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ABSTRACT
This paper presents Deep Integrated Explanations (DIX) - a univer-

sal method for explaining vision models. DIX generates explanation

maps by integrating information from the intermediate represen-

tations of the model, coupled with their corresponding gradients.

Through an extensive array of both objective and subjective evalua-

tions spanning diverse tasks, datasets, andmodel configurations, we

showcase the efficacy of DIX in generating faithful and accurate ex-

planation maps, while surpassing current state-of-the-art methods.

Our code is available at: https://github.com/dix-cikm23/dix

1 INTRODUCTION
The AI revolution has led to significant advancements across vari-

ous application fields, including computer vision [27, 37, 47, 49, 62],

natural language processing [5, 10, 20, 22, 36, 45, 60, 67, 79], audio

processing [24–26, 33, 39, 58], and recommender systems [8, 9, 15–

19, 51, 52, 65, 83]. Specifically, in computer vision, deep Convo-

lutional Neural Networks (CNNs) [49, 53, 61, 73], alongside re-

cent Vision Transformers (ViTs) models [38] have risen to promi-

nence, exhibiting outstanding performance in a variety of vision

tasks [4, 21, 27, 34, 48]. This surge in popularity emphasizes the

need to comprehend the underlying rationale driving the decisions

and predictions of deep learning models.

Despite their remarkable achievements, most deep neural net-

works remain enigmatic, often considered black boxes due to their

vast number of parameters and intricate non-linearities. This opac-

ity has ignited the growth of explainable AI as a focal research area

within the realm of deep learning. Consequently, numerous method-

ologies have been proposed for explaining the predictions of deep

learning models in computer vision [7, 11, 12, 31, 69, 72, 85], natural

language processing [14, 66], and recommender systems [13, 23, 44].

Explanation techniques aim to bridge the gap in understand-

ing by generating heatmap-like explanation maps. These maps

spotlight distinct input regions, attributing predictions to specific

areas within the input image. Initially, rooted in gradient-based ap-

proaches, early methods generated explanation maps by analyzing

the gradient of predictions concerning the input image [72, 73, 76].

Subsequently, several works [6, 29, 54, 69] proposed deriving ex-

planation maps from the internal activation maps produced by the

network, along with their gradients. Other techniques, such as In-

tegrated Gradients (IG) [78], relying on path integration, created

explanation maps by accumulating gradients from linear interpola-

tions between input and reference images.

Predominantly applied to CNNs, the aforementioned methods

arose before the emergence of Transformer-based architectures [79].

With the advent of ViT models [38], a variety of methodologies

∗
Both authors contributed equally to this research.

were proposed to interpret and explain them, including recent

explanation techniques like those presented in [30, 31].

This paper introduces Deep Integrated Explanations (DIX), a

comprehensive approach aimed at explaining vision models, which

finds applicability across both CNN and ViT architectures. DIX em-

ploys integration over the internal model representations and their

gradients, facilitating the extraction of insights from any activation

(or attention) map within the network.

We present a thorough objective and subjective evaluation, show-

casing the efficacy of DIX on both CNN and ViT models. Our results

reveal its superiority over other baselines across various explana-

tion and segmentation tasks, encompassing diverse datasets, model

architectures, and evaluation metrics. Additionally, we validate the

credibility of DIX in producing faithful explanation maps through

an extensive set of sanity tests, as outlined in [2].

2 RELATEDWORK
2.1 Explanation Methods for CNNs
A diverse range of explanation methods were proposed for ex-

plaining CNN models, categorized into various types including

perturbation-basedmethods, gradientmethods, saliency-basedmeth-

ods,and gradient-freemethods. Perturbation-basedmethods [41, 42]

gauge output sensitivity concerning input through random pertur-

bations applied in the input space. Saliency-based methods [32,

64, 72, 85–87] leverage feature maps obtained through forward

propagation to interpret model predictions.

Gradient methods utilize prediction gradients with respect to

the input or intermediate activation maps. These methods yield

explanation maps based on the gradient itself or by a combination

of the activation maps with their gradients [71, 77]. For instance,

SmoothGrad [75] presents a smoothing approach, applied by adding

random Gaussian noise to the input image at each iteration. An-

other notable example is the Grad-CAM (GC) [69] method, which

leverages activation maps from the final convolutional layer in

conjunction with their pooled gradients to generate explanation

maps. The effectiveness of GC has subsequently inspired numerous

follow-up work [6, 29, 43, 54].

Gradient-free methods generate explanation maps by manipu-

lating activation maps without relying on gradient information [35,

81]. For instance, LIFT-CAM [55] utilizes the DeepLIFT [70] tech-

nique to estimate SHAP values of activation maps [63], which are

then combined with the activation maps to produce the explana-

tion map. However, gradient-free methods have a drawback: they

neglect gradient information, thereby constraining their ability to

steer explanations toward the target or predicted class.

Finally, a notable avenue of research pertains to path integra-

tion methods. Integrated Gradients (IG) [78] involves integration
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across interpolated image gradients. Blur IG (BIG) [84] focuses on

introducing information using a baseline and adopts a path that

gradually removes Gaussian blur from the attributed image. Guided

IG (GIG) [57] refines IG by introducing an adaptive path strategy.

By computing integration along an alternative path, it circumvents

high gradient regions, often resulting in a reduction of irrelevant

attributions.

Distinguished from the aforementioned works, DIX employs in-

tegration, facilitating interpolation on the internal representations

produced by the network, and offers to combine the resulting ex-

planation maps from all network layers. Furthermore, DIX does not

confine the integrand to simple gradients, but rather encompasses

an arbitrary function involving the activation (attention) maps and

their gradients.

2.2 Explanation Methods for ViTs
Early attempts to explain Transformers employed the attention

scores inherent to ViT models in order to glean insights w.r.t. the

input [28, 79]. However, it is not clear how to combine the scores

from different layers. Simple averaging the attention scores of each

token, for example, leads to blurring of the signal [31].

Abnar and Zuidema [1] proposed the Rollout method to compute

attention scores to input tokens at each layer by considering raw

attention scores in a layer as well as those from precedent layers.

Rollout improved results over the utilization of a single attention

layer. However, by relying on simplistic aggregation assumptions,

irrelevant tokens often become highlighted. LRP [3], proposed to

propagate gradients from the output layer to the beginning, consid-

ering all the components in the transformer’s layers and not just

the attention layers.

Recently, Chefer et al.[31] introduced Transformer Attribution

(T-Attr), a class-specific Deep Taylor Decomposition method that

employs relevance propagation for both positive and negative at-

tributions. More recently, the same authors introduced Generic

Attention Explainability (GAE)[30], which is an extension of T-

Attr aimed at explaining Bi-Modal transformers. T-Attr and GAE

stand as state-of-the-art methods for explaining ViT models, ex-

hibiting superior performance when compared to other effective

explanation methods, including LRP and partial LRP [80].

DIX differs from T-Attr and GAE in two main aspects: First, DIX

is a versatile method capable of producing explanation maps for

both CNNs and ViTs. Second, in the context of ViT models, DIX

employs path integration on the interpolated attention matrices

while incorporating the Gradient Rollout (GR) representation (a

variant of the Rollout method) as the function for integration.

3 DEEP INTEGRATED EXPLANATIONS
Let 𝑓 : R𝐷0 → R𝐾 be a neural network with 𝐿 hidden layers that

takes an input (image) x ∈ R𝐷0
and produces a prediction 𝑓 (x) ∈

R𝐾 . We denote x𝑙 (1 ≤ 𝑙 ≤ 𝐿) as the intermediate representation

generated by the 𝑙-th hidden layer in 𝑓 (based on the input x),
and 𝑓 𝑙 : R𝐷𝑙 → R𝐾 as the sub network of 𝑓 that takes x𝑙 as an
input and outputs the prediction 𝑓 (x). Consequently, we have the
relationship 𝑓 𝑙 (x𝑙 ) = 𝑓 (x). Additionally, we denote x0 = x and

𝑓 0 = 𝑓 .

Our assumption is that x𝑙 preserves the spatial structure of x
(though at a different resolution) such that each element in 𝑥𝑙 is as-

sociated with its corresponding elements in x (e.g., this assumption

holds true for CNNs). W.l.o.g, we restrict the discussion to multi-

class classification problems, hence 𝑓 outputs a vector assigning

score to each class, and the score for the class 𝑘 is denoted as 𝑓𝑘 (x).
Our objective is to explain the prediction 𝑓𝑘 (x) for the class 𝑘 . In

this work, we define an explanation mapm𝑙 as a tensor assigning an
attribution score to each element in x𝑙 w.r.t. the prediction 𝑓 𝑙

𝑘
(x𝑙 ) =

𝑓𝑘 (x). Consequently, m𝑙 must match the dimensions of x𝑙 . Note
that our ultimate goal is to attribute the prediction to each element

in the input x, and due to the spatial structure preservation, each

element in m𝑙 can be associated with a set of elements in x.
Let z𝑙 ∈ R𝐷𝑙

be a baseline serving as a reference for the infor-

mative representation x𝑙 . z𝑙 can be the null representation, ran-

dom noise, or other baselines representing missing information. In

what follows, we present a decomposition of the score difference

𝑓𝑘 (x) − 𝑓 𝑙
𝑘
(z𝑙 ), from which an explanation map m𝑙 is derived.

Let 𝐶𝑙 be a differentiable curve connecting z𝑙 to x𝑙 . 𝐶𝑙 is param-

eterized by a vector function r𝑙 : [0, 1] → R𝐷𝑙
such that r𝑙 (0) = z𝑙

and r𝑙 (1) = x𝑙 . The score difference 𝑓𝑘 (x) − 𝑓 𝑙
𝑘
(z𝑙 ) can then be

expressed as follows:

𝑓𝑘 (x) − 𝑓 𝑙
𝑘
(z𝑙 ) = 𝑓 𝑙

𝑘
(r𝑙 (1)) − 𝑓 𝑙

𝑘
(r𝑙 (0))

=

∫
1

0

𝑑

𝑑𝑡
𝑓 𝑙
𝑘
(r𝑙 (𝑡))𝑑𝑡

=

∫
1

0

∇𝑓 𝑙
𝑘
(r𝑙 (𝑡)) · 𝑑r

𝑙 (𝑡)
𝑑𝑡

𝑑𝑡

=

𝐷𝑙∑︁
𝑖=1

∫
1

0

𝑔𝑙𝑖 (𝑡)ℎ
𝑙
𝑖 (𝑡)𝑑𝑡,

(1)

where

𝑔𝑙𝑖 (𝑡) =
𝜕𝑓 𝑙
𝑘
(r𝑙 (𝑡))

𝜕𝑟 𝑙
𝑖
(𝑡)

and ℎ𝑙𝑖 (𝑡) =
𝑑𝑟 𝑙
𝑖
(𝑡)

𝑑𝑡
,

with · representing the dot product operator, and 𝑟 𝑙
𝑖
(𝑡) being the

𝑖-th element in the interpolant r𝑙 (𝑡). The first equality in Eq. 1

consequents from the design of r𝑙 and the fact that 𝑓 𝑙 (x𝑙 ) = 𝑓 (x).
The second equality stems from the fundamental theorem of cal-

culus. The third equality arises from the multivariate chain rule,

and the last equality results from decomposing the dot product into

a summation and then interchanging the order of finite sum and

integration.

Equation 1 breaks down the score difference into a sum, where

each term is a line integral along the 𝑖-th element of curve 𝐶𝑙 , and

the integrand is a function involving the partial derivative of the

prediction 𝑓 𝑙
𝑘
(r𝑙 (𝑡)) w.r.t. the 𝑖-th element in the interpolant r𝑙 (𝑡).

Consequently, each term in the sum resembles the attribution of

the prediction 𝑓𝑘 (x) to an individual element in x𝑙 through the

integrated partial derivatives along 𝐶𝑙 . Equipped with Eq. 1, an

explanation map for x𝑙 can be formed as follows:

m𝑙 =
∫

1

0

g𝑙 (𝑡) ◦ h𝑙 (𝑡)𝑑𝑡, (2)
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where ◦ denotes the element-wise multiplication, g𝑙 (𝑡) = 𝜕𝑓 𝑙
𝑘
(r𝑙 (𝑡 ) )
𝜕r𝑙 (𝑡 )

is the gradient of the prediction w.r.t. the interpolant, and h𝑙 (𝑡) =
𝑑r𝑙 (𝑡 )
𝑑𝑡

. Note that m𝑙 ∈ R𝐷𝑙
with𝑚𝑙

𝑖
=

∫
1

0
𝑔𝑙
𝑖
(𝑡)ℎ𝑙

𝑖
(𝑡)𝑑𝑡 . Notable, for

𝑙 = 0, Eq. 2 is equivalent to the IG [78] explanation map, where the

interpolation takes place in the input space.

Equation 2 integrates the gradients of the interpolated activa-

tion maps r𝑙 (𝑡). Empirically, we found that incorporating the in-

formation from r𝑙 (𝑡) itself (beyond its gradient) yields enhanced

explanations, both visually and quantitatively. This observation

is consistent with previous works [6, 29, 69]. Furthermore, since

for 𝑙 > 0, m𝑙 does not match the spatial dimensions of the input

x, a subsequent transformation𝜓 𝑙 is employed to ensure a proper

match. To this end, we define the DIX explanation map as follows:

m𝑙
DIX

= 𝜓 𝑙
(∫

1

0

𝜙

(
r𝑙 (𝑡), g𝑙 (𝑡)

)
◦ h𝑙 (𝑡)𝑑𝑡

)
, (3)

where the exact implementation details of 𝜙 and𝜓 are architecture

dependent and are outlined in Sec. 3.1.

In this work, we choose 𝐶𝑙 to be the linear curve connecting z𝑙

to x𝑙 , hence

r𝑙 (𝑡) = z𝑙 + 𝑡 (x𝑙 − z𝑙 ) and h𝑙 (𝑡) = x𝑙 − z𝑙 . (4)

In practice, the integration in Eq. 3 is numerically approximated as

follows:

m𝑙
DIX

≈ 𝜓 𝑙

(
x𝑙 − z𝑙

𝑁
◦
𝑁∑︁
𝑛=1

𝜙

(
r𝑙

( 𝑛
𝑁

)
, g𝑙

( 𝑛
𝑁

)))
, (5)

where we have employed the linear interpolation from Eq. 4. In

this work, we set 𝑁 = 10. The complexity of DIX is similar to IG,

except for the extra computation induced by 𝜙 and𝜓 𝑙 .

Given that different network layers capture varying types of

information and resolution, we propose aggregating information

from explanation maps produced for different values of 𝑙 . As such,

the final explanation map is constructed as follows:

m𝑆
DIX

=
1

|𝑆 |
∑︁
𝑙∈𝑆

m𝑙 , (6)

where 𝑆 is a set indicating the layer indexes participating in the ag-

gregation. Our experimentation indicates that the best-performing

DIX configurations leverage a combination of explanation maps

from the last two or three layers. Thus, in Sec. 5, we report results

for 𝑆 = {𝐿 − 1, 𝐿} (DIX2) and 𝑆 = {𝐿 − 2, 𝐿 − 1, 𝐿} (DIX3). However,
for the sake of completeness, we also present results for 𝑆 = {𝐿}
(DIX1) as part of our ablation study in Sec. 5.4.

3.1 Implementation Details
In this section, we describe concrete implementations of DIX for

both CNN and ViT architectures.

CNN Models: In the case of CNNs, the architecture of 𝑓 consists

of residual blocks [50] that produces 3D tensors representing the

activation maps x𝑙 . Correspondingly, z𝑙 is a 3D tensor where each

channel is determined by broadcasting the minimum value of the

respective activation map within x𝑙 . Furthermore, we set 𝜙 to the

element-wise multiplication.

We motivate this design choice by the fact that r𝑙 (𝑡) represents
the interpolated activation map, highlighting regions where filters

are activated and patterns are detected. Its gradient gauges the

attribution degree of the specific class of interest to each element

in the activation map. Thus, we expect that regions exhibiting

both large gradient and activation (of the same sign) will yield

effective explanations. This property is achieved through element-

wise multiplication of r𝑙 (𝑡) by its gradient g𝑙 (𝑡). Finally,𝜓 𝑙 is set
to the mean reduction on the channel axis followed by a resize

operation yielding a 2D explanation map that matches the spatial

dimensions of x.

ViT Models: In ViT [37], the architecture of 𝑓 consists of trans-

former encoder blocks producing 2D tensors (sequence of token

representations). The input x is transformed to a 2D tensor as well,

where the first token is the [CLS] token, and the rest of the tokens

are representations of patches in the original image.

In our implementation, we choose to interpolate on the attention

matrices, which in turn affect the output produced by the encoder

block. Specifically, r𝑙 (𝑡) is a 3D tensor that accommodates all the at-

tention matrices produced by the 𝑙-th encoder block. The reference

z𝑙 is set to the zero tensor (since the values in the attention matrix

are in [0, 1]). 𝜙 implements a variant of the Attention Rollout (AR)

method [1] that we name Gradient Rollout (GR). GR is similar to

AR, with a slight modification. Instead of operating solely on the

plain attention matrices, GR initially performs an element-wise

multiplication of the attention matrices by their corresponding

gradients. Following this, GR proceeds with the original Rollout

computation [1], resulting in the first row of the derived matrix (as-

sociated with the [CLS] token). This output is further processed by

truncating its initial element and reshaping it into a 14 × 14 matrix.

The exact implementation of GR appears in our GitHub repository
1
.

Lastly,𝜓 𝑙 remains consistent across all layers, conducting a resize

operation to align with the spatial dimensions of x.

4 EXPERIMENTAL SETUP
Our evaluation encompasses three distinct CNN architectures: ResNet101

(RN)[49], DenseNet201 (DN)[53], and ConvNext-Base (CN)[61],
and two different architectures of ViT: ViT-Base (ViT-B) and ViT-

Small (ViT-S)[37]. The information regarding preprocessingmethod-

ologies and direct access to all the aforementioned models can be

found in our GitHub repository. DIX is evaluated and compared

to other explanation methods through a series of explanation, seg-

mentation, and sanity tests.

4.1 Explanation Metrics
It is difficult to quantify the quality of explainability methods, and

there is no single agreed-upon metric. The explanations metrics

in this study aim to assess how well the explanations align with

hypothetical changes (counterfactuals) to the input. Essentially, it’s

about asking “what if” questions regarding the input and determin-

ing whether the explanations provided are consistent with those

hypothetical scenarios. To comprehensively evaluate our method,

we carefully followed several prominent evaluation protocols.

1
It is worth noting that our experimental findings suggest comparable performance

when substituting the matrix product operation with summation within the context

of the GR computation
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Perturbation Tests. We followed the protocol from [31], which is

the current state-of-the-art in explaining ViTs, and report the Neg-

ative Perturbation AUC (NEG) and the Positive Perturbation AUC

(POS). NEG is a counterfactual test that entails a gradual blackout

of the pixels in the original image in increasing order according

to the explanation map while searching to see when the model’s

top predicted class changes. By masking pixels in increasing order,

we expect to remove the least relevant pixels first, and the model’s

top predicted class is expected to remain unchanged for as long

as possible. Results are measured in terms of the Area Under the

Curve (AUC), and higher values are considered better. Accordingly,

the POS test entails masking the pixels in decreasing order with the

expectation that the model’s top predicted class will change quickly,

hence in POS, lower values are better. In addition, we follow [68]

and report the Insertion AUC (INS) and Deletion AUC (DEL) per-
turbation tests. INS and DEL entail a gradual blackout in increasing

or decreasing order, similar to NEG and POS, respectively. How-

ever instead of tracking the point at which the top predicted class

changes, in INS and DEL the AUC is computed with respect to the

predicted probability of the top class. By masking pixels according

to increasing/decreasing order of importance, we expect that the

predicted probability of the top class will decrease slowly/quickly,

respectively. Hence, for INS higher values are better and for DEL

lower values are better.

ADP and PIC Tests. We follow [29] and report the Average Drop

Percentage (ADP) and the Percentage Increase in Confidence (PIC)
tests. Both tests relate to the change in the probability of the pre-

dicted class after applying the mask to the original image. A good

explanation map is expected to highlight the most significant re-

gions for decision-making. Hence, applying such a mask can be

seen as a removal of the “background”. The ADP test measures

the average percentage of model confidence drop after applying

the mask. A good mask is expected to maintain the most relevant

areas and minimize confidence drop, hence for ADP lower values

are considered better. However, we note that ADP is a problematic

metric since a naive all-ones mask yields an optimal ADP value of

0. Nevertheless, we included it for the sake of compatibility with

previous works [29]. In some instances, the model’s confidence

increases after applying a good explanation mask that removes a

confusing background. Hence, PIC is a binary test that measures the

percentage of instances in which the model’s confidence increased

after applying the mask on the original input. For PIC higher values

are considered better.

AIC and SIC Tests. We follow [56] and report the Accuracy In-

formation Curve (AIC) and the Softmax Information Curve (SIC)
tests. In these tests, we start with a completely blurred image and

gradually sharpen the image areas that are deemed important by a

given explanation method. Gradually sharpening the image areas

increases the information content of the image. We then compare

the explanation methods by measuring the approximate image en-

tropy (e.g., compressed image size) and the model’s performance

(e.g., model accuracy). The AIC metric measures the accuracy of a

model as a function of the amount of information provided to the

explanation method. AIC is defined as the AUC of the accuracy vs.

information plot. The SIC metric measures the information content

of the output of a softmax classifier as a function of the amount

of information provided to the explanation method. SIC is defined

as the AUC of the entropy vs. information plot. The entropy of

the softmax output is a measure of the uncertainty or randomness

of the classifier’s predictions. For both AIC and SIC, the informa-

tion provided to the method is quantified by the fraction of input

features that are considered during the explanation process.

4.2 Segmentation Metrics
While possessing a superior segmentation capability does not nec-

essarily imply a superior explanatory aptitude, we undertake this

evaluation task for the sake of completeness in our comparison with

previous works assessing this aspect [30, 31, 54, 82]. Segmentation

accuracy is assessed according to the following metrics: Pixel Accu-

racy (PA), mean-intersection-over-union (mIoU), mean-average-

precision (mAP), and the mean-F1 score (mF1) [31].

4.3 Datasets
Explanation maps are produced for the ImageNet [34] ILSVRC 2012

(IN) validation set, consisting of 50K images from 1000 classes.

We follow the same setup from [31], where for each image, an ex-

planation map is produced w.r.t. the class predicted by the model.

Segmentation tests are conducted on three datasets: (1) ImageNet-

Segmentation [46] (IN-Seg): This is a subset of ImageNet validation

set consisting of 4,276 images from 445 classes for which annotated

segmentations are available. (2) Microsoft Common Objects in COn-

text 2017 [59] (COCO): This is a validation set that contains 5,000

annotated segmentation images from 80 different classes. Some

images consist of multi-label annotations (multiple annotated ob-

jects). In our evaluation, all annotated objects in the image are

considered as the ground-truth. (3) PASCAL Visual Object Classes

2012 [40] (VOC): This is a validation set that contains annotated

segmentations for 1,449 images from 20 classes.

4.4 Evaluated Methods
Our evaluation encompasses a comprehensive assessment of var-

ious explanation methods, including gradient-based approaches,

path-integration techniques, as well as gradient-free methods.

For CNN models, the following explanation techniques are con-

sidered: Integrated Gradients (IG) [78], Guided IG (GIG) [57], Blur
IG (BIG) [84], Ablation-CAM (AC) [35], Layer-CAM (LC) [54], LIFT-
CAM (LIFT) [55], Grad-CAM (GC) [69], Grad-CAM++ (GC++) [29],
X-Grad-CAM (XGC) [43], and FullGrad (FG) [77].

For ViT models, we consider two state-of-the-art methods: Trans-

former Attribution (T-Attr) [31] and Generic Attention Explain-

ability (GAE) [30]. Both methods were shown to outperform other

strong baselines such as partial LRP [80], and GC [30] for transform-

ers. A detailed description of all explanation methods is provided

in our GitHub repository. Lastly, our universal DIX method is eval-

uated on both CNNs and ViTs, where we consider two versions:

DIX2 and DIX3 following the description in Sec. 3.

4.5 Sanity Tests for Explanation Methods
To comprehensively assess the robustness and credibility of DIX,

we conducted the parameter randomization and data randomization
sanity tests as outlined in [2]. For these evaluations, we employed

DIX3, along with the VGG-19[74] model and the IN dataset.
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Parameter Randomization Test. This test compares explanation

maps generated by the explanation method under twomodel setups:

(1) Trained - a model trained on the dataset (e.g., pretrained VGG-

19 on ImageNet), and (2) Random - the same model architecture

with randomized weights. Significant differences in explanation

maps between the trained and randommodels suggest sensitivity to

model parameters. Conversely, similar maps indicate insensitivity

and limited utility for model explanation.

Two types of parameter randomization tests are conducted on a

trained model:

(1) Cascading Randomization: We randomize model weights layer

by layer, starting from the top and progressing to the bottom. This

process randomizes the learned weights from top to bottom.

(2) Independent Randomization: We randomize each individual

layer’s weights, one layer at a time (while keeping all other layers’

weights fixed). This allows us to evaluate each layer’s impact on

explanation map sensitivity, independently.

In both tests, we compare the resulting explanations obtained

by using the model with random weights to those derived from the

original weights of the model.

Data Randomization Test. The data randomization test assesses

an explanation method’s sensitivity to data labeling. We compare

explanation maps for two models with identical architectures, but

trained on different datasets: one with original labels and another

with labels randomly permuted. Sensitivity to labeling is indicated

by significantly different explanation maps, while insensitivity sug-

gests independence from instance-label relationships. To conduct

the data randomization test, we permute the training labels in

the dataset and train the model to achieve a training set accuracy

greater than 95%. Note that the resulting model’s test accuracy is

never better than randomly guessing a label. We then compute

explanations on the same test inputs for both the model trained on

true labels and the model trained on randomly permuted labels.

5 RESULTS
5.1 Explanation Tests
Tables 1 and 2 provide a comprehensive explanation tests for CNN

and ViT models, respectively. We report results for all combinations

of datasets, models, methods, and metrics. Our analysis demon-

strates that DIX consistently surpasses all baseline methods across

a spectrum of metrics and architectural configurations. On CNN-

based DIX variations (Tab. 1), DIX3 outclasses DIX2 in terms of NEG,

INS, SIC, and AIC metrics for both RN and DN backbones, while

demonstrating dominance across all metrics for the CN backbone.

Regarding the ViT-based DIX variants (Tab. 2), DIX3 outperforms

DIX2 across all metrics (with the exception of PIC on ViT-B, and PIC

and ADP on ViT-S).These trends showcase the advantage of aggre-

gating information from more layers. In the context of CNNs, the

second-best performing methods are GC and GC++, which lever-

age both activation and gradients to outperform other approaches

across most evaluation metrics. Additionally, we note that path

integration techniques (IG, BIG, and GIG) demonstrate compet-

itive results in terms of POS and DEL metrics, while displaying

comparatively weaker performance in other aspects. This disparity

may be attributed to the grainy output maps generated by path

integration techniques, as evidenced in Fig.3 for IG explanation

maps on CNNs. These methods ignore the activations and integrate

on the image domain only, hence missing some of the key features.

This is particularly evident in the significant contrast between their

strong performance on POS and the corresponding weaker per-

formance on NEG. As path integration methods produce sparse

maps that can negatively affect performance in certain metrics, ,

we extend our analysis to encompass the SIC and AIC metrics as

well [56]. These metrics were originally employed to assess GIG[57]

and BIG[84]. Yet, the incorporation of SIC and AIC did not alter the

trend of the results. This suggests that DIX is highly effective for

generating high-quality explanation maps. Finally, we present an

ablation study in Section 5.4, aimed at comparing diverse versions

and alternatives of DIX. This analysis serves to emphasize the ef-

fectiveness of the integration process and the strategic utilization

of information from multiple layers within the DIX methodology.

5.2 Segmentation Tests
Tables 3 and 4 present segmentation tests results on CNN and ViT

models, respectively. The results are reported for all combinations

of datasets, models, explanationmethods, and segmentationmetrics.

In these experiments, only the 5 best performing CNN explanation

methods from Tab. 1 are considered. Once again, it becomes evident

that DIX consistently delivers the most favorable segmentation

outcomes for both CNN and ViT models. This outcome can be

rationalized by the localized and precise maps that DIX generates.

5.3 Qualitative Evaluation
Figure 1 presents a qualitative comparison of the explanation maps

obtained by the top-performing CNN explanation methods on a

large set of examples that are randomly drawn frommultiple classes

from the IN dataset. Arguably, DIX (DIX3) produces the most accu-

rate explanation maps in terms of class discrimination and localiza-

tion. These results correlate well with the trends from Tabs. 1 and

3. We observe that in the case of class ‘accordion, piano accordion,

and squeeze box’, DIX focuses mostly on the correct item, while

the gradient-free methods focus mostly on other parts of the image,

exposing their class-agnostic behavior. Moreover, a similar trend is

observed with the ’sturgeon’ class, in which DIX is the only one to

focus on the relevant class. Figure 2 presents a qualitative compari-

son of the explanation maps obtained by explanation methods for

ViT. Once again, we see that DIX produces the most accurate and

focused explanation maps.

5.4 Ablation Study
In this work we present and evaluate DIX2 and DIX3. In this section,

we justify these choices via an ablation study. To this end, we set

𝑛 = 10, and consider three alternatives: (1) DIX1 - we use the last

layer as the only layer to interpolate i.e., 𝑆 = {𝐿}. (2) DIX2-MUL
- m𝐿

DIX
and m𝐿−1

DIX
are being element-wise multiplied to produce

the final explanation map. (3) DIX3-GRADS - we use the plain

gradients without explicitly incorporating the information from

the activation or attention maps.

Table 5 reports the results for the RN and ViT-B models on the IN

dataset. For the sake of completeness, we further include the results

for IG, DIX2, and DIX3 (taken from Tabs. 1 and 2). First, we can
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Table 1: Explanation tests results on the IN dataset (CNN models): For POS, DEL and ADP, lower is better. For NEG, INS, PIC,
SIC and AIC, higher is better. See Sec. 5.1 for details.

GC GC++ LIFT AC IG GIG BIG FG LC XGC DIX2 DIX3

RN

NEG 56.41 55.20 55.39 54.98 45.66 43.97 42.25 54.81 53.52 53.46 56.28 57.13
POS 17.82 18.01 17.53 19.38 17.24 17.68 17.44 18.06 17.92 21.02 15.69 17.11

INS 48.14 47.56 45.39 47.05 39.87 37.92 36.04 42.68 46.11 43.26 48.09 48.91
DEL 13.97 14.17 15.32 14.23 13.49 14.18 13.95 14.64 14.31 14.98 12.84 13.36

ADP 17.87 16.91 18.03 16.18 37.52 35.28 40.85 21.06 24.34 17.02 15.68 16.02

PIC 36.69 36.53 35.95 35.52 19.94 18.72 24.53 31.59 35.43 36.18 40.21 37.29

SIC 76.91 76.44 76.73 73.36 54.67 55.04 56.98 75.35 73.93 72.64 77.61 78.12
AIC 74.36 71.97 72.76 70.35 51.92 53.38 53.36 71.49 65.77 69.85 76.09 76.34

CN

NEG 52.86 53.82 53.98 53.68 45.24 41.43 40.72 52.06 54.12 52.13 54.40 55.23
POS 17.52 17.85 18.23 18.19 17.42 18.03 18.14 18.26 17.58 20.83 16.96 16.51
INS 45.65 45.19 43.86 49.18 37.22 32.99 31.02 42.01 44.14 42.07 49.53 49.86
DEL 13.43 14.17 15.18 14.73 12.36 13.08 13.29 14.21 13.64 14.78 11.95 11.74
ADP 22.46 22.35 29.13 24.38 36.98 35.79 41.73 30.75 37.62 25.68 22.24 22.19
PIC 23.16 24.42 22.34 24.59 17.65 13.12 20.69 22.13 22.17 23.26 28.31 28.47
SIC 65.93 67.94 54.75 63.95 53.36 58.35 57.27 62.84 69.11 59.12 69.83 70.18
AIC 75.64 75.52 57.06 71.53 51.68 55.82 53.82 67.15 75.41 62.38 76.44 77.29

DN

NEG 57.40 57.16 58.01 56.63 40.74 37.31 36.67 56.79 56.96 55.74 57.31 58.25
POS 17.75 17.81 18.87 18.67 17.31 17.46 17.38 17.84 17.62 18.67 16.59 17.14

INS 51.09 50.89 50.63 50.41 37.58 33.31 31.32 50.44 50.60 49.62 50.97 51.58
DEL 13.61 13.63 13.29 15.31 13.26 13.27 13.54 14.34 13.85 14.75 12.73 12.98

ADP 17.46 17.01 19.45 17.13 35.61 34.51 40.04 20.21 24.23 19.59 16.29 16.58

PIC 34.68 35.21 34.13 31.22 22.35 16.62 26.18 31.05 33.81 30.39 38.91 37.78

SIC 75.62 74.75 74.72 73.94 54.59 58.55 57.66 72.93 74.34 73.94 77.24 77.32
AIC 74.22 71.82 72.65 70.21 54.74 54.56 56.08 70.63 71.82 70.12 75.98 76.39

Table 2: Explanation tests results on the IN dataset (ViT mod-
els): For POS, DEL and ADP, lower is better. For NEG, INS,
PIC, SIC and AIC, higher is better. See Sec. 5.1 for details.

T-Attr GAE DIX2 DIX3

ViT-B

NEG 54.16 54.61 56.43 56.94
POS 17.03 17.32 15.10 14.85
INS 48.58 48.96 49.51 50.59
DEL 14.20 14.37 12.62 12.16
ADP 54.02 37.84 35.93 35.58
PIC 13.37 23.65 28.21 27.41

SIC 68.59 68.35 68.94 69.11
AIC 61.34 57.92 62.42 65.03

ViT-S

NEG 53.29 52.81 55.98 56.13
POS 14.16 14.75 13.09 12.32
INS 45.72 45.21 46.62 47.36
DEL 11.28 11.92 11.18 10.56
ADP 51.94 36.98 36.31 36.57

PIC 13.67 8.68 18.39 18.25

SIC 69.46 70.19 70.92 71.55
AIC 63.86 64.49 65.17 65.58

see the superior performance of DIX2 and DIX3 across all metrics

and models. We further observe that both DIX1 and DIX2-MUL

fall short in comparison to DIX2. This observation underscores the

inherent necessity of incorporating information from additional

layers and shows the advantages of aggregation via summation.

When aggregating the explanation maps of different layers, the ob-

jective is to effectively incorporate data from each map to capture

a richer spectrum of insights and class-specific signals. Notably,

the multiplication operator exhibits a behavior akin to intersection,

where both high pixel values are required for proper appearance in

the final map. This characteristic, as depicted in Figure 3, contrasts

with the intended outcome. Furthermore, the superiority of DIX3

over DIX3-GRADS underscores the benefit from exploiting inter-

mediate representation information alongside its corresponding

gradients, which contributes to the generation of localized, accurate

and class discriminative explanation maps. The results presented in

Table 5 highlight a distinct advantage for IG and DIX2-MUL with re-

spect to the POS and DEL metrics when compared to DIX3-GRADS

and DIX1, both of which generate less concentrated explanation

maps. This is due to the fact that the deletion of the most relevant

pixels results in fewer pixels being removed, and the mask is more

focused on a subset of pixels. DIX1, for instance, produces less

focused explanation maps that may highlight irrelevant areas. Such

coarse highlighting leads to a slower decrease in the prediction
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Figure 1: CNN Qualitative Results: Explanation maps pro-
duced using RN w.r.t. the classes (top to bottom): ‘tripod’,
‘vulture’, ‘accordion, squeeze box’, ‘garden spider, Aranea di-
ademata’, and ‘sturgeon’.

Figure 2: ViT Qualitative Results: Explanation maps pro-
duced using ViT-B w.r.t. the classes (top to bottom): ‘sea lion’,
‘cougar, puma, catamount, mountain lion, painter, panther,
Felis concolor’, ‘Ibizan hound, Ibizan Podenco’, and ‘garden
spider, Aranea diademata’.

Table 3: Segmentation tests on three datasets (CNN models).
For all metrics, higher is better. See Sec. 5.2 for details.

GC GC++ LIFT AC DIX2 DIX3

IN-SEG

CN

PA 77.01 77.54 63.77 77.04 78.32 78.93
mAP 81.01 85.63 69.40 86.93 87.13 87.34
mIoU 56.58 58.35 53.81 58.42 58.64 58.79
mF1 36.88 38.26 35.91 41.29 42.51 42.95

RN

PA 71.93 71.96 71.68 70.36 72.43 73.17
mAP 84.21 84.23 83.79 81.14 84.58 85.37
mIoU 53.06 53.29 52.17 52.91 53.93 54.16
mF1 42.51 42.68 41.95 42.08 42.75 43.18

DN

PA 73.00 73.21 72.87 72.44 73.58 73.90
mAP 85.04 85.53 84.82 84.62 85.57 85.98
mIoU 54.18 54.57 54.11 54.89 55.42 56.03
mF1 41.74 42.58 41.61 43.51 43.71 43.79

COCO

CN

PA 68.75 66.49 60.37 64.10 68.87 69.38
mAP 75.02 75.21 67.98 76.09 76.94 77.43
mIoU 43.46 44.01 37.08 44.27 44.89 45.06
mF1 28.96 29.85 26.92 30.81 31.28 31.99

RN

PA 64.17 64.39 64.02 63.90 64.75 64.94
mAP 74.19 74.27 73.78 72.80 74.38 74.91
mIoU 42.37 43.25 42.59 42.88 43.54 43.87
mF1 31.64 32.82 31.77 32.41 33.39 33.71

DN

PA 63.50 64.06 63.25 64.51 64.98 65.37
mAP 72.61 73.07 72.15 73.85 74.02 74.67
mIoU 43.02 43.75 42.85 44.16 44.75 44.82
mF1 31.04 32.31 30.83 33.93 34.14 34.59

VOC

CN

PA 72.54 72.09 63.32 69.83 72.68 72.81
mAP 77.27 79.47 68.83 80.45 81.35 81.79
mIoU 50.28 50.63 48.86 49.76 51.12 51.29
mF1 35.24 35.67 33.26 34.51 35.92 36.57

RN

PA 68.74 69.01 68.61 68.00 69.38 69.74
mAP 79.68 79.96 79.41 78.02 81.02 81.49
mIoU 49.44 49.91 49.15 49.32 50.43 51.58
mF1 33.08 33.56 32.69 32.74 34.28 34.68

DN

PA 68.43 68.78 68.24 68.36 68.89 68.95
mAP 78.68 79.06 78.52 78.62 79.43 79.66
mIoU 49.29 49.68 49.03 49.11 49.91 50.24
mF1 32.92 33.83 32.28 32.56 34.11 34.26

score during the deletion process. On the contrary, DIX1 and DIX3-

GRADS exhibit superior performance in relation to the NEG and

INS metrics. This divergence in performance can be attributed to

the expansive nature of their explanation map, resulting in numer-

ous pixels that require removal. In the context of the NEG metric,

this characteristic contributes to a slow decrease in the prediction

score during the deletion process and, subsequently, a larger area

under the curve (AUC).
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Figure 3: Ablation study results. Explanation maps produced using RN (rows 1,2) and ViT-B (rows 3,4) w.r.t. the classes (top to
bottom): ‘African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus’, ’Kerry blue terrier’, ’vulture’, ’alp’.

Table 4: Segmentation tests on three datasets (ViT models).
For all metrics, higher is better. See Sec. 5.2 for details.

T-Attr GAE DIX2 DIX3

IN-Seg

ViT-B

PA 79.70 76.30 79.91 81.02
mAP 86.03 85.28 87.12 87.45
mIoU 61.95 58.34 62.53 63.47
mF1 40.17 41.85 44.94 45.66

ViT-S

PA 80.86 76.66 81.54 81.83
mAP 86.13 84.23 86.48 86.96
mIoU 63.61 57.70 64.13 64.67
mF1 43.60 40.72 46.34 46.82

COCO

ViT-B

PA 68.89 67.10 68.95 69.42
mAP 78.57 78.72 80.63 81.22
mIoU 46.62 46.51 47.75 47.79
mF1 26.28 31.70 33.87 34.12

ViT-S

PA 69.90 67.95 70.41 70.64
mAP 79.28 78.65 80.55 80.89
mIoU 48.62 46.52 50.81 51.22
mF1 30.88 30.96 35.61 35.74

VOC

ViT-B

PA 73.70 71.32 75.33 75.84
mAP 81.08 80.88 81.75 81.89
mIoU 53.09 51.82 53.62 53.71
mF1 31.50 35.72 36.38 36.59

ViT-S

PA 74.96 71.85 76.35 76.56
mAP 81.76 80.60 82.74 82.91
mIoU 55.37 51.55 55.83 55.98
mF1 36.03 34.95 39.27 39.41

Table 5: Ablation study results for various DIX configurations
on the IN dataset. See Sec. 5.4 for details.

DIX1 IG DIX2 DIX2-MUL DIX3-GRADS DIX3

RN

NEG 55.47 45.66 56.28 55.24 56.05 57.13
POS 17.47 17.24 15.69 17.28 18.13 17.11

INS 47.53 39.87 48.09 47.13 47.88 48.91
DEL 13.72 13.49 12.84 13.59 14.52 13.36

ADP 17.21 37.52 15.68 21.38 17.43 16.02

PIC 36.54 19.94 40.21 28.46 37.10 37.29

SIC 76.85 54.67 77.61 75.17 76.13 78.12
AIC 75.48 51.92 76.09 74.21 74.88 76.34

ViT-B

NEG 55.98 40.94 56.43 55.62 55.78 56.94
POS 15.49 22.43 15.10 15.37 15.81 14.85
INS 49.38 35.07 49.51 49.27 49.33 50.59
DEL 13.06 17.90 12.62 12.85 13.12 12.16
ADP 36.96 41.35 35.93 38.62 36.08 35.58

PIC 26.94 16.89 28.21 26.39 27.13 27.41
SIC 67.79 58.91 68.94 68.43 68.32 69.11
AIC 61.56 54.93 62.42 62.18 61.94 65.03

5.5 Sanity Tests
In what follows, we show that DIX passes all sanity tests success-

fully, thereby furnishing additional substantiation for the authen-

ticity of DIX as a robust machinery for generating accurate expla-

nation maps.

Cascading Randomization. Figure 4 shows the Spearman corre-

lation, computed as an average across 50K examples, between the
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Figure 4: Cascading Randomization: The presented graph
depicts the Spearman rank correlation (averaged on 50K ex-
amples) between the explanation produced by DIX using the
original and randomized model’s weights. The x-axis corre-
sponds to the number of layers being randomized, starting
from the output layer. The dashed line indicates the point
where the successive randomization of the network com-
mences, which is at the top layer. The first dot (x=0) cor-
responds to no randomization (the original model is used),
yielding perfect correlation between the explanation maps.

initial explanation map derived from DIX and the original (pre-

trained) VGG-19 model, as well as the explanation map obtained

from DIX and each of the cascade randomization variations of the

original model. The markers on the x-axis are between ’0’ and ’16’,

where 𝑥 = 𝑘 means that the weights of the last 𝑘 layers of the model

are randomized. Notably, at 𝑥 = 0, there is no randomization, hence

the correlation with the original model is perfect. Starting from

𝑥 = 1 (marked by the horizontal dashed line) and up to 𝑥 = 16, the

graph depicts a progressive cascade randomization of the original

model. It is evident that, with an increase in the randomization of

layer weights, the correlation with the explanation map of the origi-

nal model experiences a significant decline. This trend underscores

the sensitivity of DIX to the parameters of the model, a charac-

teristic that is both anticipated and desirable for any explanation

approach, as emphasized by [2].

Independent Randomization. Figure 5 presents results for the

independent randomization tests. For 𝑥 = 0, no randomization was

introduced and the correlation to the original model is perfect. As

𝑥 advances to 𝑖 (𝑖 > 0), the graph illustrates the correlation of the

initial model with a configuration where solely the weights of the

𝑖-th penultimate layer were randomized, while the weights of all

other layers remained the same. Evidently, the correlation values

exhibit a consistent diminution across all layers, underscoring DIX’s

sensitivity to weight randomization on an individual layer basis.

This characteristic is fundamentally desirable for an explanation

technique, serving as evidence of its sensitivity to the distinct layers

within the model.

Data Randomization. Figure 6 presents a box plot computed for

the Spearman correlation values obtained for paired explanation

maps (50K examples): one produced using the original model that is

trained with the ground truth, and another produced by the model

trained with the permuted labels. We can see that the correlation

values are very low indicating DIX’s sensitivity to the labeling of

Figure 5: Independent Randomization: The y-axis of the pre-
sented graph represents the rank correlation between the
original and randomized explanations, with each point on
the x-axis corresponding to a specific layer of the model. The
dashed line marks the point where the randomization of the
network layers commences, which is at the top layer.

Figure 6: Data Randomization Test: Spearman rank correla-
tion box plot for DIX with the VGG-19 model.
the dataset. Hence, we conclude that DIX successfully passes the

data randomization test.

6 CONCLUSION
We presented the Deep Integrated Explanations (DIX) method for

producing explanations for vision models. DIX is founded upon

the accumulation of maps originating from multiple layers, en-

compassing interpolated network representations along with their

corresponding gradients. We demonstrated the applicability of DIX

for explaining CNN and ViT models, where it is shown to outper-

form state-of-the-art explanation methods across multiple tasks,

datasets, network architectures, and metrics. Finally, we validated

DIX as a machinery for generating faithful explanation maps via

an extensive set of sanity tests.
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