.5234 0.3584 0.5932 0.4132 0.5066 0.3419
MAML 0.6263 0.4651 0.5111 0.3404 0.5303 0.3674 0.5071 0.3232
ProtoNet 0.6404 0.4917 0.5133 0.3397 0.5436 0.3665 0.5037 0.3242
Meta-GNN 0.6974 0.5423 0.5175 0.3495 0.5769 0.3717 0.5106 0.3449

GPN 0.7611 0.6506 0.5197 0.3603* 0.6207 0.4266* 0.5048 0.3303
G-Meta 0.7827 0.6694 0.5241* 0.3573 0.6274 0.4242 0.5155* 0.3461*
TENT 0.8124* 0.7035* 0.5174 0.3592 0.6440* 0.4157 0.5121 0.3452
CGFL 0.87121 0.7849 0.5331 0.3846 0.7028 0.4377 0.5335 0.3676

Improvement2 6.75% 10.37% 1.69% 6.32% 8.37% 2.54% 3.37% 5.85%
3-shot

GAT 0.8371 0.7284 0.5313 0.3669 0.6393 0.4373 0.4683 0.3040
SGC 0.8150 0.7389 0.5377 0.3764 0.6580 0.4391 0.4840 0.3027
GIN 0.8433 0.7411 0.5287 0.3769 0.6547 0.4082 0.4923 0.2978
HAN 0.7274 0.6061 0.5344 0.3764 0.6796 0.4596 0.5116 0.3527

MAGNN 0.7522 0.6456 0.5275 0.3905 0.6389 0.4359 0.5266 0.3789
SGAT 0.8382 0.7426 0.5332 0.3824 0.6434 0.4521 0.5379 0.3824
MAML 0.6685 0.5082 0.5253 0.3507 0.5621 0.3967 0.4997 0.3237
ProtoNet 0.6953 0.5799 0.5194 0.3602 0.5785 0.4231 0.4927 0.3117
Meta-GNN 0.7983 0.6953 0.5309 0.3982 0.6271 0.4326 0.5140 0.3890

GPN 0.8450 0.7982 0.5467* 0.4042* 0.6766 0.4596 0.5213 0.3979*
G-Meta 0.8680* 0.8138* 0.5350 0.4021 0.6836* 0.4577 0.5392* 0.3744
TENT 0.8576 0.7538 0.5212 0.3677 0.6744 0.4680* 0.5317 0.3968
CGFL 0.9026 0.8572 0.5745 0.4181 0.7532 0.4904 0.5833 0.4204

Improvement2 3.83% 5.06% 4.84% 3.32% 9.24% 4.57% 7.56% 5.35%

* Result of the best-performing baseline.
1 Bold numbers are the results of the best-performing method.
2 Improvement of our CGFL over the best-performing baseline.

most challenging scenario for heterogeneous graph few-shot learn-
ing, wherein the datasets for meta-training and meta-testing have
entirely different heterogeneities. We repeat such challenging sce-
narios to conduct all four separate experiments, where each of the
four datasets serves as the target HG in one experiment.
Baselines. Given the absence of dedicated solutions designed for
the cross-heterogeneity graph few-shot learning problem, we select
12 representative and state-of-the-art methods as baselines. These
baselines can be categorized into four groups:
• Homogeneous GNNs: GAT [20], SGC [24] and GIN [25].
• Heterogeneous GNNs: HAN [23], MAGNN [7] and SGAT [12].
• Few-shot learning methods: MAML [6] and ProtoNet [17].
• Graph few-shot learning methods: Meta-GNN [30], GPN [3],
G-Meta [11] and TENT [21].

While most baselines can follow our meta-learning setting with
minor modifications, it is worth mentioning that HAN andMAGNN
employ specialized modules to capture information from specific
node types and meta-paths. Consequently, these models can only
deal with HGs with single-heterogeneity. Therefore, we only train
HAN and MAGNN on the target HG to evaluate the effectiveness
of these methods in leveraging heterogeneous information of the
target HG to address the few-shot problem.
Parameter Settings. In the 𝑁 -way 𝐾-shot setting, 𝑁 is set to {2,
3} and K is set to {1, 3, 5}. The number of task m is set to 100 for

Table 4: Node classification F1-score on four datasets.

DBLP IMDB YELP PubMed
2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way

1-shot
GAT 0.7634 0.6238 0.4874 0.3230 0.5717 0.3656 0.4697 0.3058
SGC 0.7516 0.6316 0.4609 0.3077 0.5496 0.3754 0.4451 0.2757
GIN 0.7626 0.6213 0.4838 0.3218 0.5705 0.3775 0.4544 0.3014
HAN 0.6569 0.5258 0.4994 0.3367 0.5086 0.3353 0.4745 0.2958

MAGNN 0.6967 0.5492 0.4851 0.3259 0.5467 0.3805 0.4837 0.3280
SGAT 0.7712 0.6516 0.4895 0.3365 0.5719 0.3745 0.4828 0.3372
MAML 0.6233 0.4622 0.5088 0.3373 0.5281 0.3449 0.4698 0.3202
ProtoNet 0.6455 0.5343 0.4831 0.3210 0.5491 0.3316 0.4409 0.2772
Meta-GNN 0.6683 0.4851 0.5063 0.3397 0.5531 0.3603 0.5039 0.3222

GPN 0.7492 0.6294 0.5147* 0.3376 0.6082* 0.3941 0.5008 0.3447*
G-Meta 0.7649 0.6427 0.5084 0.3436* 0.5439 0.3954* 0.5075* 0.3372
TENT 0.8081* 0.6767* 0.5029 0.3205 0.5567 0.3814 0.4932 0.3358
CGFL 0.84561 0.7536 0.5244 0.3469 0.6876 0.4126 0.5155 0.3520

Improvement2 4.43% 10.20% 1.85% 0.95% 11.55% 4.17% 1.11% 2.07%
3-shot

GAT 0.8042 0.7067 0.5133 0.3545 0.6059 0.4105 0.4493 0.2742
SGC 0.8092 0.7168 0.5229 0.3649 0.6388 0.4208 0.4388 0.2616
GIN 0.8001 0.7282 0.5180 0.3546 0.6470 0.4011 0.4562 0.2695
HAN 0.6909 0.5839 0.5231 0.3659 0.6574 0.4396 0.4961 0.3439

MAGNN 0.7489 0.6150 0.5022 0.3729 0.6300 0.4230 0.5093 0.3668
SGAT 0.8123 0.7146 0.5153 0.3620 0.6355 0.4361 0.5118 0.3723
MAML 0.6453 0.5052 0.5167 0.3466 0.5598 0.3805 0.4907 0.3055
ProtoNet 0.6343 0.5136 0.4484 0.2717 0.5217 0.3530 0.4771 0.3038
Meta-GNN 0.7723 0.6553 0.5248 0.3656 0.5902 0.4207 0.5076 0.3715

GPN 0.8295 0.7825* 0.5316* 0.3811* 0.6451 0.4338 0.5185 0.3797*
G-Meta 0.8461* 0.7769 0.5246 0.3559 0.6494 0.4266 0.5313* 0.3319
TENT 0.8396 0.7423 0.5089 0.3399 0.6592* 0.4430* 0.5249 0.3566
CGFL 0.8974 0.8512 0.5539 0.3957 0.7007 0.4664 0.5615 0.4013

Improvement2 5.72% 8.07% 4.03% 3.69% 5.92% 5.02% 5.38% 5.38%

* Result of the best-performing baseline.
1 Bold numbers are the results of the best-performing method.
2 Improvement of our CGFL over the best-performing baseline.

all datasets. To ensure fair comparisons, the embedding dimension
is set to 64 for both the baselines and CGFL; the parameters for
each baseline are initially set to the values reported in the original
paper and then optimized through grid-searching to achieve the
best performance. For CGFL, in the meta-pattern extraction module,
𝑁path is set to 20, 𝑙 is set to 40, 𝐾mp is set to 10, 𝜃lp is set to 3. In
the multi-view learning module, 𝑁mean is set to 5, fSAP

𝜃
(·), fWAP

𝜃
(·),

fSIP
𝜃

(·) and fWIP
𝜃

(·) are set as mean-pooling(·), Katt is set to 4, the
activation 𝜎 (·) is set to relu(·). In the meta-learning module, 𝑓agg (·)
is set to sum(·).
Evaluation Metrics. The performance of all methods is evaluated
by twowidely used node classificationmetrics:Accuracy andMacro-
F1 score [20, 30]. To ensure a fair and accurate assessment of the
performance of all methods, we perform 10 independent runs for
each N-way K-shot setting and report the average results.

5.2 Experimental Results
Performance Comparison with Baselines (RQ1). Tables 3 and 4
present the performance comparison between CGFL and baselines.
The "DBLP" column presents the results of the experiment where
the DBLP dataset is set as the target HG and the rest three datasets
are set as source HGs. The results demonstrate a substantial im-
provement of CGFL over the best-performing baselines. On average,
CGFL achieves a 5.56% increase in accuracy (ranging from 1.69%
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Figure 3: Node classification performance of CGFL variants.

Table 5: Node classification performance of CGFL with dif-
ferent numbers of source HGs on four datasets.

#Source
HGs

DBLP IMDB YELP PubMed
2-way 3-way 2-way 3-way 2-way 3-way 2-way 3-way

Accuracy: 1-shot
Rand-1 0.8382 0.7305 0.5084 0.3382 0.6512 0.4042 0.5013 0.3346
Rand-2 0.8644 0.7542 0.5193 0.3705 0.6745 0.4201 0.5122 0.3575
All-3 0.8712 0.7849 0.5331 0.3846 0.7028 0.4377 0.5335 0.3676

Accuracy: 3-shot
Rand-1 0.8746 0.8226 0.5475 0.3977 0.7079 0.4657 0.5356 0.3839
Rand-2 0.8917 0.8423 0.5646 0.4129 0.7375 0.4812 0.5677 0.4065
All-3 0.9026 0.8572 0.5745 0.4181 0.7532 0.4904 0.5833 0.4204

F1-score: 1-shot
Rand-1 0.8008 0.7148 0.5035 0.3103 0.6427 0.3951 0.4863 0.3161
Rand-2 0.8268 0.7343 0.5133 0.3262 0.6651 0.4035 0.5028 0.3372
All-3 0.8456 0.7536 0.5244 0.3469 0.6876 0.4126 0.5155 0.3520

F1-score: 3-shot
Rand-1 0.8622 0.8149 0.5253 0.3546 0.6754 0.4243 0.5223 0.3736
Rand-2 0.8864 0.8394 0.5500 0.3794 0.6925 0.4441 0.5439 0.3943
All-3 0.8974 0.8512 0.5539 0.3957 0.7007 0.4664 0.5615 0.4013

to 10.37%) and a 4.97% increase in F1-score (ranging from 0.95% to
11.55%). This improvement can be attributed to the utilization of
the proposed multi-view HGNN and score module in CGFL, which
effectively learn generalized knowledge across HGs. In contrast, the
baselines struggle to generalize information from source HGs with
different heterogeneities. thereby resulting in inferior performance
when applied to a new heterogeneity with few-labeled data.

In addition, it is worth noting that some baselines exhibit a de-
cline in performance as the number of labeled samples (i.e., 𝐾)
increases. For instance, on the PubMed dataset, the performance of
homogeneous graph methods (GAT, SGC, GIN) and few-shot learn-
ing methods (MAML, ProtoNet) deteriorates in the 3-shot scenario
compared to the 1-shot scenario. This decline can be attributed to
their limited capacity to effectively extract generalized knowledge
from source HGs, leading to negative transfer. In contrast, CGFL
adopts the proposed score module to evaluate the transferability of
source HG data, thereby mitigating negative transfer.
Ablation Study (RQ2).We create ten variants of CGFL to inves-
tigate the impact of its three main modules: (1) Four variants are
created to investigate the impact of the meta-pattern extraction
module by removing meta-patterns of SAP, WAP, SIP, and WIP.
These variants are denoted asM\SAP,M\WAP,M\SIP, andM\WIP,
respectively. (2) Three variants are developed to explore the influ-
ence of the multi-view learning module by removing the sum-view,

max-view, and mean-view. These variants are denoted as M\Sum,
M\Max, and M\Mean, respectively. (3) Three variants are created
to study the impact of the score module by removing submod-
ules of the graph-level score, task-level score, and node-level score.
These variants are namedM\G-Score,M\T-Score, andM\N-Score,
respectively. From Fig. 3, we have the following observations:
• M\SAP, M\WAP, M\SIP, and M\WIP all exhibit inferior perfor-
mance compared to the original CGFL. This indicates that ex-
ploring each of the four meta-pattern categories is crucial for
effective knowledge transfer across HGs. Notably, the removal of
SAP and SIP results in a more significant decline in performance
(approximate decreases of 7% and 8% respectively) compared to
WAP andWIP (approximate decreases of 3% and 5% respectively).
This highlights the importance of extracting SAP and SIP and
emphasizes the necessity to distinguish between meta-patterns
based on their relationship strength levels.

• M\Sum, M\Max, M\Mean are outperformed by CGFL. This sug-
gests that learning generalized relations from all three views
enhances the generalizability across HGs.

• M\G-Score, M\T-Score and M\N-Score yield inferior performance
compared to CGFL. This indicates that the score module plays
a crucial role in evaluating source HG data and facilitating the
extraction of generalized knowledge across HGs. Notably, the
node-level score submodule has the greatest influence on per-
formance, because it not only measures the informativeness of
nodes in the source HGs but also determines the importance of
few-labeled nodes to derive robust prototypes in the target HG.

Impact of the Number of Source HGs (RQ3). We investigate
whether CGFL can effectively extract generalized knowledge from
different types of heterogeneities by varying the number of source
HGs. The results presented in Table 5 illustrate that as the number
of source HGs increases, CGFL consistently demonstrates improved
performance. This is due to CGFL’s capability to enrich general-
ized knowledge by learning from more source HGs with various
heterogeneities and effectively transfer the enriched generalized
knowledge to the target HG.
Parameter Study (RQ4). We evaluate the sensitivity of several
important parameters in CGFL, and show their impacts in Fig. 4. For
the meta-pattern threshold 𝜃mp and length threshold 𝜃lp, moderate
values should be set around 10 and 3 respectively. This selection
helps effectively categorize meta-patterns into general categories.
For the number of meta-patterns 𝐾mp, a larger value (greater than
10) generally yields better results. This is because a larger 𝐾mp
allows CGFL to capture a broader range of diverse meta-patterns.
For the number of instances in the mean-view 𝑁mean, performance
stabilizes when 𝑁mean exceeds 5. This is because subsequently
extracted instances may not possess distinct characteristics that
contribute to the learning of meta-pattern distributions.

6 CONCLUSION
In this paper, we propose a novel cross-heterogeneity graph few-
shot learning problem, and provide a solution called CGFL. CGFL
incorporates a multi-view learning module to efficiently extract
generalized knowledge across source HGs, and adopts a score-
based meta-learning module to transfer the knowledge to the target
HG with different heterogeneity for few-shot learning. Extensive
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Figure 4: Node classification accuracy of CGFL with different
parameter settings on DBLP dataset.

experiments demonstrate the superior performance of our CGFL. In
the future work, we plan to further enhance CGFL by distinguishing
between heterogeneity-specific knowledge and heterogeneity-cross
knowledge. Additionally, we plan to improve the meta-learning
module in CGFL by considering the mutual information between
source HGs and tasks originating from different source HGs.
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