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ABSTRACT
Multivariate time series long-term prediction, which aims to pre-
dict the change of data in a long time, can provide references for
decision-making. Although transformer-based models have made
progress in this field, they usually do not make full use of three
features of multivariate time series: global information, local infor-
mation, and variables correlation. To effectively mine the above
three features and establish a high-precision prediction model, we
propose a double sampling transformer (DSformer), which consists
of the double sampling (DS) block and the temporal variable atten-
tion (TVA) block. Firstly, the DS block employs down sampling and
piecewise sampling to transform the original series into feature
vectors that focus on global information and local information re-
spectively. Then, TVA block uses temporal attention and variable
attention to mine these feature vectors from different dimensions
and extract key information. Finally, based on a parallel structure,
DSformer uses multiple TVA blocks to mine and integrate differ-
ent features obtained from DS blocks respectively. The integrated
feature information is passed to the generative decoder based on a
multi-layer perceptron to realize multivariate time series long-term
prediction. Experimental results on nine real-world datasets show
that DSformer can outperform eight existing baselines.
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1 INTRODUCTION
Multivariate time series prediction is widely used in our life, such as
weather [1], energy [31], economics [3], environment [13], traffic
[33] and other fields [8] [17] [41]. Specially, multivariate time series
long-term prediction can help people understand the changing
trend of data for a long time in the future, which provides important
references for decision-making [29] [9]. Therefore, multivariate
time series long-term prediction has always been a hot topic in
academia [24] and industry [4].

Multivariate time series is composed of multiple time series with
correlations [23]. And these correlated time series usually fluctuate
and change over time [30]. As a special sequence form different
from natural language, researchers usually need to analyze the
time series context relation [6] and variable correlation [39] of data
to achieve long-term prediction. At present, Transformer-based
models are widely studied in this field because of their powerful
context relation analysis capabilities [37]. However, these models
do not make full use of three features of multivariate long sequence
time series. Based on Figure 1, we introduce these features next:

• Variable correlation: As shown in Figure 1 (a), two cor-
related time series show similar change patterns over time.
If the model can find the relationship between these two
time series, that is, variable correlation, it can mine more
information and improve the modeling effect.

• Global information: When the sampling frequency of the
AGE 0-4 data in Figure 1 (a) is increased, the raw data can
be transformed into the time series shown in Figure 1 (b).
By observing Figure 1 (b), we find that the processed data
shows seasonality on global. In other words, the proposed
data is composed of multiple similar segments. If the model
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(a) AGE 0-4 and AGE 5-24 in the ILI dataset

(b) AGE 0-4 with larger sampling intervals (c) A segment of AGE 0-4

Figure 1: Examples of the multivariate time series in ILI
dataset. (a) Time series of variable AGE 5-24 and variable

AGE 0-4 in the ILI dataset. (b) AGE 0-4 time series with larger
sampling intervals. (c) A segment of AGE 0-4 time series.

finds this global information, it can predict the overall future
changes of the data.

• Local information:As shown in Figure 1 (c), whenwe focus
on observing one part of three similar segments of AGE 0-
4 data in Figure 1 (a), we can capture more detailed local
information than Figure 1 (b). Therefore, if the model can
combine this information with the above global information,
it won’t lose local details in the process of modeling.

Based on the above analysis, if we can effectively use these
three features (global information, local information and variables
correlation) of multivariate long sequence time series, the model
can be more suitable for long-term prediction. However, we need
to address the following technical challenges: (1) How do we make
our model observe these three features of the original data? (2) How
to effectively integrate these features to achieve multivariate time
series long-term prediction?

To mine the above three features of the multivariate long se-
quence time series, we propose a double sampling (DS) block and
a temporal variable attention (TVA) block, which can mine these
features from the following aspects: (1) The DS block uses two com-
ponents (down-sampling method and piecewise sampling method)
to process the raw data. The down-sampling method obtains the
feature vector by extracting the original data with a larger sam-
pling interval, as shown in Figure 1 (b). Observing the data with
larger sampling intervals can reduce the influence of local noise
and obtain more global information. And the piecewise sampling
method obtains the local time series by splitting the original data
proportionally, as shown in Figure 1 (c). Observing a continuous
segment of a long sequence can enhance the utilization of local
information. After processing by the DS block, we can obtain two

feature vectors containing global information or local information
respectively. (2) The TVA block uses a parallel modeling structure to
combine temporal attention and variable attention, and mine above
feature vectors. Specifically, temporal attention analyzes context
relation and captures the information from temporal dimension
(global information or local information). And variable attention fo-
cuses on analyzing the variable correlation. Besides, different from
the traditional idea of stacking multiple layers, we use temporal at-
tention and variable attention to mine feature vectors respectively,
and then integrate the extracted information. Based on the above
ideas, the TVA block can mine and integrate temporal information
(global information or local information) and variable correlation.
Then, we need to further integrate above three key features.

To further mine and integrate above three key features (local
information, global information and variable correlation), we still
use the idea of parallel modeling to mine and integrate the two
feature vectors obtained by DS block. Specifically, multiple TVA
blocks are used to model feature vectors obtained by DS block sepa-
rately and integrate the processed features. Firstly, two TVA blocks
are used to separately mine two different feature vectors obtained
by DS block. And the TVA block introduce the variable correlation
while mining the global information or local information owned by
above two feature vectors respectively. Then, we use a TVA block
to combine the above feature vectors and obtain the feature vector
that integrates these key information. Finally, the integrated fea-
ture vector is transmitted to the generative decoder for prediction
modeling. Based on the above blocks and modeling steps, we finally
proposed the double sampling transformer (DSformer). In general,
the main contributions of this paper are shown as follows:

• We propose a novel model for multivariate time series long-
term prediction, which is called DSformer. It learns and inte-
grates global information, local information and variables
correlation of multivariate time series.

• We design a double sampling block to preprocess the original
data and help the model mine the global information and
local information. Besides, we propose a temporal variable
attention block to mine the data from the temporal dimen-
sion and variable dimension. These two blocks are combined
by a parallel structure for information integration.

• We conduct comparative experiments on nine real world data
sets. The results demonstrate that DSformer can outperform
eight existing SOTA models.

2 RELATEDWORK
2.1 Deep learning based methods
At present, deep learning has been widely studied in the field of
multivariate time series long-term prediction [32]. As one of the
most classical deep learning algorithms in time series prediction,
recurrent Neural Network (RNN) [22] has been widely studied. As
the most classical variant of RNN, the long short-term memory
network (LSTM) [19] and the gated recurrent unit (GRU) [5] have
made progress in the field of time series prediction. Compared with
RNN, LSTM and GRU effectively solve the gradient problem and
improve their prediction accuracy [16]. In addition to RNN-based
models, the convolutional neural network (CNN) [25] based models
have also been proven to have effects in the field ofmultivariate time
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series long-term prediction. For example, Temporal Convolutional
Network (TCN) [40] improves the ability of sequence modeling by
introducing Dilated Causal Convolutions and residual connections.
Besides, with the improvement of computer performance, the idea
of fusing different network structures is constantly proposed [38].
LSTMa [50] improved the ability of the model to mine temporal
information by combining LSTM and attention mechanism. Besides,
by effectively combining LSTM, CNN and attention mechanism,
LSTNet [14] achieved better results than traditional methods in
multivariate time series long-term prediction. However, the above
models have limitations in mining the key context information
of long sequence and the correlation of different variables, which
limits their performance.

2.2 Transformer based methods
At present, Transformer variants have seen rapid growth in multi-
variate time series long-term prediction [43]. Li et al. [15] used the
convolutional self-attention mechanism to improve the sequence
modeling ability of the traditional transformer and proposed the
LogSparse transformer (LogTrans). Kitaev et al. [12] combined Lo-
cality sensitive hashing attention with reversible residual layers
to improve the ability to analyze long-term dependencies and pro-
posed Reformer. Zhou et al. [47] proposed Informer by introducing
a ProbSparse self-attention mechanism and the generative decoder.
Liu et al. [21] proposed Pyraformer, which introduces the pyra-
midal attention module and multi-resolution modeling approach.
The above models focus on optimizing the ability of attention to
analyze the long-term dependence, but they do not fully analyze
the characteristics of time series. Different from the above meth-
ods, Autoformer [35] introduces autoregressive attention and deep
decomposition structure to realize long-term prediction of time
series. The deep learning decomposition structure improves the
ability of the model to analyze trends and seasons. On this basis,
FEDformer [49] and TDformer [45] introduce the deep decompo-
sition framework and Fourier Attention to realize the long-term
prediction of time series. These methods improve the ability to
mine time series context relation by introducing trend and seasonal
modeling. However, the decomposition method transform raw data
into fixed forms based on expert experience, which limits the ability
of the model to mine the data itself. At present, to strengthen the
model’s ability to mine global information from raw data, Patch
TST [27] and Crossformer [46] adopt the idea of patch modeling.
In addition, Patch TST and Crossformer respectively adopt chan-
nel independence and two-stage attention to realize multivariable
modeling. Due to the mining of more data features, Patch TST and
Crossformer can achieve better capabilities than the transformer
variants mentioned above. However, Patch TST ignores the cor-
relation between different variables, and Crossformer ignores the
role of local information. In general, the existing models do not
make full use of the key features of multivariate long sequence time
series, which limits their performance.

3 METHODOLOGY
3.1 Preliminaries
In this section, we introduce the basic definition of multivariate
time series and multivariate time series long-term prediction.

Multivariate time series. The multivariate time series is a data
form composed of multiple sequences that change over time [48].
The representation ofmultivariate time series can usually be defined
as a tensor 𝑋 ∈ 𝑅𝑁 ∗𝑇 [2]. 𝑁 is the number of variables. 𝑇 is the
length of the time step.
Multivariate time series long-term prediction. Given a histor-
ical sequence 𝑋 ∈ 𝑅𝑁 ∗𝐻 from 𝐻 time steps in history, the model
can predict the value 𝑌 ∈ 𝑅𝑁 ∗𝐿 of the nearest 𝐿 time steps in the
future [28]. The main purpose of multivariate time series long-term
prediction is to establish the mapping relationship between input
𝑋 ∈ 𝑅𝑁 ∗𝑇 and label 𝑌 ∈ 𝑅𝑁 ∗𝐿 [36].

3.2 Overall framework of the proposed model
The overall framework of the DSformer is given in Figure 2. And it
can be found that DSformer contains two important component:
the double sampling block and the temporal variable attention
block. And DSformer combines a double sampling block and three
temporal variable attention blocks to mine three features and fully
perform information integration. In this section, we intuitively
discuss each block of DSformer and its parallel structure.

H Historical data

N 
variables

XT

N 

C

H/C

Down sampling

Q K V
Q K V

Q K V
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N N 
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LOutput

TVA- 
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Q K V
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Figure 2: Overall framework of the proposed DSformer, the
DS block and the TVA block.
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Firstly, we discuss the DS block, which uses the downsampling
and the piecewise sampling to process the original input features re-
spectively. The downsampling converts the original sequence into
multiple subsequences with simliar length by increasing the sam-
pling interval. The global information of subsequences with larger
time intervals is more significant than that of the original sequence
[26]. The piecewise sampling can divide the long sequence into
multiple contiguous fragments. Because the observation length of
the time series is reduced, the model can mine the local information
more intensively [44]. At the same time, to reduce the information
loss caused by sampling, we connect the subsequences obtained
from the sampling method and convert them into 3D tensors.

Second, the TVA block aims to mine the 3D tensors processed
by the DS block from the temproal dimension and the variable
dimension. Based on the parallel structure, the TVA block enable
the temporal attention and the variable attention to mine input
features respectively. Different from the traditional stacked multi-
layer structure, the parallel structure enables the model to mine
information more centrally [7]. Then the effective integration of
temporal information and variable information is realized through
addition and layer normalization.

Finally, the overall framework of DSformer also adopts parallel
structure to realize feature mining and modeling. Specifically, the
two different 3D tensors obtained by the DS block are mined by two
TVA blocks. And then, a new TVA block is used to achieve the fusion
of above two processed tensors. Therefore, DSformer can be used to
mine global information, local information and variable correlation
in parallel. Based on this structure, DSformer can strengthen the
ability of mining features and achieving fusion.

3.3 Double sampling block
The double sampling block consists of two important steps: the
down sampling and the piecewise sampling. Figure 3 presents a
schematic of these two sampling methods. These two sampling
methods transform the original 2D feature vectors 𝑋 ∈ 𝑅𝑁 ∗𝐻 into
two 3D features 𝑋𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 and 𝑋𝑝𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻
𝐶 . The feature

vector obtained by downsampling contain more global information.
The feature vector obtained by piecewise sampling contains more
local information. In the following, we briefly describe the proposed
two sampling methods.

Down sampling. For a time series with length 𝐻 , we obtain 𝐶
subsequences of consistent length in the same way as shown in Fig-
ure 3 (a). The subsequence obtained by the downsampling method
has a larger time interval. As a special form of sequence, observing
time series data with larger time intervals can obtain more intuitive
global information. In addition, to avoid the information loss caused
by down-sampling, we put𝐶 subsequences together and obtain the
feature vector 𝑋𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 for subsequent modeling. For the 𝑗𝑡ℎ
subsequence, its main constituent form is given as follows:

𝑋 𝑗
𝑑𝑠 = [𝑥 𝑗 , 𝑥 𝑗+𝐻

𝐶
, 𝑥

𝑗+2∗𝐻
𝐶
, ..., 𝑥

𝑗+(𝐶−1)∗𝐻
𝐶
], (1)

Piecewise sampling. For a time series with length𝐻 , we obtain
𝐶 subsequences of consistent length in the same way as shown in
Figure 3 (b). The piecewise sampling method can transform the
original time series into continuous subsequence with the same

length. Each subsequence contains local information over a his-
torical period of time. Unlike down sampling, piecewise sampling
allows the model to focus more attention on local information,
which usually reflects the details of local changes over a cycle. In
addition, to avoid the information loss caused by piecewise sam-
pling, we put𝐶 subsequences together and obtain the feature vector
𝑋𝑝𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 for subsequent modeling. For the 𝑗𝑡ℎ subsequence,
its main constituent form is given as follows:

𝑋 𝑗
𝑝𝑠 = [𝑥1+( 𝑗−1)∗𝐶 , 𝑥2+( 𝑗−1)∗𝐶 , 𝑥3+( 𝑗−1)∗𝐶 , ..., 𝑥 𝑗∗𝐶 ], (2)

After obtaining two different feature vectors 𝑋𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻
𝐶 and

𝑋𝑝𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻
𝐶 by the DS block, we next introduce how to use TVA

block to mine above feature vectors from temporal dimension and
variable dimension.

(a) Down sampling (b) Piecewise sampling

Figure 3: Schematic of the down sampling method and the
piecewise sampling method.

3.4 TVA block
The proposed TVA block consists of two main components: tempo-
ral attention and variable attention. The main function of temporal
attention is to mine the context information of data from the tem-
poral dimension. The main function of variable attention is to mine
the internal implicit relation between different variables. The in-
formation mined by these two components is integrated through
a parallel structure. Figure 4 illustrates the detailed composition
of TVA block, temporal attention and variable attention. Next, we
present the modeling details of temporal attention, variable atten-
tion, and TVA blocks.

For the 𝑋𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻
𝐶 and 𝑋𝑝𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 obtained by the dou-
ble sampling block, they are transmitted to the temporal attention
and variable attention as input to the TVA block. Then, temporal
attention and variable attention will process above two feature
vectors in the following way:

Temporal attention. Temporal attention consists of three main
components (multi-head attention, residual connection, and layer
normalization).

Firstly, multi-head attention is used to mine the time dimension
of the input feature vector𝑋𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 and obtain the processed
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Q K V
Q K V

T
T

T
T

TVA- 
block

Figure 4: Schematic diagram of TVA block, temporal
attention, and variable attention.

feature vector 𝑋 𝑡𝑎
𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 .
𝑄 = 𝐹𝐶 (𝑋𝑑𝑠 )
𝐾 = 𝐹𝐶 (𝑋𝑑𝑠 )
𝑉 = 𝐹𝐶 (𝑋𝑑𝑠 ),

(3)

𝑋 𝑡𝑎
𝑑𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄 ∗ 𝐾𝑇 )𝑉 , (4)

where, 𝐹𝐶 (.) stands for the fully connected layer. 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (.) stands
for the normalized exponential function. 𝐾𝑇 stands for 𝐾 after
converting the last two dimensions (𝐾𝑇 ∈ 𝑅𝑁 ∗𝐻

𝐶
∗𝐶 ).

Then, the output 𝑋𝑇𝐴
𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 of the temporal attention
component is obtained by the residual connection and the layer
normalization:

𝑈 =
1
𝐿

𝐿∑︁
𝑖=0

(𝑋 𝑡𝑎
𝑑𝑠𝑖 + 𝑋𝑑𝑠𝑖 ), (5)

𝜎 =

√√√
1
𝐿

𝐿∑︁
𝑖=0

(𝑋 𝑡𝑎
𝑑𝑠𝑖 + 𝑋𝑑𝑠𝑖 −𝑈 )2, (6)

𝑋𝑇𝐴
𝑑𝑠 =

𝑔
√
𝜎2 + 𝜖

⊙ (𝑋 𝑡𝑎
𝑑𝑠 + 𝑋𝑑𝑠 −𝑈 ) + 𝑏, (7)

where,𝑈 and 𝜎 are represent the statistics of the feature vectors. 𝑔
is the gain. 𝑏 is the bias. 𝜎 is a small decimal number that prevents
division by zero.

Variable attention. Different from temporal attention, variable
attention mainly uses multi-head attention to mine data from the
perspective of the number 𝑁 of variables. Through the mining of
variable attention, DSformer can effectively analyze the correlation
between different variables and conduct information interaction.
The formulas of the variable attention are given as follows:

𝑄 = 𝐹𝐶 (𝑋𝑑𝑠 )
𝐾 = 𝐹𝐶 (𝑋𝑑𝑠 )
𝑉 = 𝐹𝐶 (𝑋𝑑𝑠 ),

(8)

𝑋𝑉𝐴
𝑑𝑠 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

𝑄 ∗ 𝐾𝑇√︁
𝑑𝑘

)𝑉 , (9)

where, 𝑑𝑘 can let the outcome of𝑄 ∗𝐾𝑇 satisfy the distribution with
expectation 0 and variance 1. In particular, in the above formula,
the corresponding matrix forms of 𝑄 and 𝐾𝑇 are 𝐻

𝐶
∗ 𝐶 ∗ 𝑁 and

𝐻
𝐶

∗ 𝑁 ∗𝐶 , respectively

Based on above temporal attentionmethod and variable attention
method, 𝑋𝑇𝐴

𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻
𝐶 and 𝑋𝑉𝐴

𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻
𝐶 are obtained.

Then, 𝑋𝑇𝐴
𝑑𝑠 and 𝑋𝑉𝐴

𝑑𝑠 are integrated and the output 𝑋
′
𝑑𝑠 ∈

𝑅𝑁 ∗𝐻
𝐶 of TVA block is obtained by the following formula:

𝑋
′
𝑑𝑠 = 𝐹𝐶 (𝐹𝐿𝑁 (𝑋𝑇𝐴

𝑑𝑠 + 𝑋𝑉𝐴
𝑑𝑠 )), (10)

where, 𝐹𝐿𝑁 (.) stands for layer normalization. In addition, the main
function of 𝐹𝐶 (.) is to transform the feature vector dimension from
𝑁 ∗𝐶 ∗ 𝐻

𝐶
to 𝑁 ∗ 𝐻

𝐶
.

Information integration based on TVA block. The feature
vector 𝑋𝑝𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 is mined in the same way as above meth-
ods. And the output feature vector 𝑋

′
𝑝𝑠 ∈ 𝑅𝑁 ∗𝐻

𝐶 is obtained. For
𝑋

′
𝑝𝑠 and 𝑋

′
𝑑𝑠 , we first used the layer normalization to achieve

preliminary information fusion.

𝑋
′
= 𝐹𝐿𝑁 (𝑋

′
𝑝𝑠 + 𝑋

′
𝑑𝑠 ), (11)

Then, the two-dimensional feature vector 𝑋
′ ∈ 𝑅𝑁 ∗𝐻

𝐶 was used
as the input to the TVA block and fully mined from the temporal
dimension and variable dimension.

Different from the previous modeling form, the feature vectors
𝑋

′
𝑝𝑠 ∈ 𝑅𝑁 ∗𝐻

𝐶 processed by the the information fusion method
based on TVA block are 2D tensors. Therefore, the main matrix
forms of the variables𝑄 and 𝐾𝑇 (temporal attention) modeled here
are 𝑁 ∗ 𝐻

𝐶
and 𝐻

𝐶
∗ 𝑁 respectively.

Finally, the feature vectors, which are further mined and inte-
grated by TVA block, are passed to the multi-layer perceptron to
effectively realize the output of the final prediction result𝑌 ∈ 𝑅𝑁 ∗𝐿 .

3.5 DSformer
DSformer is constructed by effectively combining the double sam-
pling block and three TVA block. The double sampling block effec-
tively obtains the feature vectors containing key information. TVA
block mines different feature vectors and fully realizes information
integration. The specific modeling steps of the proposed DSformer
are given as follows:

Step I: For the original 2D input features 𝑋 ∈ 𝑅𝑁 ∗𝐻 , the data
is transformed into two 3D features 𝑋𝑑𝑠 ∈ 𝑅𝑁 ∗𝐶∗𝐻

𝐶 and 𝑋𝑝𝑠 ∈
𝑅𝑁 ∗𝐶∗𝐻

𝐶 by a double sampling block.
Step II: Two TVA blocks are used to model and analyze 𝑋𝑑𝑠 and

𝑋𝑝𝑠 , respectively. TVA block deeply mines feature vectors from
both temporal dimension and variable dimension. In addition to
this, the 3D features are transformed into 2D features𝑋

′
𝑑𝑠 ∈ 𝑅𝑁 ∗𝐻

𝐶

and 𝑋
′
𝑝𝑠 ∈ 𝑅𝑁 ∗𝐻

𝐶 by the feedforward neural network.
Step III: Add 𝑋

′
𝑑𝑠 and 𝑋

′
𝑝𝑠 . And then layer normalization is

used to process the new feature vector 𝑋
′ ∈ 𝑅𝑁 ∗𝐻

𝐶 .
Step IV: The TVA block is used to further mine the feature vector

𝑋
′
from the temporal dimension and the variable dimension. At

the same time, the mined feature vectors are passed to the MLP for
long-term prediction.

Step V: Based on the MLP for decoding, the model finally obtains
the prediction result 𝑌 ∈ 𝑅𝑁 ∗𝐿 with the prediction step of 𝐿. The
decoding process is calculated using the following formula:

𝑌 = 𝐹𝐶 (𝑋
′′
), (12)
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where, 𝑋
′′
stands for the feature vector obtained after the TVA

block processing in step IV.
Based on the above steps, DSformer can effectively analyze and

mine the key features and obtain the multivariate time series long-
term prediction results. In addition, to ensure the training effect of
the model, we adopt the method of fusing L1 Loss and L2 Loss for
error backpropagation. The formula is given as follows:

𝐿𝑜𝑠𝑠 = 𝑤𝐿1 ∗
1

𝐵 ∗ 𝑁 ∗ 𝐿

𝐵∑︁
𝑘=0

𝑁∑︁
𝑗=0

𝐿∑︁
𝑖=0

|𝑌𝑖 𝑗𝑘 − 𝑌 𝑡𝑟𝑢𝑖 𝑗𝑘 |+

(1 −𝑤𝐿1) ∗
1

𝐵 ∗ 𝑁 ∗ 𝐿

𝐵∑︁
𝑘=0

𝑁∑︁
𝑗=0

𝐿∑︁
𝑖=0

(𝑌𝑖 𝑗𝑘 − 𝑌 𝑡𝑟𝑢𝑖 𝑗𝑘 )2,

(13)

where, 𝑌 represents the prediction result of the model. 𝑌 𝑡𝑟𝑢 stands
for the true label. 𝐵 represents the number of samples. 𝑁 stands
for the number of variables. 𝐿 stands for prediction step size.𝑤𝐿1
represents the weight of Loss.

4 EXPERIMENT AND ANALYSIS
4.1 Experimental design
Dataset. In order to fully verify the effectiveness of the proposed
DSformer in the field of multivariate time series long-term pre-
diction, this paper selects nine classical data sets for comparative
experiments. These datasets include ETT (ETTh1, ETTh2, ETTm1
and ETTm2), Exchange, ILI, Weather, Electricity and Traffic [49].
Table 1 presents the basic statistics of these datasets.

Table 1: The statistics of the nine datasets.

Datasets Variates Timesteps Granularity

ETTh1 7 17420 1hour
ETTh2 7 17420 1hour
ETTm1 7 69680 15min
ETTm2 7 69680 15min
Exchange 8 7588 1day

ILI 7 966 1week
Weather 21 52696 10min
Electricity 321 26304 1hour
Traffic 862 17544 1hour

Baselines. To construct comparative experiments and prove the
effectiveness of DSformer, we select eight SOTA models with ex-
cellent performance in time series long-term prediction as base-
lines. The main baselines include PatchTST [27], Crossformer [46],
TimesNet [34], Dlinear [42], FEDformer [49], Pyraformer [21], Aut-
oformer [35] and Informer [47].
Setting. The main hyperparameter values of the DSformer are
shown in Table 2. To conduct fair comparison experiments, we
designed the experiment from the following aspects: (1) These nine
datasets are divided into training sets, validation sets, and test sets
according to the ratio in the reference [18]. (2) These nine datasets
were uniformly preprocessed by z-score normalization method. For
each set of experiments, we set five different random seeds for
repeated experiments. The final result of the model is obtained by
averaging the repeated experiments. (3) For the ILI dataset, we set

the historical looking back window 𝐻 = 36 and the predicted future
step size 𝐿 = [24, 36, 48, 60]. For the other data sets, we set the
history looking back window 𝐻 = 96 and the prediction future step
size 𝐿 = [96, 192, 336, 720].

Table 2: Values of the corresponding hyperparameters for
different prediction step sizes.

Config Values
(96,192,336,720)

optimizer Adam [11]
learning rate 0.0001

number of multi-head attention 2/2/1/1
Dropout 0.15

sampling interval 2/2/3/3
weight of Loss 0.35/0.35/0.65/0.65

learning rate schedule MultiStepLR
milestone [25,50,75]
gamme 0.5

batch size 16
epoch 100

Evaluation index. The selection of appropriate evaluation indexes
is the key to evaluate the prediction performance of differentmodels.
Considering the characteristics of multivariate long sequence time
series prediction, we choose Mean Absolute Error (MAE) [20] and
Mean Squared Error (MSE)[10] as the main evaluation indexes .

4.2 Main results
Table 3 shows the prediction results of the proposed DSformer and
all baselines on nine datasets. The best results are highlighted in
bold and the second best results are underlined. Based on Table 3,
the following conclusions can be obtained: (1) Compared with other
SOTA methods, Informer and Pyraformer have larger prediction
errors. Although these two methods design advanced attention
structures to improve the performance of the model, they fail to
fully mine the core features of time series. (2) Autoformer and
FEDformer improve their prediction performance by introducing
trend-season decomposition. However, the decomposition method
converts the original sequence into a fixed form based on expert
experience, which limits the ability of the model to mine the origi-
nal data. (3) Compared with transformer variants mentioned above,
Patch TST, TimesNet and Crossformer focus on mining global infor-
mation and variable correlation from original data, which enables
them to achieve better prediction results. However, for multivariate
long sequence time series, they do not make full use of the three
features proposed in this paper, which makes their performance
limited. (4) Compared with the existing SOTAmodels, the DSformer
can achieve satisfactory prediction results. Firstly, two feature vec-
tors focusing on global information and local information can be
obtained through the DS block. Then, TVA block can mine and
model these feature vectors from temporal dimension and variable
dimension. Finally, DSformer uses a parallel structure to integrate
the above feature information and realize long-term prediction.
Therefore, the DSformer can achieve better performance than other
SOTA methods.
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Table 3: Multivariate time series prediction results on nine real-world datasets.

Data 𝐿
DSformer Patch TST ∗ Crossformer∗ TimesNet Dlinear FEDformer Autoformer Informer Pyraformer

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Th

1 96 0.352 0.392 0.393 0.408 0.396 0.412 0.384 0.402 0.386 0.400 0.376 0.419 0.449 0.459 0.865 0.713 0.664 0.612
192 0.408 0.425 0.445 0.434 0.410 0.438 0.436 0.429 0.437 0.432 0.420 0.448 0.500 0.482 1.008 0.792 0.790 0.681
336 0.448 0.436 0.484 0.451 0.440 0.461 0.491 0.469 0.481 0.459 0.459 0.465 0.521 0.496 1.107 0.809 0.891 0.738
720 0.469 0.454 0.480 0.471 0.519 0.524 0.521 0.500 0.519 0.516 0.506 0.507 0.514 0.512 1.181 0.865 0.963 0.782

ET
Th

2 96 0.268 0.304 0.294 0.343 0.339 0.379 0.340 0.374 0.333 0.387 0.346 0.388 0.358 0.397 3.489 1.515 0.645 0.597
192 0.332 0.341 0.377 0.393 0.415 0.425 0.402 0.414 0.477 0.476 0.429 0.439 0.456 0.452 3.755 1.525 0.788 0.683
336 0.349 0.387 0.381 0.409 0.452 0.468 0.452 0.452 0.594 0.541 0.496 0.487 0.482 0.486 4.721 1.835 0.907 0.747
720 0.375 0.393 0.412 0.433 0.455 0.471 0.462 0.468 0.831 0.657 0.463 0.474 0.515 0.511 3.647 1.625 0.963 0.783

ET
Tm

1 96 0.292 0.368 0.321 0.360 0.320 0.373 0.338 0.375 0.345 0.372 0.379 0.419 0.505 0.475 0.672 0.571 0.543 0.510
192 0.351 0.379 0.362 0.384 0.386 0.401 0.374 0.387 0.380 0.389 0.426 0.441 0.553 0.496 0.795 0.669 0.557 0.537
336 0.384 0.408 0.392 0.402 0.404 0.427 0.410 0.411 0.413 0.413 0.445 0.459 0.621 0.537 1.212 0.871 0.754 0.655
720 0.442 0.439 0.450 0.435 0.569 0.528 0.478 0.450 0.474 0.453 0.543 0.490 0.671 0.561 1.166 0.823 0.908 0.724

ET
Tm

2 96 0.130 0.231 0.178 0.260 0.196 0.275 0.187 0.267 0.193 0.292 0.203 0.287 0.255 0.339 0.365 0.453 0.435 0.507
192 0.207 0.275 0.249 0.307 0.248 0.317 0.249 0.309 0.284 0.362 0.269 0.328 0.281 0.340 0.533 0.563 0.730 0.673
336 0.262 0.318 0.313 0.346 0.322 0.358 0.321 0.351 0.369 0.427 0.325 0.366 0.339 0.372 1.363 0.887 1.201 0.845
720 0.327 0.372 0.400 0.398 0.402 0.406 0.408 0.403 0.554 0.522 0.421 0.415 0.433 0.432 3.379 1.338 3.625 1.451

Ex
ch
an
ge 96 0.075 0.213 0.081 0.216 0.139 0.265 0.107 0.234 0.088 0.218 0.148 0.278 0.197 0.323 0.847 0.752 0.376 1.105

192 0.158 0.308 0.169 0.317 0.241 0.375 0.226 0.344 0.176 0.315 0.271 0.380 0.300 0.369 1.204 0.895 1.748 1.151
336 0.294 0.402 0.305 0.416 0.392 0.468 0.367 0.448 0.313 0.427 0.460 0.500 0.509 0.524 1.672 1.036 1.874 1.172
720 0.834 0.692 0.853 0.702 1.112 0.802 0.964 0.746 0.839 0.695 1.195 0.841 1.447 0.941 2.478 1.310 1.943 1.206

IL
I

24 1.538 0.815 1.610 0.814 3.041 1.186 2.317 0.934 2.398 1.040 3.228 1.260 3.483 1.287 5.764 1.677 7.042 2.012
36 1.546 0.829 1.579 0.870 3.406 1.232 1.972 0.920 2.646 1.088 2.679 1.080 3.103 1.148 4.755 1.467 7.394 2.031
48 1.672 0.841 1.673 0.854 3.459 1.221 2.238 0.940 2.614 1.086 2.622 1.078 2.669 1.085 4.763 1.469 7.551 2.057
60 1.548 0.803 1.702 0.829 3.640 1.305 2.027 0.928 2.804 1.146 2.857 1.157 2.770 1.125 5.264 1.564 7.662 2.100

W
ea
th
er 96 0.170 0.217 0.178 0.219 0.185 0.248 0.172 0.220 0.196 0.255 0.217 0.296 0.266 0.336 0.300 0.384 0.896 0.556

192 0.215 0.257 0.224 0.259 0.229 0.305 0.219 0.261 0.237 0.296 0.276 0.336 0.307 0.367 0.598 0.544 0.622 0.624
336 0.265 0.295 0.278 0.298 0.287 0.332 0.280 0.306 0.283 0.335 0.339 0.380 0.359 0.395 0.578 0.523 0.739 0.753
720 0.322 0.342 0.350 0.346 0.356 0.398 0.365 0.359 0.345 0.381 0.403 0.428 0.419 0.428 1.059 0.741 1.004 0.934

El
ec
tr
ic
ity 96 0.163 0.264 0.174 0.259 0.175 0.279 0.168 0.272 0.197 0.282 0.193 0.308 0.201 0.317 0.274 0.368 0.386 0.449

192 0.174 0.272 0.178 0.265 0.192 0.302 0.184 0.289 0.196 0.285 0.201 0.315 0.222 0.334 0.296 0.386 0.378 0.443
336 0.187 0.287 0.196 0.282 0.208 0.317 0.198 0.300 0.196 0.285 0.201 0.315 0.222 0.334 0.296 0.386 0.376 0.443
720 0.216 0.309 0.237 0.316 0.225 0.337 0.220 0.320 0.245 0.333 0.246 0.355 0.254 0.361 0.373 0.439 0.376 0.445

Tr
affi

c 96 0.458 0.311 0.477 0.305 0.519 0.295 0.593 0.321 0.650 0.396 0.587 0.366 0.613 0.388 0.719 0.391 0.867 0.468
192 0.467 0.323 0.471 0.299 0.526 0.307 0.617 0.336 0.598 0.370 0.604 0.373 0.616 0.379 0.696 0.382 0.869 0.467
336 0.479 0.329 0.485 0.305 0.530 0.300 0.629 0.336 0.605 0.373 0.621 0.383 0.622 0.337 0.777 0.420 0.881 0.469
720 0.512 0.342 0.518 0.325 0.573 0.313 0.640 0.350 0.645 0.394 0.626 0.382 0.660 0.408 0.864 0.472 0.896 0.473

∗ represents that we set uniform input and output sizes to ensure the fairness of the experiment. The results of other methods are from Timesnet [34]

4.3 Ablation experiments
The DSformer contains four key components: piecewise sampling,
down sampling, temporal attention and variable attention. To prove
that these components can help the DSformer to mine the key
feature information, wu conducts ablation experiments from the
following five perspectives: (1) wo/ ps: the piecewise sampling
component is removed. (2) wo/ ds: the down-sampling component
is removed. (3) wo/ as: In this part, we remove the double sampling
block. (4) wo/ ta: we remove temporal attention and replace it with
multi-layer perceptron. (5) wo/ va: variable attention is removed.

Figure 5 illustrates the results of the ablation experiments. Based
on the experimental results, we can obtain the following conclu-
sions: (1) When there is a correlation between different variables,
deleting the variable attention will increase the prediction error of
the model. According to the experimental results, the correlation
between different time series in Weather data set is large, so the
variable attention have a great influence on the prediction results.
(2) After deleting the temporal attention, the prediction perfor-
mance of DSformer decreases significantly. The main reason is that
the most important step in time series modeling is mining the time

series context relation. If temporal attention is lost, it is difficult
for DSformer to effectively analysis the context relation of time
series data. (3) When the prediction step size is long, removing
down sampling significantly increases the error of the prediction.
When the prediction step size is short, deleting piecewise sampling
significantly increases the prediction error. The main reason is that
the features obtained by down sampling contain more global in-
formation, and the features obtained by interval sampling contain
more local information. Therefore, they will affect the modeling
effect of different prediction steps, respectively. (4) After removing
the down-sampling and piecewise sampling at the same time, the
prediction error of the DSformer further increases. The main reason
is that these two sampling methods can deepen the model’s ability
to focus on learning the global and the local respectively. When the
sampling method is removed, the model may not be able to focus
on the key information, which increases the prediction errors of the
DSformer. (5) The results of ablation experiments can demonstrate
the importance of the proposed four components, which can effec-
tively mine the three main features of multivariate long sequence
time series and reduce prediction error.
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Prediction length Prediction length

(a) Ablation experiments on the Exchange dataset

Prediction length Prediction length

(b) Ablation experiments on the Weather dataset

ps

ps

Figure 5: Results of ablation experiments on Exchange and
weather datasets.

4.4 Hyperparameter analysis experiments
The hyperparameters of the DSformer usually affect the final predic-
tion results. In order to fully analyze the sensitivity of the DSformer
and the role of some key hyperparameters, this section conducts an
experimental analysis of the four main hyperparameters (learning
rate, number of multi-head attention, sampling interval and weight
of Loss) on ETTm2 dataset. Figure 6 illustrates the results of the
hyperparameter analysis experiments.

Based on the experimental results, we can get the following
conclusions: (1) The number of multi-head attention and the weight
of Loss have relatively little impact on the prediction performance
of the model. For multi-head attention, an appropriate number can
prevent overfitting while ensuring modeling performance. For the
weight of Loss, an appropriate value can ensure the training effect
of the model and improve the overall performance. (2) The learning
rate has a large impact on the model performance. Themain reasons
include the following two aspects: On the one hand, a large learning
rate will produce phenomena such as overfitting. On the other hand,
a smaller learning rate will affect the effect of training. Therefore,
the setting of learning rate is very important to ensure the training
effect of DSformer. (3) As one of the main hyperparameters, the
sampling interval has a relatively large impact on the prediction
results. When the sampling interval is small, DSformer can achieve
better results with shorter prediction steps. When the sampling
interval is relatively large, DSformer can achieve better results on
longer prediction steps. However, when the sampling interval is too
large, the prediction error of DSformer increases significantly. The
main reason is that too large sampling interval makes the model
lose more local information, which resulted in insufficient usage
of information and reduced prediction accuracy. Therefore, setting
the sampling interval appropriately can affect the effect of different
prediction steps of the DSformer.(4) The sampling interval 𝐶 of the
double sampling block is an important parameter because it affects

Prediction length Prediction length

(a) Impact of learning rate

Prediction length Prediction length

(b) Impact of number of multi-head attention

(c) Impact of sampling interval 

(d) Impact of weight of Loss

Prediction length Prediction length

Prediction length Prediction length

6 8

Figure 6: Impact of four key hyperparameters on prediction
results (ETTm2 dataset).

the input feature information of the DSformer. In the next section,
we will future analyze the influence of sampling interval 𝐶 and
input history length 𝐻 on the experimental results.

4.5 Effects of the sampling interval and the
history length

The history length affects the information obtained by the model.
And the sampling interval affects the model’s utilization of informa-
tion. Considering the effect of the history length and the sampling
interval on the input information of DSformer, we further ana-
lyze the influence of these two hyperparameters on the prediction
results in this section. To adequately evaluate these two key hyper-
parameters, we carried out the following comparison experiments:
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(1) Based on the hyperparameter experiments, it can be found that
too large sampling interval is not conducive to the experimental
results. Therefore, we set the sampling interval of the double sam-
pling block, that is, the number of subsequences 𝐶 = [2, 3, 4, 6]. (2)
Considering the characteristics of the prediction step size of the
model, the history length of the model is set as 𝐻 = [96, 192, 336],
respectively. (3) All above parameters were used to construct experi-
ments on the ETTh2 dataset. And the future length of the DSformer
is set to 𝐿 = [96, 192, 336, 720].

Table 4: Experimental results on ETTh2 dataset with
different history length 𝐻 and sampling interval 𝐶.

𝐿
𝐻 96 192 336
𝐶 MSE MAE MSE MAE MSE MAE

96

2 0.268 0.304 0.269 0.313 0.289 0.342
3 0.273 0.311 0.278 0.328 0.274 0.325
4 0.275 0.315 0.263 0.305 0.254 0.295
6 0.278 0.327 0.265 0.307 0.262 0.302

192

2 0.332 0.341 0.340 0.351 0.356 0.364
3 0.337 0.347 0.329 0.340 0.342 0.352
4 0.343 0.349 0.328 0.335 0.318 0.329
6 0.344 0.356 0.327 0.336 0.323 0.331

336

2 0.352 0.391 0.354 0.392 0.357 0.395
3 0.349 0.387 0.352 0.393 0.353 0.391
4 0.356 0.398 0.345 0.384 0.341 0.378
6 0.362 0.401 0.347 0.386 0.337 0.376

720

2 0.381 0.398 0.379 0.397 0.377 0.395
3 0.375 0.393 0.374 0.392 0.371 0.392
4 0.389 0.403 0.367 0.385 0.366 0.389
6 0.394 0.412 0.365 0.386 0.362 0.383

Table 4 shows the experimental results for different history
lengths and sampling intervals. Based on the experimental results,
the following conclusions can be drawn: (1) When the history
length is short, the sampling interval 𝐶 cannot be too large. If the
sampling interval is large, the prediction performance of the model
will degrade significantly. The main reason is that the increasing
sampling interval limits the ability of DSformer to mine the local in-
formation of raw data. The loss of too much local information is not
conducive to the short-term prediction effect of the DSformer. (2)
When the history length is large, increasing the sampling interval
𝐶 can improve the prediction performance of the model. On the one
hand, increasing the sampling interval can make the feature vector
obtained by down-sampling contain more global information. On
the other hand, when the history length is large, the model contains
more historical period information, and increasing the sampling
interval can make the piecewise sampling obtain feature vectors
that pay more attention to local information. (3) The history length
𝐻 of DSformer can affect the amount of global and local informa-
tion obtained by the model. The size of the sampling interval𝐶 can
make the model focus on different informations of input features.
Therefore, the appropriate balance between the history length and
the sampling interval can make the model effectively use the overall

information and the global information, which can improve the
prediction accuracy of DSformer.

4.6 Efficiency
In this section, based on the Electricity data sets, we compare the
efficiency of the DSformer and other baselines (Dlinear, Pyraformer,
Crossformer, FEDformer and Autoformer). Besides, to make a fair
comparison, we compare the mean training time of each epoch of
several models. The experimental equipment is the Intel(R) Xeon(R)
Gold 5217 CPU@ 3.00GHz, 128G RAM computing server with RTX
3090 graphics card. The batch size is set to 16.

Figure 7: Training time for each epoch of different models.

Based on Figure 7, it can be found that although the computa-
tional complexity of DSformer is 𝑂 (𝑁 2), the actual computational
resource consumption of DSformer is not large. Specifically, most
existing transformer variants use various theoretical methods to
reduce computational complexity, but their actual computational
resource consumption is not low due to the introduction of many
tricks. Compared with above models, DSformer has two advan-
tages: On the one hand, DSformer uses the DS block to reduce
the length of the sequence that needs to be modeled. On the other
hand, DSformer does not use some tricks that significantly increase
computational resource consumption, such as embeding. There-
fore, the results of efficiency comparison further prove the practical
application value of DSformer.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose DSformer, an efficient multivariate time
series long-term prediction model, which contains two finely de-
signed blocks, including the DS block and TVA block. The DS block
simply and efficiently mines the global information and the local
information of time series, which are significant features for long-
term prediction. And the TVA block can effectively integrate the
above information and variable correlation to significantly improve
time series prediction accuracy. The experiments on nine real-world
datasets show that DSformer achieves state-of-the-art performance
for MTS long-term prediction. In the future, we will try to design a
module to adaptive balance sampling interval and history length,
further improving the information mining ability and long term
prediction effect of the model.
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