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ABSTRACT
Traffic forecasting is an essential problem in urban planning and

computing. The complex dynamic spatial-temporal dependencies

among traffic objects (e.g., sensors and road segments) have been

calling for highly flexible models; unfortunately, sophisticated mod-

els may suffer from poor robustness especially in capturing the

trend of the time series (1st-order derivatives with time), leading

to unrealistic forecasts. To address the challenge of balancing dy-

namics and robustness, we propose TrendGCN, a new scheme that

extends the flexibility of GCNs and the distribution-preserving ca-

pacity of generative and adversarial loss for handling sequential

data with inherent statistical correlations. On the one hand, our

model simultaneously incorporates spatial (node-wise) embeddings

and temporal (time-wise) embeddings to account for heterogeneous

space-and-time convolutions; on the other hand, it uses GAN struc-

ture to systematically evaluate statistical consistencies between the

real and the predicted time series in terms of both the temporal

trending and the complex spatial-temporal dependencies. Com-

pared with traditional approaches that handle step-wise predictive

errors independently, our approach can produce more realistic and

robust forecasts. Experiments on six benchmark traffic forecasting

datasets and theoretical analysis both demonstrate the superiority

and the state-of-the-art performance of TrendGCN. Source code is

available at https://github.com/juyongjiang/TrendGCN.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Net-
works→ Network robustness.
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1 INTRODUCTION
Traffic forecasting, as one of the essential parts of the intelligent

transportation system, plays an irreplaceable role in developing a

smart city [18, 19]. It aims to accurately predict future traffic data,

e.g., traffic flow and speed, given historical traffic data recorded by

sensors on a road network [25]. It is a highly challenging task due

to dynamic spatial and temporal dependencies within the road net-

work. As shown in Fig. 1, spatially, the traffic conditions of nearby

sensors have dynamic dependencies on each other. Temporally,

current traffic data are dependent on historical observations in a

dynamic way. Spatial and temporal dependencies vary with time

due to various factors, e.g., weather and traffic accidents. Many

approaches have been proposed for traffic forecasting, continu-

ously improving from shallow machine learning [31, 32, 44] to

recurrent neural network (RNN) and convolutional neural network

(CNN) based deep learning [26, 27, 40]. Although these works can

capture temporal dependencies and regular spatial dependencies,

they can not adequately model non-Euclidean spatial dependen-

cies dominated by irregular road networks. Towards this problem,

graph neural networks (GNN) [29] have been introduced in traffic

forecasting owing to their superior ability to deal with irregular

graph-structured data. These GNN-based works normally represent

sensors as nodes and spatial dependencies between sensors as edges

and leverage adjacency matrices to describe spatial dependencies

of road networks [19, 34]. Recently, spatial-temporal graph neural

networks (STGNNs) [13, 14, 21, 25, 38, 43], a group of approaches

integrating GNNs to model spatial dependencies with RNNs, CNNs,

or Attentions to model temporal dependencies, have shown the

state-of-the-art performance for traffic forecasting.

Despite the success, there are still some limitations with current

STGNNs, which we discuss below.
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Figure 1: Traffic flow data observed from 4 sensors from the
PEMS04 dataset (sensor B, C, and D are adjacent to each other,
and sensor A is distant from all of them). Top row: dynamic
spatial-temporal dependencies among the sensors; middle
row: raw time series signal from the sensors and red arrows
signifying the trend (derivative); bottom row: geographical
locations of the sensors.

Firstly, most existing STGNNs rely on a basic assumption that

spatial dependencies are fixed over time. Therefore, static graphs,

e.g., distance graphs [13, 14, 38], temporal similarity graphs [11, 23],

static adaptive graphs [2, 35], and their combinations [12, 20, 36],

are typically used to model spatial dependencies. These works do

not cater to the changing nature of dependencies between nodes

(shown in Fig. 1(a)) and cannot handle dynamic spatial dependen-

cies. Some attempts [21, 22, 41] have tried to model such dynamics

for traffic forecasting. They design feature extraction mechanisms

to quantify changing patterns from the data, and with the help of

domain knowledge (e.g., road occupancy rates and weather condi-

tions) to construct time-varying spatial graphs. Compared to those

based on static graphs, these works can make more realistic predic-

tions. However, when there exist outlier points or interrupts, they

could generate bad predictions, due to the sensitivity to the tempo-

ral changes (see Fig. 2(b)). Such a phenomenon calls for effective

constraints on global properties for robust time series forecasting.

Intuitively, since the trend of traffic data represents the average

traffic conditions over time, we take the trend as a representative

global property of time series. However, most existing STGNNs

[18, 19, 34] adopt the mean absolute error (MAE) as a loss func-

tion to evaluate the predictions and supervise the model training,

which treats each predicted result individually and can not take the

trends for global constraints. As illustrated in Fig. 2(a), the blue and

the pink curves have the same magnitude L𝑃1
𝑀𝐴𝐸

= L𝑃2
𝑀𝐴𝐸

. The

blue curve looks less desirable than the pink one when a sudden

change happens around 𝑡 = 5, as its trend is opposite to that of the

ground truth, while the pink curve is consistent with the ground

truth. Therefore, we should introduce more reliable constraints on

trends. In particular, we term the phenomenon that predictions have

different trends with the same loss values as trend discrepancy.
Recently, a few works [20, 33] have been proposed to eliminate

trend discrepancies via GAN. They construct the true and fake

samples for discriminators by concatenating inputs with predic-

tions (from the generator) and ground truth (from the dataset),

respectively. Since these works take the whole sequence in error

(a) Equal MAE loss with different trend. (b) Outlier point leads to spurious trend.
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Figure 2: A motivating example with thick green curve be-
ing the raw time series and red arrows signifying the trend
(derivative). (a): prediction 1 (blue curve) and prediction 2
(pink) have the sameMAE, but prediction 1 is obviouslymore
realistic; (b): penalizing mean approximation error of the de-
rivative of the time series can be very sensitive to outliers in
the signal and lead to undesired prediction.

evaluation, they can eliminate trend discrepancies and error accu-

mulation to some extent. However, the dynamic spatial dependen-

cies in the generator are not fully taken into account, which are

crucial to capturing the changing nature of traffic systems. More-

over, spatial dependencies in the predicted results are not modelled

explicitly. Since spatial dependencies reflect the hidden correlations

between the trends of traffic data, they should also align with the

dependencies in the ground truth.

To this end, we propose TrendGCN to solve the two aforemen-

tioned problems: 1) how to model dynamic spatial dependencies

concisely and effectively; 2) how to coordinate the trend discrepan-

cies with dynamic modeling to improve the robustness. The main

contributions of our work are summarized as follows:

• We propose TrendGCN, a new scheme combing the flexibil-

ity of GCNs and the capacity of generative and adversarial

loss in sequential data with inherent statistical correlations.

It employs simultaneous spatial (node-wise) embedding and

temporal (time-wise) embedding to account for heteroge-

neous space-and-time convolutions.

• We introduce adversarial training to systematically evalu-

ate both the trend-level and dependency-level discrepancies

between the true data and the predicted results, thus being

more robust in generating a desired trend than handling

step-wise prediction errors independently.

• We evaluate the proposed model on six benchmarks traffic

forecasting datasets. Extensive experiments and theoretical

analysis both demonstrate the superiority and the state-of-

the-art performance of TrendGCN.

2 RELATEDWORK
2.1 STGNNs for Traffic Forecasting
Spatial-temporal graph neural networks (STGNNs) [12–14, 25, 38,

43] have shown remarkable performance and achieved state-of-the-

art in traffic forecasting. They mainly integrate GNNs to model

non-Euclidean spatial dependencies with RNNs, CNNs, and Atten-

tions to model temporal dependencies [19, 34]. However, many

existing STGNNs utilize static adjacency matrices, which neglect

the changing nature of spatial dependencies in road networks.
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Some recent STGNNs [4, 21, 22, 41] are designed to model dy-

namic spatial dependencies. For example, DGCNN [10] decom-

poses the static and dynamic components of traffic data based on

a pre-trained tensor decomposition layer to obtain the dynamic

Laplacian matrix at any time. SLCNN [41] proposes global and

local time-varying structure learning convolutional modules. Each

module encodes the static structure by a learnable matrix, and

the dynamic structure by a function taking the current samples

as inputs. DCGRN [22] adopts dynamic adjacency matrices by in-

tegrating dynamic context features, e.g., the speed and the time

of day. DSTAGNN [21] obtains the dynamic adjacency matrix ac-

cording to a cosine distance based distance adjacency matrix and

an improved self-attention. However, these works usually rely on

complex mechanisms to capture dynamic dependencies, which may

introduce toomany parameters and face the high risk of over-fitting.

In addition, some of them depend on domain dynamic factors (e.g.,

road occupancy rates and weather conditions) heavily, losing the

robustness and generalization of models for different applications

to some extent. Therefore, how to design an architecture to model

dynamic spatial dependencies concisely yet effectively is an open

problem for both academic and industrial communities.

2.2 GANs for Times Series
Generative Adversarial Networks (GANs) can learn to produce re-

alistic data adversarially. They have achieved remarkable success

in computer vision [30] and natural language processing [15], and

have also shown promise in time series analysis. TimeGAN [37] first

introduces GANs to time series generation. It utilizes GANs based

on a learned embedding space to generate time series that preserves

temporal dynamics. AST [33] promotes GANs for time series fore-

casting. It adopts a sparse transformer as the generator to learn a

sparse attention map and uses a discriminator to eliminate the error

accumulation at the sequence level. TrafficGAN [42] utilizes GANs

for traffic forecasting. It applies CNN and LSTM to capture the

spatial-temporal dependencies, with adversarial training to learn

the distribution of future traffic flows. More recently, TFGAN [20]

integrates GAN and GCNs for traffic forecasting, which uses GAN

to learn the distribution of the time series data. Specifically, mul-

tiple static graphs are constructed within the generator to model

spatial dependencies. The discriminator constructs the true and

fake samples at the sequence level by concatenating inputs with

predictions and ground truth, respectively.

These models typically use GANs for learning the distribution of

time series data from a static perspective, but not fully catering to

dynamic spatial dependencies in the generative or discrimination

process. In addition, these methods barely explicitly consider the

global properties of traffic data, e.g., the overall trend of each time

series and the correlations between different sensors (or channels),

which are critical for traffic forecasting.

3 METHODOLOGY
3.1 Problem Definition
In this paper, we aim to solve multi-step traffic forecasting prob-

lems, given the observed historical time series. Formally, we define

these time series as a set 𝑿1:𝑇 = {𝑿 (1) ,𝑿 (2) , · · ·𝑿 (𝑡 ) , · · ·𝑿 (𝑇 ) } ∈

R𝑇×𝑁×𝐹
, where 𝑿 (𝑡 ) ∈ R𝑁×𝐹

denotes observed values with 𝐹 fea-

ture dimensions of 𝑁 nodes at time step 𝑡 , and 𝑿 (𝑡 )
𝑖

represents the

value of the 𝑖-th node at time step 𝑡 . Our target is to find a mapping

function F to forecast the next 𝐻 steps data based on the past 𝑇

steps data. Thus, the traffic forecasting problem can be formulated

as follows:

�̂�𝑇+1:𝑇+𝐻 = F (𝑿1:𝑇
;𝚯) (1)

where �̂�𝑇+1:𝑇+𝐻 ∈ R𝐻×𝑁×𝑂
, 𝐻 denotes the forecasting horizon

and 𝑂 is the output feature dimensions of each node. F is the

mapping function, and 𝚯 denotes all learnable parameters in the

model.

3.2 Model Overview
Fig. 3 shows the architecture of TrendGCN that mainly consists of

a generator with dynamic adaptive graph generation for capturing

dynamic spatial dependencies and two discriminators for evaluat-

ing and trying to eliminate the trend-level and dependency-level

discrepancies

3.3 Dynamic Adaptive Graph Generation
Recently, adaptive graph generation methods have been prevalent

for traffic forecasting, as they can learn spatial dependencies from

data automatically and help to find some hidden patterns. Partic-

ularly, some works [2, 5, 36] learn graphs in a simple way. They

parameterize the representations of all nodes directly using learn-

able node-wise embeddings, calculate the pairwise similarity of

these representations, and treat this similarity matrix as the ad-

jacency matrix of nodes. However, these works can only obtain

static graphs and can not model the changing spatial dependencies

among nodes. Therefore, we propose a Dynamic Adaptive Graph

Generation module to model dynamic spatial dependencies con-

cisely yet effectively in an adaptive fashion.

Inspired by the positional embeddings of Transformers [9, 17],

we utilize two types of embeddings, spatial embeddings 𝑬
node

=

{𝒆 (1)
node

, 𝒆 (2)
node

, · · · , 𝒆 (𝑁 )
node

} ∈ 𝑅𝑁×𝑑e
and temporal embeddings 𝑬time =

{𝒆 (1)
time

, 𝒆 (2)
time

, · · · , 𝒆 (𝑇 )
time

} ∈ 𝑅𝑇×𝑑e
to denote the unique representa-

tions of each node and each time step, respectively. In detail, the

𝑖th row of 𝑬
node

denotes the representations of the 𝑖th node, the 𝑖th

row of 𝑬time denotes the representations of the 𝑖th time step, and

𝑑e is the hidden dimension of spatial and temporal embeddings.

We introduce a unified scheme to effectively couple the spatial

(node-wise) and temporal (time-wise) embeddings through a gate

module and use the integrated embeddings to construct graphs

changing over time. The process can be formulated as:

A
(𝑡 )
𝑖 𝑗

= 𝝀
〈
Dpt

(
LN(𝒆 (𝑖 )

node
Δ1𝒆

(𝑡 )
time

)
)
,Dpt

(
LN(𝒆 ( 𝑗 )

node
Δ2𝒆

(𝑡 )
time

)
)〉
(2)

where Δ1,Δ2 denote two operators selected from a set of candidate

operators: addition, Hadamard production, and concatenation, ab-

breviated as {+, ⊙, ∥}; the LN and Dpt denote Layer Normalization

and Dropout operation, respectively. ⟨·, ·⟩ denotes the inner product,
and 𝝀 represents the important weights of each kind of information

term. The choices of Δ1,Δ2 can be the same or different, and the

corresponding experiment results and analysis about their combi-

nations are in the Appendix. In particular, when Δ1 = +,Δ2 = +,
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Figure 3: The model architecture of the proposed TrendGCN. The Detailed description of each proposed component can be
found in the corresponding section (marked by the red digit).

Eq. 2 can be expanded as:

A
(𝑡 )
𝑖 𝑗

= 𝝀
〈
Dpt

(
LN(𝒆 (𝑖 )

node
+ 𝒆 (𝑡 )

time
)
)
,Dpt

(
LN(𝒆 ( 𝑗 )

node
+ 𝒆 (𝑡 )

time
)
)〉

= 𝜆1

〈
𝒆 (𝑖 )
node

, 𝒆 ( 𝑗 )
node

〉
︸           ︷︷           ︸

spatial homologous terms

+𝜆2
〈
𝒆 (𝑖 )
node

, 𝒆 (𝑡 )
time

〉
+
〈
𝒆 ( 𝑗 )
node

, 𝒆 (𝑡 )
time

〉
︸                                 ︷︷                                 ︸
spatial-temporal heterologous terms

+ 𝜆3

〈
𝒆 (𝑡 )
time

, 𝒆 (𝑡 )
time

〉
︸          ︷︷          ︸

temporal homologous terms

(3)

This formulation allows not only homogeneous interactions in the

spatial and temporal domains, respectively, but also allows the em-

bedding of the 𝑖th node and the 𝑗th time step to interact directly

with each other. Thus, the construed graph can represent the spa-

tial, temporal, and spatial-temporal interactions simultaneously,

which has a stronger representative ability than a static adaptive

graph that only focuses on spatial interactions. In particular, a static

adaptive graph is a special case of our graph when 𝜆2 and 𝜆3 are

equal to zero.

Finally, following previous works [2, 39], we employ 1
𝑠𝑡

order

Chebyshev polynomial expansion to approximate graph convolu-

tion with parameters that are specific to the combinations of spatial

and temporal embeddings 𝑬nt, then the graph convolution can be

formulated as:

𝑯 (𝑙+1)
G

= (𝑰𝑵 + Norm(A (𝑡 ) ))𝑯 (𝑙 )
G

𝑬nt𝑾
(𝑙 )
G

+ 𝑬ntb
(𝑙 )
G

(4)

𝑯 (0)
G

= 𝑿 (𝑡 ) , 𝑬nt = 𝑬
node

Δ1𝑬
(𝑡 )
time

(5)

where 𝑰𝑵 is the identity connection of 𝑁 nodes, Norm is 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

normalization; 𝑾 (𝑙 )
G

∈ 𝑅𝑑×𝐹×𝑂 and 𝒃 (𝑙 )
G

∈ 𝑅𝑑×𝑂 represents a

weight pool and a bias pool, respectively. During training, 𝑬
node

and 𝑬time are updated. Thus, the constructed graphs are dynamics,

and the parameters of the graph convolution operation 𝑬nt𝑾
(𝑙 )
G

and 𝑬ntb
(𝑙 )
G

are specific to nodes and time steps.

3.4 Dynamic Graph Convolutional GRU
Following prior works [2, 39], we integrate the proposed DAGG

module to Gated Recurrent Units (GRU) [8] by replacing the MLP

layers in GRU. Then, we stack several GRU layers followed by a

linear transformation (MLP) to project the 𝑇 -th output of GRU to

achieve 𝐻 steps ahead predictions in the manner of sequence to

sequence, which significantly decreases the cost of time and error

accumulation. Formally, it can be formulated as:

𝒛 (𝑡 ) = 𝜎 (G((𝑿 (𝑡 ) ∥ 𝒉(𝑡−1) );𝚯𝑧))

𝒓 (𝑡 ) = 𝜎 (G((𝑿 (𝑡 ) ∥ 𝒉(𝑡−1) );𝚯𝑟 ))

𝒄𝑡 = 𝑡𝑎𝑛ℎ(G((𝑿 (𝑡 ) ∥ 𝒓 (𝑡 ) ⊙ 𝒉(𝑡−1) );𝚯𝑐 ))

𝒉(𝑡 ) = 𝒛 (𝑡 ) ⊙ 𝒉(𝑡−1) + (1 − 𝒛 (𝑡 ) ) ⊙ 𝒄𝑡

(6)

�̂�𝑇+1:𝑇+𝐻 = Dpt(LN(𝒉(𝑇 ) ))𝑾 + 𝒃 (7)

where 𝑿 (𝑡 ) ∈ 𝑅𝑇×𝑁×𝐹
and 𝒉(𝑡 ) ∈ 𝑅1×𝑁×𝐹 ′

represent input and

hidden representation of GRU at time step 𝑡 , ∥ denotes the concate-
nation operation, 𝒛 (𝑡 ) and 𝒓 (𝑡 ) denote reset gate and update gate at
time step 𝑡 , respectively. Three G represents DAGG module with
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different learnable parameters 𝚯𝑧 , 𝚯𝑟 , and 𝚯𝑐 .𝑾 ∈ 𝑅𝐹
′×𝐻𝑂

and

𝒃 ∈ 𝑅1×𝐻𝑂
are weight parameters in linear transformation (MLP).

𝐻 denotes the predicted future steps and �̂�𝑇+1:𝑇+𝐻 ∈ 𝑅𝐻×𝑁×𝑂
is

the final prediction results.

3.5 Adversarial Dynamic Trend Alignment
We introduce two discriminators with adversarial training to take

the global properties (trends and inherent statistical correlations)

into consideration, which systematically evaluate trend-level and

dependency-level discrepancies and further improve the robustness.

Specifically, the discriminator Dseq focuses on the trend of indi-

vidual time series, and the discriminator D
graph

emphasizes the

correlation of multivariate time series. Both discriminators consist

of three fully connected linear layers [33] with 𝐿𝑒𝑎𝑘𝑅𝑒𝐿𝑈 . For-

mally, the loss functions of this min-max optimization problem are

formulated as:

LDseq
= −E𝑥1

𝑟∼P [log(Dseq (𝑿1:𝑇 ∥ 𝑿𝑇+1:𝑇+𝐻 ))]

−E𝑥1

𝑓
∼Q [log(1 − Dseq (𝑿1:𝑇 ∥ �̂�𝑇+1:𝑇+𝐻 ))]

(8)

LDgraph
= −E𝑥2

𝑟∼P [log(Dgraph
(𝛿 ((𝑿𝑇+1:𝑇+𝐻 )T𝑿𝑇+1:𝑇+𝐻 ))]

−E𝑥2

𝑓
∼Q [log(1 − D

graph
𝛿 ((�̂�𝑇+1:𝑇+𝐻 )T�̂�𝑇+1:𝑇+𝐻 )))]

(9)

L
adv

= 𝛼 (−E𝑥1

𝑟∼P [log(1 − Dseq (𝑿1:𝑇 ∥ 𝑿𝑇+1:𝑇+𝐻 ))]

− E𝑥1

𝑓
∼Q [log(Dseq (𝑿1:𝑇 ∥ �̂�𝑇+1:𝑇+𝐻 ))])

+𝛽 (−E𝑥2

𝑟∼P [log(1 − D
graph

(𝛿 ((𝑿𝑇+1:𝑇+𝐻 )T𝑿𝑇+1:𝑇+𝐻 )))]

−E𝑥2

𝑓
∼Q [log(Dgraph

(𝛿 ((�̂�𝑇+1:𝑇+𝐻 )T�̂�𝑇+1:𝑇+𝐻 )))])

(10)

Here, 𝒙1𝑟 = (𝑿1:𝑇 ∥𝑿𝑇+1:𝑇+𝐻 ) and 𝒙2𝑟 = 𝛿 ((𝑿𝑇+1:𝑇+𝐻 )T𝑿𝑇+1:𝑇+𝐻 )
denote the ground truth (real) sampled from distribution P, 𝒙1

𝑓
=

(𝑿1:𝑇 ∥ �̂�𝑇+1:𝑇+𝐻 ) and 𝒙2
𝑓
= 𝛿 ((�̂�𝑇+1:𝑇+𝐻 )T�̂�𝑇+1:𝑇+𝐻 ) is the pre-

dicted (fake) time series sampled from distribution Q. T and ∥
denote the transpose and concatenation operations, respectively,

𝛿 (·) is 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 normalization operation. 𝛼 and 𝛽 represent the

trade-off weights to balance the importance of Dseq and D
graph

.

3.6 Multivariate Time Series Prediction
We utilize L1 loss as training objective and jointly optimize the

loss with the adversarial training loss for the generator to make

multi-step predictions. Thus, the overall loss of our TrendGCN is

formulated as:

L = L𝑝 (𝚯) + L
adv (11)

L𝑝 (𝚯) =
𝑇+𝐻∑︁
𝑡=𝑇+1

𝑿 (𝑡 ) − �̂� (𝑡 )
 (12)

where �̂� (𝑡 ) ∈ 𝑅𝑁×𝑂
and 𝑿 (𝑡 ) ∈ 𝑅𝑁×𝑂

denote ground truth and

predicted results of all nodes at time step 𝑡 , 𝚯 is all the learnable

parameters in the model.

4 THEORETICAL ANALYSIS
In this section, we theoretically show that models which individu-

ally and independently consider the absolute error between ground

truth and predictions at different time steps will result in trend dis-
crepancy, namely, different predictions have different trends from

ground truth while having the same absolute error with ground

truth (See Fig. 2(a)), and the functionality of introducing adversarial

training.

Theorem 1. Let F ∗ denotes the optimal model with parameters
𝚯 to predict the next 𝐻 steps data �̂�𝑇+1:𝑇+𝐻 = {�̂� (𝑇+1) , �̂� (𝑇+2) , · · ·
�̂� (𝑇+𝑡 ) , · · ·𝑿 (𝑇+𝐻 ) } ∈ R𝐻×𝑁×𝑂 , given the past𝑇 steps data𝑿1:𝑇 =

{𝑿 (1) ,𝑿 (2) , · · ·𝑿 (𝑡 ) , · · ·𝑿 (𝑇 ) } ∈ R𝑇×𝑁×𝐹 , i.e., �̂�𝑇+1:𝑇+𝐻 =

F ∗ (𝑿1:𝑇
;𝚯), using L1 loss represents prediction errors. Then, there

always exists another mapping function F̃ with the same loss between
ground truth and predictions at each time step, but with the different
derivative of the predicted time series at each time step (i.e., dF

∗

d𝑡
)

Proof of Theorem 1. According to Eq. 12, the L1 loss of map-

ping function F ∗
and F̃ can be formulated as:

LF∗ =

𝑇+𝐻∑︁
𝑡=𝑇+1

𝑿 (𝑡 ) − �̂� (𝑡 )
F∗

 ,L F̃ =

𝑇+𝐻∑︁
𝑡=𝑇+1

𝑿 (𝑡 ) − �̂� (𝑡 )
F̃

 (13)

Obviously, for 𝑡 ∈ [𝑇 + 1,𝑇 + 𝐻 ] we have the following inequality:

𝑚𝑖𝑛

{
∥𝑿 (𝑡 ) − �̂� (𝑡 )

F∗ ∥
}
≤

LF∗

𝐻
≤ 𝑚𝑎𝑥

{
∥𝑿 (𝑡 ) − �̂� (𝑡 )

F∗ ∥
}

𝑚𝑖𝑛

{
∥𝑿 (𝑡 ) − �̂� (𝑡 )

F̃
∥
}
≤

L F̃
𝐻

≤ 𝑚𝑎𝑥

{
∥𝑿 (𝑡 ) − �̂� (𝑡 )

F̃
∥
} (14)

Further, when ∀𝑡 ∈ [𝑇 + 1,𝑇 +𝐻 ], �̂� (𝑡 )
F̃

= −�̂� (𝑡 )
F∗ + 2𝑿 (𝑡 )

, we have

L F̃ = LF∗ . Then, recall the definition of derivative, we obtain:

𝑚
(𝑡 )
1

= lim

Δ𝑡→0

�̂� (𝑡+Δ𝑡 )
F∗ − �̂� (𝑡 )

F∗

Δ𝑡

𝑚
(𝑡 )
2

= lim

Δ𝑡→0

�̂� (𝑡+Δ𝑡 )
F̃

− �̂� (𝑡 )
F̃

Δ𝑡

= lim

Δ𝑡→0

(−�̂� (𝑡+Δ𝑡 )
F∗ + 2𝑿 (𝑡+Δ𝑡 ) ) − (−�̂� (𝑡 )

F∗ + 2𝑿 (𝑡 ) )
Δ𝑡

= −𝑚 (𝑡 )
1

+ 2 lim

Δ𝑡→0

𝑿 (𝑡+Δ𝑡 ) − 𝑿 (𝑡 )

Δ𝑡

= −𝑚 (𝑡 )
1

+ 2𝑚 (𝑡 )

(15)

Here, we use𝑚 (𝑡 ) = limΔ𝑡→0

𝑿 (𝑡+Δ𝑡 )−𝑿 (𝑡 )
Δ𝑡 to denote the derivative

of ground truth mapping function at 𝑡 time step. Obviously, ∃𝑡 ∈
[𝑇 + 1,𝑇 + 𝐻 ],𝑚 (𝑡 )

1
≠𝑚 (𝑡 )

to have𝑚
(𝑡 )
2

≠𝑚
(𝑡 )
1

. It indicates that

equal approximation error L F̃ = LF∗ does not guarantee equal

trend of the predicted time series, i.e.,𝑚
(𝑡 )
2

≠𝑚
(𝑡 )
1

.

Moreover, if we explicitly minimize the trend loss between pre-

diction and ground truth at each time step, formalized by

L𝑡𝑟𝑒𝑛𝑑 (𝚯) =
𝑇+𝐻∑︁
𝑡=𝑇+1

𝒎 (𝑡 ) − �̂� (𝑡 )
 (16)

it is still sensitive to outlier values which leads to a spurious trend,

as shown in Fig. 2(b). To solve the above problems, we introduce

adversarial training to discriminate whether predictions have the

same trend as ground truth from a higher level instead of constrain-

ing the trend consistency at each time step. □
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Table 1: Statistics of the six benchmarks traffic forecasting datasets. In the row of signals, ‘F’ represents traffic flow, ‘S’ represents
traffic speed, and ‘O’ represents traffic occupancy rate.

Dataset PEMS03 PEMS04 PEMS07 PEMS08 METR-LA PeMS-BAY

# of nodes 358 307 883 170 207 325

# of timesteps 26,208 16,992 28,224 17,856 34,272 52,116

# Granularity 5min 5min 5min 5min 5min 5min

# Start time 9/1/2018 1/1/2018 5/1/2017 7/1/2016 3/1/2012 1/1/2017

# End time 11/30/2018 2/28/2018 8/31/2017 8/31/2016 6/30/2012 5/31/2017

# Missing ratio
∗

0.672% 3.182% 0.452% 0.696% 8.11% 0.003%

# Signals
∗

F F,S,O F F,S,O S S

5 EXPERIMENTS
5.1 Dataset
To evaluate the proposed TrendGCN, we conduct extensive experi-

mentswith six traffic forecasting benchmarks, including PEMS03/04/07/08,

METR-LA, and PeMS-BAY. The datasets PEMS03/04/07/08 and the

preprocessing procedure are provided by [14]. The datasets METR-

LA/PeMS-BAY and the preprocessing procedure are provided by

[25]. The dataset statistics are summarized in Table 1.

5.2 Baselines
We compare TrendGCN with 22 baselines of three categories. The

details of the baselines are as follows:

• The following simple temporalmodels are considered: ARIMA

[31], considering moving average and autoregressive com-

ponents; FC-LSTM [27], using fully connected LSTMs to

capture the nonlinear temporal dependencies; TCN [3], con-

sisting of a stack of causal convolutional layers with expo-

nentially enlarged dilation factors for sequence modeling

tasks;

• The following graph-based models are included: DCRNN

[25], integrating diffusion convolution with sequence-to-

sequence architecture; STGCN [38], merging graph convo-

lution with gated temporal convolutions; ASTGCN [13], in-

tegrating attention mechanisms to capture dynamic spatial-

temporal patterns; Graph WaveNet [36], combining graph

convolution with dilated casual convolution; STG2Seq [1],

using a hierarchical graph convolutional structure to capture

both spatial and temporal correlations simultaneously; STS-

GCN [28], utilizing localized spatial-temporal subgraph mod-

ule to model localized correlations independently; AGCRN

[2], using adaptive adjacency matrix for graph convolution

and GRU to model temporal correlations; LSGCN [16], us-

ing a spatial gated block and gated linear units convolu-

tion to capture complex spatial-temporal features; MTGNN

[35], extracting the uni-directed relations among variables

through a graph learning module; STFGNN [23], fusing var-

ious spatial and temporal graphs to handle long sequences;

Z-GCNETs [6], integrating the new time-aware zigzag topo-

logical layer into time-conditioned GCNs; STGODE [11],

capturing spatial-temporal dynamics through a tensor-based

ODE; DCGRN [22], adopts dynamic adjacency matrices by

integrating dynamic context features, e.g., the speed and

the time of day. STG-NCDE [7], designing two NCDEs for

learning the temporal and spatial dependencies; DSTAGNN

[21], designing a new spatial-temporal attention module to

exploit the dynamic spatial correlation within multi-scale

neighborhoods; RGSL [39], incorporating both explicit prior

structure and implicit structure together to learn a better

graph structure.

• The following GAN-based models are included: TimeGAN

[37], utilizing GANs based on a learned embedding space to

generate time series that preserves temporal dynamics. AST

[33], adopting a sparse transformer as the generator to learn

a sparse attention map and uses a discriminator to eliminate

the error accumulation at the sequence level. TFGAN [20],

applying multiple GCNs and one GRU within the generator

to model spatial and temporal dependencies, respectively.

5.3 Experimental Settings
We first split each dataset into the training set, validation set, and

test set by a ratio of 6:2:2 for PEMS03/04/07/08 and a ratio of 7:1:2 for

METR-LA/PeMS-BAY. We use the historical one-hour data (𝑇 = 12)

to forecast the next-hour data (𝐻 = 12). Three metrics are utilized to

evaluate model performance, i.e., MAE, RMSE, and MAPE. For the

hyper-parameters of TrendGCN, we set the number of hidden units

to 64 for GRU cells, GRU layers to 2, GCN layers to 2 by default. The

numbers of input features are 𝐹 = 1 (flow) for PEMS03/04/07/08 and

𝐹 = 2 for METR-LA/PeMS-BAY (speed and time stamps) following

[2] and [25], respectively. The number of the output feature is𝑂 = 1

for all datasets. We use 𝜆1 = 1, 𝜆2 = 1, and 𝜆3 = 1 in Eq. 3 using

Δ1 = +,Δ2 = + by default. We set 𝛼 = 0.01 and 𝛽 = 1.0 to trade-off

the importance of sequence and graph level adversarial training,

Adam optimizer with learning rate 𝜂 = 0.003 and batch size 64, and

the spatial and temporal embedding dimension 𝑑 are both set to 4, 6,

10, 4, 10, and 10 for PEMS03, PEMS04, PEMS07, PEMS08, METR-LA,

and PeMS-Bay datasets, respectively. For the experimental results

of baselines, we directly cite the best results from their original

paper. Otherwise, we report results by running authors-provided

source codes under optimal hyper-parameter settings they report

in the paper. The experiments are conducted on a computer with a

single 24GB NVIDIA GeForce RTX 3090 card.

5.4 Performance Comparison and Analysis
We report our model performance on average 5 times running. The

average prediction performances of 12 horizons on PEMS03/04/07/08

are summarized in Table 2, we observe that TrendGCN achieves
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Table 2: Performance comparison of different baselines for traffic flow forecasting on PEMS03/04/07/08 datasets. Bold scores
and underline scores indicate the best and the second best, respectively. Superscript {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ} denotes methods with
adaptive graphs, while ∗ denotes methods with dynamic graphs.

Model

PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA (JTE 2003) 35.41 47.59 33.78 % 33.73 48.80 24.18% 38.17 59.27 19.46% 31.09 44.32 22.73%

FC-LSTM (NeurIPS 2015) 21.33 35.11 23.33% 26.77 40.65 18.23% 29.98 45.94 13.20% 23.09 35.17 14.99%

TCN (ICLR 2018) 19.32 33.55 19.93% 23.22 37.26 15.59 % 32.72 42.23 14.26% 22.72 35.79 14.03%

DCRNN (ICLR 2018) 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92%

STGCN (IJCAI 2018) 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29%

ASTGCN (AAAI 2019) 17.34 29.56 17.21% 22.93 35.22 16.56% 24.01 37.87 10.73% 18.25 28.06 11.64%

𝑎
GraphWaveNet (IJCAI 2019) 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%

STG2Seq (IJCAI 2019) 19.03 29.83 21.55% 25.20 38.48 18.77% 32.77 47.16 20.16% 20.17 30.71 17.32%

STSGCN (AAAI 2020) 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21 % 17.13 26.80 10.96%

𝑏
AGCRN (NeurIPS 2020) 16.03 28.52 14.65% 19.89 32.86 13.37% 22.37 35.70 9.55 % 16.13 25.52 10.21 %

LSGCN (IJCAI 2020) 17.94 29.85 16.98 % 21.53 33.86 13.18% 27.31 41.46 11.98% 17.73 26.76 11.20%

𝑐
MTGNN (KDD 2020) 15.10 25.93 15.67% 19.32 31.57 13.52% 22.07 35.80 9.21% 15.71 24.62 10.03%

STFGNN (AAAI 2021) 16.77 28.34 16.30% 19.83 31.88 13.02% 22.07 35.80 9.21% 16.64 26.22 10.60%

𝑑
Z-GCNETs (ICML 2021) 16.64 28.15 16.39 % 19.50 31.61 12.78 % 21.77 35.17 9.25% 15.76 25.11 10.01%

STGODE (KDD 2021) 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62%

𝑒
STG-NCDE (AAAI 2022) 15.57 27.09 15.06% 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92 %

𝑓 ∗
DSTAGNN (ICML 2022) 15.57 27.21 14.68 % 19.30 31.46 12.70% 21.42 34.51 9.01% 15.67 24.77 9.94%

𝑔
RGSL (IJCAI 2022) 15.65 27.98 14.67% 19.19 31.14 12.69% 20.73 34.48 8.71% 15.49 24.80 9.96%

ℎ∗
DGCRN (TKDD 2023) 15.98 27.41 17.73% 20.39 32.34 14.64% 20.52 33.56 9.09% 16.22 26.10 12.06%

TrendGCN (ours) 14.77 25.66 13.92% 18.81 30.68 12.25% 20.43 34.32 8.51% 15.15 24.26 9.51%

Table 3: Performance comparison of GAN-based models
for traffic speed forecasting on METR-LA and PeMS-BAY
datasets with Horizon 12 (60 min).

Model

METR-LA PeMS-BAY

MAE RMSE MAPE MAE RMSE MAPE

TimeGAN (NeurIPS 2019) 4.43 8.67 13.53% 2.35 5.16 5.59%

AST (NeurIPS 2020) 4.05 8.14 12.80% 2.27 4.96 5.43%

TFGAN (KBS 2022) 3.83 7.98 12.72% 1.97 4.48 4.63%

TrendGCN (ours) 3.55 7.39 10.27% 1.92 4.46 4.51%

state-of-the-art on all datasets, except RMSEmetrics on the PEMS07

dataset. We guess that it is difficult for GANs to discriminate useful

signals since the PEMS07 dataset has a large number of traffic nodes

(i.e., 883). Besides, we notice that adaptive graph-based methods,

e.g., AGCRN, MTGNN, STG-NCDE, RGSL, and TrendGCN(ours)

significantly outperform pre-defined graph-based methods, e.g.,

DCRNN, STGCN, and ASTGCN. The dynamic graph-based meth-

ods (DGCRN, DSTAGNN, and TrendGCN(ours)) have an advantage

in average predictive performance compared to those using static

graphs. In addition, we compare TrendGCN with other SOTA GAN-

based models [20, 33, 37] on METR-LA and PeMS-Bay. The results

in Table. 3 demonstrates that TrendGCN outperforms best, which

further indicates the effectiveness of modeling dynamics and jointly

considering trends and dependencies.

5.5 Ablation Study
We conduct an ablation study with its variants to verify the ef-

fectiveness of each component in TrendGCN. As shown in Fig. 4,

Table 4: The impact of different loss objective components
in Eq. (11) on prediction performances (MAE/RMSE).

TrendGCN w/o L
adv

w/o L𝑝 (𝚯)
PEMS04 18.81/30.68 19.04/31.62 43.32/64.89

Table 5: Complexity and execution efficiency analysis ofmod-
els on PEMS04 dataset.

PEMS04 TrendGCN RGSL (IJCAI 2022) DSTAGNN (ICML 2022)

# Parameters 0.45M 0.87M 3.58M

# GPU Memory 5.38GB 7.72GB 8.77GB

Training Cost (epoch) 49.32s 61.01s 116.20s

Inference Cost (epoch) 1.83s 3.11s 10.02s

Complexity (per Layer) O(𝑁 2𝑑 +𝑇𝑑2) O(𝑁 2𝑑 +𝑇𝑑2) O(𝑁 2𝑑 + 𝑘𝑇𝑑2)
MAE/RMSE 18.81/30.68 19.19/31.14 19.30/31.46

variants with dynamic graphs outperform the ones with a static

graph. Besides, adversarial training significantly improves the pre-

diction performance of all variants. Adversarial training at the

graph level is better than at the sequence level, which implies that

the dependencies between all nodes may play a stronger role in

eliminating discrepancies. In addition, we compare adversarial loss

L
adv

with L𝑝 (𝚯) in Table 4. It demonstrates that removing either

L
adv

or L𝑝 (𝚯) will result in a drop in prediction performance, and

L𝑝 (𝚯) plays a vital role in supervised learning.

5.6 Hyperparameter Study
Since the embedding dimension (i.e., 𝑑𝑒 ) of spatial embeddings and

temporal embeddings has a great impact on model performance and
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(a) MAE (b) RMSE (c) MAPE (%)

w/o dynamic & seq. adv. & graph. adv.
w/o dynamic & graph. adv. 
w/o dynamic & seq. adv.
w/o seq. adv. & graph. adv. 
w/o graph. adv. 
w/o seq. adv. 
TrendGCN

Static

Dynamic

Static

Dynamic

Static

Dynamic

Figure 4: Ablation study of our TrendGCN with(w) or without(w/o) proposed components on PEMS04 dataset.
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Figure 5: Influence of representation dimensions of the spatial and temporal embeddings on PEMS03/04/07/08 datasets.
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Figure 6: (a) The impact of loss trade-off weights 𝛼 and 𝛽 of
Ladv. (b) The Convergence speed comparison with AGCRN.
Both on PEMS04 dataset.

computational cost, we present prediction performance at different

settings, as shown in Fig. 5. We observe that the basic principle is

that 𝑑 should not be set too small (insufficient representation) and

too large (over-fitting and time-consuming problem). The optimal

embedding dimension should be set as 4, 6, 10, and 4 for PEMS03,

PEMS04, PEMS07, and PEMS08 datasets, respectively. In addition,

since adversarial learning is sensitive to weights, we discuss the

influence of loss trade-off weights 𝛼 and 𝛽 of L
adv

in Fig. 6(a). We

find that on most datasets, the MSE is relatively stable when the

trade off ratios are in the range [0, 0.01, 0.05, 0.1].

5.7 Complexity Analysis and Cost
To compare the computation cost of TrendGCN and SOTA, we

show their complexity and execution efficiency in Table 5 and

Fig. 6. As can be seen, our approach has better efficiency in both

training (12%-50% less time) and inference (50%-80% less time), and

smaller memory footprint (20%-30% less) compared with SOTA.

(a) PEMS04 (b) PEMS08

Figure 7: Performance comparison of four widely-used com-
binations for graph construction under the unified scheme
on PEMS04/08 datasets.

Table 6: Prediction error (MAE/RMSE) of different methods
on original data (1st row), Gaussian-noise polluted data (2nd
row), and the relative increment ratio of the error (3rd row,
smaller is better).

TrendGCN RGSL (IJCAI 2022) DSTAGNN (ICML 2022)

PEMS04 18.81/30.68 19.19/31.14 19.30/31.46

+N(0, 1) 24.91/37.36 27.98/40.81 27.22/40.28

+Δerrors +32.43%/+21.77% +45.81%/+31.05% +41.04%/+28.04%

The results indicate that TrendGCN can achieve a good trade-off

between computational cost and forecasting accuracy. Besides, our

TrendGCN accomplishes an average of 6 times faster convergence

speed compared with AGCRN, as shown in Fig. 6(b).

5.8 Robustness Exploration
To test the robustness of TrendGCN, we conduct experiments by

injectingGaussian noises into the raw traffic data of PEMS04 dataset.

The results in Table 6 show the increasing errors of TrendGCN are

much less than SOTA for the polluted data, verifying the robustness

of TrendGCN. One of the possible reasons for such results is that
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Figure 8: Comparison of short (12 steps)-(a)(c)(e)(g) and long (288 steps)-(b)(d)(f)(h) term prediction curves between STSGCN,
AGCRN, and our TrendGCN on a snapshot of the test data of four datasets. Note that, the predicted time series for the whole
day period (288 steps) is simply obtained by concatenating all the short-term predictions (12 steps) along the time axis (and
remove overlaps), which is a common practice widely used in [2, 21, 24], so that a better visualization of the prediction quality
during different time of the day can be presented.

evolving

evolving

𝑡 = 2 𝑡 = 4 𝑡 = 6 𝑡 = 8 𝑡 = 10 𝑡 = 12

Figure 9: Visualization of 2D projection of UMAP on spatial embeddings (Upper) and the heatmap of learned graphs (Lower) at
𝑡 ∈ {2, 4, 6, 8, 10, 12} time steps.

TrendGCN can capture the global trend and local dynamics of traffic

data, which helps to reduce the risk of local over-fitting.

5.9 Visualization
We compare the short (12 steps) and long (288 steps) term prediction

curves between STSGCN, AGCRN, and our TrendGCN on a snap-

shot of the test data of four datasets, as shown in Fig. 8. We observe

that our proposed TrendGCN can significantly bridge the trend dis-

crepancy between prediction and ground truth for both short-term

and long-term prediction, which confirms our intuition. In partic-

ular, for the fast-varying periods (dashed boxes), the predictions

of TrendGCN are much closer to ground truth, which shows the

stronger adaptive ability of TrendGCN for changes. Furthermroe,

we visualize the learned dynamic adaptive graphs at the differ-

ent time steps, aiming to discuss the interpretation of TrendGCN.

For better visualization, we randomly select 16 nodes on PEMS04

dataset, as shown in Fig. 9. We have the following observations:

1) Although many methods using pre-defined graphs (static) have

achieved comparable performance, they generally face the problem

of data sparsity which harms the propagation of model’s gradi-

ent significantly; 2) Dynamic adaptive graphs can flexibly capture

the complex spatial-temporal dependencies between all nodes at

different time steps.

5.10 Graph Construction Discussion
We propose a unified scheme (see Eq. 2) to effectively couple the

spatial (node-wise) and temporal (time-wise) embeddings through
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a gate module and use the integrated embeddings to construct

graphs changing over time. The choices of Δ1,Δ2 can be the same

or different. Here, four widely-used combinations with 𝝀1 = 𝝀2 =
𝝀3 = 𝝀4 = 1 are discussed as follows:

𝐴
A

(𝑡 )
𝑖 𝑗

= 𝝀1
〈
Dpt

(
LN(𝒆 (𝑖 )

node
∥ 𝒆 (𝑡 )

time
)
)
,Dpt

(
LN(𝒆 ( 𝑗 )
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∥ 𝒆 (𝑡 )

time
)
)〉
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time
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)
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(17)

As can be seen in Fig. 7, we derive the following findings: (1) The

default setting of Δ1 = +,Δ2 = + in TrendGCN achieves optimal

performance (see Table 2), which signifies the equal importance

of homogeneous and heterogeneous interactions in the spatial-

temporal domains. (2) TrendGCN is not sensitive to the choices of

Δ1,Δ2 (the color bars are almost the same height) which further

verifies our method enhances the robustness of traffic forecasting.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed TrendGCN, a novel model for traffic

forecasting that extends the flexibility of GCNs and the distribution-

preserving capacity of generative and adversarial loss. Our ap-

proach addresses the challenges of capturing dynamics and main-

taining robustness by introducing dynamic adaptive graph gener-

ation and adversarial dynamic trend alignment. Extensive exper-

iments on six benchmarks and theoretical analyses demonstrate

the superiority of TrendGCN. For further work, we will study the

following two aspects: 1) investigating stronger methods to capture

dynamic spatial-temporal dependencies, e.g., the mixture of experts

(MoE); 2) exploring more effective approaches to enhance the ro-

bustness of traffic forecasting, e.g., taking higher-order derivatives

of time series.
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