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ABSTRACT
We propose a simple yet effective solution to tackle the often-

competing goals of fairness and utility in classification tasks. While

fairness ensures that the model’s predictions are unbiased and do

not discriminate against any particular group or individual, util-

ity focuses on maximizing the model’s predictive performance.

This work introduces the idea of leveraging aleatoric uncertainty

(e.g., data ambiguity) to improve the fairness-utility trade-off. Our

central hypothesis is that aleatoric uncertainty is a key factor for

algorithmic fairness and samples with low aleatoric uncertainty are

modeled more accurately and fairly than those with high aleatoric

uncertainty. We then propose a principled model to improve fair-

ness when aleatoric uncertainty is high and improve utility else-

where. Our approach first intervenes in the data distribution to

better decouple aleatoric uncertainty and epistemic uncertainty. It

then introduces a fairness-utility bi-objective loss defined based on

the estimated aleatoric uncertainty. Our approach is theoretically

guaranteed to improve the fairness-utility trade-off. Experimental

results on both tabular and image datasets show that the proposed

approach outperforms state-of-the-art methods w.r.t. the fairness-

utility trade-off andw.r.t. both group and individual fairness metrics.

This work presents a fresh perspective on the trade-off between

utility and algorithmic fairness and opens a key avenue for the

potential of using prediction uncertainty in fair machine learning.
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1 INTRODUCTION
Machine learning (ML) algorithms have been widely used in vari-

ous applications and are becoming increasingly popular in domains

such as computer vision, speech recognition, natural language pro-

cessing, and bioinformatics [33]. Despite their superior performance

in terms of prediction accuracy, they have often faced criticism for

lacking fairness and discriminating against marginalized groups [53,

23]. Fair ML aims to improve algorithmic fairness. Due to the often

competing relation between fairness and utility, a primary chal-

lenge in fair ML has been improving the fairness-utility trade-off

[23, 37]. Finding a solution that alleviates the trade-off and improves

both goals is often deemed impossible yet crucial to ensure that

ML algorithms are not only functional but also trustworthy when

making predictions [15, 14].

Prior work in fair ML improves training procedures based on

certain heuristics (e.g., using an adversary [54]) to achieve a better

trade-off [21, 9, 31] (see more works discussed in depth in Section 5).

In essence, doing so is analogous to finding a better hypothesis

to reduce uncertainty in areas where there is a lack of data or

knowledge [34, 18]. This kind of uncertainty is known as epistemic
ormodel uncertainty [1]. By contrast, this work proposes to explore

the connection between fairness and the other kind of predictive

uncertainty, known as aleatoric [1] or data uncertainty, arising from
the inherent ambiguity in the data.

Aleatoric uncertainty naturally relates to both algorithmic fair-

ness and utility. When data is ambiguous due to e.g., inherent noise

or entangled causal features, we humans tend to make decisions

relying on past experience and ambiguous information that might

reflect historical inequalities. Similarly, ML models are more likely

to make wrong predictions under high aleatoric uncertainty, and

even if we train on an infinite amount of data, the model would still

be uncertain about the prediction [26]. Therefore, our central hy-
pothesis is that aleatoric uncertainty is a crucial cause of algorithmic
unfairness, and samples with low aleatoric uncertainty are modeled
more accurately and fairly than those with high aleatoric uncertainty.
The relation between aleatoric uncertainty and fairness has evaded

investigation in the past since aleatoric uncertainty is associated

with the impossibility of improvement.

To bridge the gap, this work introduces a simple yet effective ap-

proach that leverages aleatoric uncertainty to improve the fairness-

utility trade-off with theoretical guarantees. In particular, given the

potential confounding effects related to the protected attribute, we

first propose effective distributional interventions to prevent noise

leakage in uncertainty estimation to enable the disentanglement of

aleatoric and epistemic uncertainties. Predictions with low uncer-

tainty tend to be fair while those with high uncertainty tend to be

unfair (Section 3.3). Thus, we explicitly model aleatoric uncertainty

in the training process: considering heteroscedastic uncertainty

(i.e., the uncertainty varies across samples), we prioritize utility

over fairness when dealing with samples that have low aleatoric

uncertainty, and prioritize fairness over utility for samples with

high aleatoric uncertainty. The representation of various protected

groups is heterogeneous in real-world data. Conventionally, the

ground truth labels provided are assumed to be correct. However,

ML models learn spurious correlations since subgroups of the pop-

ulation achieve different distributions of favorable or unfavorable

outcomes. This results in algorithmic bias. For our approach, we

draw a dichotomy between the solution space; (i) where our model

is likely to make the correct prediction, resulting in lower algo-

rithmic bias, and (ii) where it is likely to be uncertain, resulting in

higher algorithmic bias. By utilizing this knowledge during model

training, we can reduce the trade-off between utility and fairness

objectives. We evaluate our approach on well-established datasets

and compare it to the state-of-the-art baselines that include pre-,
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Figure 1: After the distributional intervention, GAIA improves the fairness-utility trade-off by balancing the utility (𝐿𝐶𝐸 ) and
fairness (𝐿𝑓 𝑎𝑖𝑟 ) loss using aleatoric uncertainty estimated by BNNs.

in-, and post-processing methods [4, 53]. Experimental results indi-

cate that the proposed approach achieves the best fairness-utility

trade-off in terms of both group fairness metrics [19, 53], and shows

potential for individual fairness.

In summary, we introduce several important contributions to

the field of fairness in ML:

(i) we provide the first empirical results regarding the relation-

ship among fairness, utility, and aleatoric uncertainty in clas-

sification tasks;

(ii) we propose a simple yet effective approach that leverages

aleatoric uncertainty to improve the fairness-utility trade-off

with a theoretical guarantee; and

(iii) we provide empirical evidence of its efficacy on real-world

datasets. Experimental results also highlight the importance

of distributional intervention for uncertainty estimation that

would otherwise lead to algorithmic unfairness.

2 METHODOLOGY
Problem Setting. We consider the standard fair binary classifica-

tion setting where the samples 𝑋 ∈ X ⊂ R𝑛 , labels 𝑌 ∈ Y = {0, 1},
and protected attribute 𝐴 ∈ {0, 1} are provided as the input. Our

objective is to train a classifier 𝑔 : R𝑛 → [0, 1] such that its predic-

tions 𝑌 ∈ [0, 1] are accurate i.e., 𝑃 (𝑌 |𝑋 ) = 𝑃 (𝑌 |𝑋 ), and fair across

different demographic groups. The proposed approach, Guided
Algorithm for Integrating Aleatory (GAIA), draws from the inher-

ent relation between fairness and aleatoric uncertainty due to data

ambiguity which leads a model to rely on biased priors. With high

aleatoric uncertainty, it becomes infeasible to improve the utility;

however, we can still improve fairness since it does not necessarily

rely on utility. We empirically and theoretically prove that GAIA

improves the fairness-utility trade-off. GAIA consists of three major

steps highlighted in the following subsections.

2.1 Distributional Intervention
TraditionalML algorithms use Empirical RiskMinimization (ERM) [17]

and rely on the independent and identically distributed (i.i.d.) as-
sumption. Prior work shows that distribution shift exacerbates both

fairness and predictive performance [48, 43]. In addition, due to

the skewed distributions for different protected groups, standard

uncertainty estimation methods such as BNNs cannot be directly

applied to estimating the model uncertainty given its sensitivity

to data imbalance [42]. To assuage this issue, we intervene in the

data distribution and identify two instances of data bias that can be

controlled: the label distribution is skewed resulting in the model

relying on (i) the prior distribution of the label (Label Shift), and (ii)
the spurious correlation between the protected attribute and the la-

bel (Attribute Label Shift). An example for (i) is when the majority of

the data has a specific label (e.g., non-fraud transactions in fraud de-

tection). Here, a trained model may rely on shortcut learning [22]

to predict the majority label. Similarly, for (ii), a trained model

may rely on the protected attribute for prediction if it displays a

significant correlation with the label. If the protected attribute is

correlated with the label, the non-protected covariates affected by

the protected attribute also resonate with the correlation. Thus, if

we intervene in the correlation between the protected attribute and

the label, it also results in the intervention of the factors resonating

with the protected attributes in the non-protected covariates.

Distribution intervention can mitigate unfairness and lead to

better uncertainty disentanglement. Note that this step can be re-

placed with other heuristics for achieving better utility and fairness

as highlighted in Section. 5. This is because using a good heuris-

tic reduces epistemic uncertainty, leading to better estimation of

aleatoric uncertainty.

2.1.1 Label Shift. Label shift aims to change the distribution of

the labels in every mini-batch during training. This will result in

a model that does not favor the majority label in the original data

distribution. Formally, let (𝑋,𝑌 ) ∈ D be instances in the dataset

D, where 𝑋 denotes the feature matrix and 𝑌 ∈ {0, 1} denotes the
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binary label vector. We define the sets of indices 𝑀1 = {𝑖 ∈ D |
𝑌𝑖 = 1} and 𝑀0 = {𝑖 ∈ D | 𝑌𝑖 = 0}, corresponding to samples

with favorable (e.g., low credit risk) and unfavorable outcomes,

respectively. |𝑀1 | = 𝑛1 and |𝑀0 | = 𝑛0.

A random percentage of favored samples, 𝑝 , is determined by

sampling randomly from the uniform distributionU(0, 1). We then

define the scaled sets of indices 𝑀
′
1
= {𝑖 ∈ 𝑀1 | 𝑝} and 𝑀

′
0
=

{𝑖 ∈ 𝑀0 | 1 − 𝑝}. These sets are used to calculate the probability

of selecting each sample, 𝑃1
𝑖
=

[𝑖∈𝑀 ′
1
]

𝑛1

, 𝑃0
𝑖
=

[𝑖∈𝑀 ′
0
]

𝑛0

. A batch of

size𝑚 is selected from the dataset by randomly picking samples

without replacement according to the probabilities 𝑃𝑖 . We denote

the set of indices of the selected samples by 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑚} ⊂ D.

This results in a counterfactual batch of training samples with the

intervention of label distribution (LabelShift, LS).

2.1.2 Attribute Label Shift. Intervening only on the label dis-

tribution may be insufficient to reduce the spurious correlations

in the data. We further intervene on the protected attribute to re-

solve its confounding effect. However, this is often infeasible with

observational data. Therefore, we introduce an estimation of in-

tervention by changing the correlation of protected attribute and

label distributions across different mini-batches during training.

The underlying assumption is that there is a sufficient number of

non-causal factors in the covariates such that the interventional

changes are large enough for the model to distinguish the non-

causal factors from the causal ones. Thus, Attribute Label Shift

aims to intervene on both the protected attribute 𝑎 and the label

𝑦. Let 𝑀𝑝1 = {𝑖 ∈ D | 𝑎𝑖 = 1} and 𝑀𝑝0 = {𝑖 ∈ D | 𝑎𝑖 = 0} be the
sets of indices for samples belonging to the protected group and

non-protected group, respectively. 𝑛𝑝1 = |𝑀𝑝1 | and 𝑛𝑝0 = |𝑀𝑝0 |.
A random percentage 𝑝1 of samples from the protected group is

determined by sampling randomly from the uniform distribution

U(0, 1). We then define the scaled sets of indices𝑀′
𝑝1

= {𝑖 ∈ 𝑀𝑝1 |
𝑝1} and𝑀′

𝑝0
= {𝑖 ∈ 𝑀𝑝0 | 1 − 𝑝1}. These sets are used to calculate

the probability of selecting each sample 𝑃𝑝,𝑖 from the protected or

non-protected group, 𝑃𝑝1,𝑖 =
[𝑖∈𝑀 ′

𝑝1
]

𝑛
𝑝1

, 𝑃𝑝0,𝑖 =
[𝑖∈𝑀 ′

𝑝0
]

𝑛
𝑝0

. Similarly,

the probability of selecting each sample 𝑃𝑓 ,𝑖 from the favored or

unfavored class is defined as 𝑃1,𝑖 =
[𝑖∈𝑀 ′

1
]

𝑛1

, 𝑃0,𝑖 =
[𝑖∈𝑀 ′

0
]

𝑛0

. The final

probability of selecting each sample is the product, 𝑃𝑖 = 𝑃𝑝,𝑖 ∗ 𝑃𝑓 ,𝑖 .
This gives us a batch of training samples with interventions on the

correlation of protected attribute and label (AttrLabelShift, ALS).

2.2 Decoupling Aleatoric and Epistemic
Uncertainty

GAIA uses BNN via backpropagation (Bayes by Backprop) [7] to

conveniently decouple aleatoric from epistemic uncertainty while

also maintaining its ability to be integrated into existing neural

architectures. Bayes by Backprop is computationally efficient and

theoretically sound. Given 𝐶 classes, aleatoric uncertainty is for-

mulated as the expected entropy for the prediction [1, 26],

𝐻
alea

(x) =
∫
𝜃

𝐶∑︁
𝑖

−𝑝 (𝑦𝑖 |x, 𝜃 ) log𝑝 (𝑦𝑖 |x, 𝜃 ) 𝑑𝜃, (1)

where 𝑝 (𝑦𝑖 |𝑥, 𝜃 ) is the predictive probability of the 𝑖-th class from

the model parameterized by 𝜃 . Epistemic uncertainty is represented

by the model’s predictive variance [1],

𝜎2
epi

(x) = Var𝑗 [𝑝 (𝑦 |x, 𝜃 𝑗 )], (2)

where 𝑗 denotes the 𝑗-th sample of the BNN weights. BNN involves

finding the maximum a posteriori (MAP) weights:

𝜃𝑀𝐴𝑃 = argmax

𝜃

log 𝑃 (𝜃 |D) = argmax

𝜃

𝑃 (D|𝜃 ) + log 𝑃 (𝜃 ). (3)

The final prediction of BNNs is the expected value of the predicted

label 𝑦 for an unseen sample 𝑥 over the posterior distribution of the

weights, 𝑃 (𝜃 |D) i.e., 𝑃 (𝑦 |𝑥) = E𝑃 (𝜃 |D) [𝑃 (𝑦 |𝑥, 𝜃 )]. We can then

utilize each candidate prediction, 𝑃 (𝑦 |𝑥, 𝜃 𝑗 ), where 𝜃 𝑗 ∼ 𝑃 (𝜃 |D)
to efficiently evaluate both aleatoric and epistemic uncertainties

using Eq. 1 and 2, respectively.

For tractable estimation, the common practice in variational

inference estimates the posterior using a surrogate, 𝑞(𝜃 |𝑤), by min-

imizing the Evidence Lower Bound (ELBO) loss [52]. Further, we

assume heteroscedastic uncertainty, i.e., uncertainty varies across

different samples [10], given its practicability. Hence, the uncer-

tainty metrics between predictions are on a per-sample basis. By ex-

plicitly modeling aleatoric and epistemic uncertainty, GAIA traces

whether the uncertainty stems from ambiguity or lack of data.

2.3 Improving Fairness-Utility Trade-off
The goal of GAIA is leveraging aleatoric uncertainty to bridge the

gap between fairness and accuracy based on the hypothesis that

samples with low aleatoric uncertainty aremodeledmore accurately

and fairly than those with high uncertainty. Thus, to achieve a better

trade-off, we design a model to improve fairness when aleatoric

uncertainty is high and improve utility elsewhere. We first describe

the function 𝛽 (𝑢) : R𝑚 → R𝑚 that assigns weights to samples

based on the estimated aleatoric uncertainty 𝑢:

𝛽 (𝑢) =
(

𝑢 − 𝑢𝑚𝑖𝑛

𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛

)𝑘
, (4)

where the hyper-parameter 𝑘 helps to weigh one objective in favor

of the other, and 𝑢𝑚𝑖𝑛 and 𝑢𝑚𝑎𝑥 are two hyperparameters to nor-

malize the weights. The overall objective function of GAIA (Eq. 7)

is a bi-objective loss corresponding to both utility and fairness. It

maximizes utility for the samples with low aleatoric uncertainty;

for samples with high aleatoric uncertainty, there is little improve-

ment to be made in terms of utility due to the inherent ambiguity

of the data. Thus, the aim of GAIA is to steer the objective toward

improving the fairness of samples with high aleatoric uncertainty.

Given a batch of training data S ⊆ D and a classifier parame-

terized by 𝜃 , the utility loss is a weighted cross-entropy loss:

L𝐶𝐸 (S, 𝛽) = − 1

|S|
∑︁
𝑖∈S

𝛽𝑖
(
𝑦𝑖 log(𝑝 (𝑦𝑖 |𝑥𝑖 , 𝑢𝑖 ))+

(1 − 𝑦𝑖 ) log(1 − 𝑝 (𝑦𝑖 |𝑥𝑖 , 𝑢𝑖 ))
)
,

(5)

where 𝑦𝑖 is the label for sample 𝑥𝑖 and 𝛽𝑖 = 𝛽 (𝑢𝑖 ). The conditioning
on prediction 𝑝 (𝑦𝑖 |𝑥𝑖 , 𝑢𝑖 ), allows the model to make an informed

choice based on the uncertainty. We define fairness as the difference

in the mean cross-entropy between instances of different protected

attributes. We show in Section 3 that our proposed metric acts as a
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feasible surrogate to cover common group fairness metrics. Let S0

and S1 be the sets of samples whose protected attribute is 0 and 1,

respectively. We define fairness as follows:

L𝑓 𝑎𝑖𝑟 (S, 1−𝛽) = |L𝐶𝐸 (S0, 1−𝛽)−L𝐶𝐸 (S1, 1−𝛽) | S0∪S1 = S.
(6)

The objective function of GAIA, L, is the sum of Eq. 5 and Eq. 6:

L(S, 𝛽) = L𝐶𝐸 (S, 𝛽) + L𝑓 𝑎𝑖𝑟 (S, 1 − 𝛽) . (7)

3 THEORETICAL GUARANTEE TO IMPROVE
THE TRADE-OFF

In this section, we theoretically prove GAIA can guarantee to im-

prove the fairness-accuracy trade-off through the following three

key hypotheses: (i) as aleatoric uncertainty increases, accuracy will

decrease; (ii) we can improve fairness in regions of high aleatoric

uncertainty; and (iii) binary cross-entropy (BCE) difference across
separate protected groups (Eq. 6) is proportional to common group

fairness metrics such as equal opportunity difference (EOD) and av-

erage odds difference (AOD). The proof consists of two propositions.

First, we show divergence on the optimal utility under aleatoric

uncertainty. Second, we show the convergence for fairness under

BCE difference between protected and non-protected groups. As

per convention from the problem setting and for the sake of sim-

plicity, we consider the binary classification case. We use AOD for

illustration and similar formulation extends to other group fairness

metrics such as EOD.

3.1 Relation between Aleatoric Uncertainty and
Accuracy

Theorem 3.1. As the aleatoric uncertainty increases, the model’s
accuracy approaches random chance:

lim

E[𝐻 [𝑞 (𝑦 |𝑥 ) ] ]→inf

accuracy =
1

𝐶
,

where 𝐶 is the number of classes.

Proof of Theorem 3.1. We first define the predictive entropy for the

model. Let 𝑝 (𝑦 |𝑥) be the predicted probability distribution of the

target class 𝑦 given the input instance 𝑥 . In a binary classification

problem where 𝑦 ∈ {0, 1}, the expected predictive entropy is the

average predictive entropy over all instances in the dataset. This

represents the aleatoric uncertainty (Eq. 1).

Next, we will show that the lower bound on the accuracy ap-

proaches random chance as the expected predictive entropy in-

creases. In binary classification, random chance corresponds to an

accuracy of 1/2, suggesting that the model is not better than ran-

dom guessing. We first derive a lower bound on the accuracy using

Fano’s inequality [45]. Fano’s inequality relates the conditional

probability of error in predicting the target class 𝑦 given the input

instance 𝑥 with the mutual information between 𝑦 and 𝑥 :

Lemma 3.2 (Fano’s inqality).

𝐻 (𝜖) + 𝜖 log(𝐶 − 1) ≥ 𝐻 (𝑌 |𝑋 ),

where 𝐻 (𝜖) is the binary entropy function of 𝜖 , the probability of

error in predicting the target class, and 𝐻 (𝑌 |𝑋 ) is the conditional
entropy of the true conditional probability distribution. In a binary

classification problem, 𝐶 = 2 and we can simplify Fano’s inequality

as follows:

𝐻 (𝜖) + 𝜖 log(1) ≥ 𝐻 (𝑌 |𝑋 ). (8)

Since log(1) = 0, the inequality becomes:

𝐻 (𝜖) ≥ 𝐻 (𝑌 |𝑋 ). (9)

The probability of error 𝜖 is related to the accuracy by the following

relationship:

𝜖 = 1 − Accuracy. (10)

We can then reformulate Fano’s inequality in terms of accuracy:

𝐻 (1 − Accuracy) ≥ 𝐻 (𝑌 |𝑋 ). (11)

Since the binary entropy function 𝐻 (𝑝) is a monotonically increas-

ing function for 0 ≤ 𝑝 ≤ 1/2 and a monotonically decreasing

function for 1/2 ≤ 𝑝 ≤ 1, the maximum entropy is achieved when

𝑝 = 1/2. Thus, the entropy of the error probability is maximized

when the accuracy is at random chance:

𝐻 (1 − 1/2) = 𝐻 (1/2) = 1. (12)

Therefore, as the expected predictive entropy E[𝐻 [𝑞(𝑦 |𝑥)]] in-

creases, the lower bound on the accuracy given by Fano’s inequal-

ity approaches the maximum entropy state, which corresponds to

random chance.

3.2 Relation between BCE Loss Difference and
Fairness

Theorem 3.3. The expected difference in BCE losses between the
protected and non-protected groups defined in Eq. 6 is proportional to
the Average Odds Difference (AOD).

E[Δ𝐿(𝑦)] = 1

𝑁1

∑︁
𝑖∈𝐴1

Δ𝐿(𝑦𝑖 ) −
1

𝑁2

∑︁
𝑗∈𝐴2

Δ𝐿(𝑦 𝑗 ) ∝ AOD.

Proof of Theorem 3.3. Let us denote the protected attribute instances
as 𝐴1 and 𝐴2. Let 𝑝𝑖 be the predicted probability of the positive

class 𝑦 = 1 for instances in the group with protected attribute 𝐴𝑖 ,

where 𝑖 ∈ {1, 2}.
Proposition 3.1. The Binary Cross-Entropy (BCE) loss for in-

stances with protected attribute 𝐴𝑖 is given by

𝐿𝑖 (𝑦, 𝑝𝑖 ) = −𝑦 log(𝑝𝑖 ) − (1 − 𝑦) log(1 − 𝑝𝑖 ).
This proposition follows directly from the definition of BCE

for binary classification problems. For group fairness metrics, we

are concerned with True Positive Rate (TPR𝑖 ) difference and False

Positive Rate (FPR𝑖 ) difference between different groups.

Lemma 3.4 (Average Odds Difference). The Average Odds Dif-
ference (AOD) between group 𝐴1 and group 𝐴2 is given by

AOD =

��TPR1 − TPR2
�� + ��FPR1 − FPR2

��
2

.

Now, let us analyze the difference between the BCE losses for

the protected (𝐿1 (·)) and non-protected (𝐿2 (·))groups:
Lemma 3.5. The difference in BCE losses between the two protected

attribute groups 𝐴1 and 𝐴2 can be expressed as
Δ𝐿(𝑦) = 𝐿1 (𝑦, 𝑝1) − 𝐿2 (𝑦, 𝑝2)

= −𝑦 log
(
𝑝1

𝑝2

)
− (1 − 𝑦) log

(
1 − 𝑝1

1 − 𝑝2

)
.
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Let 𝑁1 and 𝑁2 be the total number of instances in the protected

𝐴1 and non-protected groups 𝐴2, respectively. To prove Theo-

rem 3.3, we compute the expected differences in BCE losses for

the true positive and false positive cases separately.

3.2.1 Equal Opportunity Difference and BCE Difference.
First, consider the true positive cases where 𝑦 = 1. In this case,

Δ𝐿(𝑦 = 1) = − log( 𝑝1𝑝2 ) (from Lemma 3.5). The expected difference

in BCE losses for true positives in both groups can be expressed as:

E[Δ𝐿(𝑦 = 1)] = 1

𝑁1

∑︁
𝑖∈𝐴1,𝑦𝑖=1

− log

(
𝑝1

𝑝2

)
− 1

𝑁2

∑︁
𝑗∈𝐴2,𝑦 𝑗=1

− log

(
𝑝1

𝑝2

)
∝
��
TPR1 − TPR2

�� = 𝐸𝑂𝐷.

(13)

3.2.2 Average Odds Difference and BCE Difference. Next,
consider the false positive cases where 𝑦 = 0. In this case, Δ𝐿(𝑦) =
− log( 1−𝑝1

1−𝑝2 ). The expected difference in BCE losses for false posi-

tives in both groups can be expressed as:

E[Δ𝐿(𝑦 = 0)] = 1

𝑁1

∑︁
𝑖∈𝐴1,𝑦𝑖=0

− log

(
1 − 𝑝1

1 − 𝑝2

)
− 1

𝑁2

∑︁
𝑗∈𝐴2,𝑦 𝑗=0

− log

(
1 − 𝑝1

1 − 𝑝2

)
∝
��
FPR1 − FPR2

��.
(14)

Finally, by combining the expected differences in BCE losses for true

positive (Eq. 13) and false positive (Eq. 14) cases with Lemma 3.4,

we get:

E[Δ𝐿(𝑦)] = E[Δ𝐿(𝑦 = 1)] + E[Δ𝐿(𝑦 = 0)]
∝
��
TPR1 − TPR2

�� + ��
FPR1 − FPR2

�� = AOD × 2.
(15)

Thus, Eq. 15 shows that the expected difference in BCE losses

between the two protected attribute groups is proportional to AOD.

This implies that minimizing the difference in BCE losses can lead

to fairer outcomes with respect to AOD. EOD is a subset of AOD as

demonstrated by Eq. 13.

3.2.3 A Closer Look. Here, we elaborate on why Eq. 13 and Eq.

15 hold. From Lemma 3.5, for the true positive cases where 𝑦 = 1,

we have Δ𝐿(𝑦 = 1) = − log

(
𝑝1
𝑝2

)
. We first analyze the relationship

between the expected difference in BCE losses and the TPR for the

two protected attribute groups.

Denote the total number of true positive instances for each group

as 𝑁𝑇𝑃
1

and 𝑁𝑇𝑃
2

, and let TPR1 and TPR2 be the true positive rates

for the groups 𝐴1 and 𝐴2, respectively. The expected difference in

BCE losses for the true positive instances is represented as

E[Δ𝐿(𝑦 = 1)] = 1

𝑁𝑇𝑃
1

∑︁
𝑖∈𝐴1,𝑦𝑖=1

− log

(
𝑝1

𝑝2

)
− 1

𝑁𝑇𝑃
2

∑︁
𝑗∈𝐴2,𝑦 𝑗=1

− log

(
𝑝1

𝑝2

)
.

(16)

We reformulate Eq. 16 using TPR values as follows:

E[Δ𝐿(𝑦 = 1)] = 1

TPR1𝑁1

∑︁
𝑖∈𝐴1,𝑦𝑖=1

− log

(
𝑝1

𝑝2

)
− 1

TPR2𝑁2

∑︁
𝑗∈𝐴2,𝑦 𝑗=1

− log

(
𝑝1

𝑝2

)
.

(17)

Eq. 17 indicates that as the difference between TPR1 and TPR2

increases, E[Δ𝐿(𝑦 = 1)] also increases. This means that if there is a

notable difference in the TPR between the two groups, it will result

in a substantial dissimilarity in the BCE losses as well. Therefore,

we can conclude that the expected difference in BCE losses for

the true positive cases, E[Δ𝐿(𝑦 = 1)], is indeed proportional to

the difference in TPR between the two protected attribute groups.

Similarly, we can establish the proportionality of the expected dif-

ference in BCE losses for false positive cases, E[Δ𝐿(𝑦 = 0)], to
the difference in FPR between the groups. Combining the results

for true positive and false positive cases, we demonstrate that the

expected difference in BCE losses between the two protected at-

tribute groups is proportional to the AOD, as stated in Theorem

3.3. In other words, the expected difference in BCE losses for true

positive cases captures the difference in TPR and FPR between the

two protected attribute groups, which is an essential component of

common group fairness metrics such as EOD and AOD.

3.3 On the Fairness-Utility Trade-off
Under Theorem 3.3, we show that by minimizing the BCE loss

difference in regions of high aleatoric uncertainty, we indirectly

improve group fairness, as reducing the loss entails minimizing the

disparities across different groups. In these regions, the model’s

predictions are more susceptible to biases and disparities since it

relies on learned priors, leading to unfair predictions. By prioritizing

fairness in these regions, we aim to mitigate the adverse effects of

aleatoric uncertainty on marginalized groups. As per Theorem 3.1,

it is not feasible to improve accuracy in such regions.

For regions of high confidence (i.e., low uncertainty), accuracy

converges to 1 (due to the law of large numbers). Thus, when the

uncertainty is low, fairness improves. We can achieve fairness by

optimizing utility. Based on Lemma 3.4, we have

lim

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦→1

𝐴𝑂𝐷 =

��
TPR1 − TPR2

�� + ��
FPR1 − FPR2

��
2

=
|1 − 1| + |0 − 0|

2

= 0.

(18)

According to Theorems 3.1 and 3.3, GAIA targets utility and

fairness in the respective regions where the other metric is non-

conflicting. This results in the improvement of both utility and

fairness while minimizing the trade-off.

4 EXPERIMENTS
In this section, we show empirical evidence of the effectiveness of

GAIA. We aim to answer the following research questions:

• RQ1: How does GAIA fare against the state-of-the-art baselines

in terms of the fairness-utility trade-off?

• RQ2: How does empirical evidence support our hypothesis re-

garding aleatoric uncertainty, fairness, and utility?
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Figure 2: Comparison of Group (left) and Individual (right) Fairness for the Adult and German Datasets. Various approaches
fall on different places on the Pareto front representing the fairness-utility trade-off.

• RQ3:While designed for group fairness, what role does GAIA

play in improving individual fairness?

4.1 Experimental Setup
Experiments are conducted for both tabular and image datasets.

For tabular data, we compare GAIA with seven baselines including

common pre-processing, in-processing, and post-processing ap-

proaches. We use two benchmark tabular datasets and four fairness

metrics including both group and individual fairness metrics. In

particular, for RQ. 1-2, we use EOD and AOD as the group fairness

metrics. We use Generalized Entropy Error (GE) [47] and Consis-

tency Score (CS) [53] to measure individual fairness for RQ. 3. For
utility measure, we use balanced accuracy, which is convention-

ally used in fairness literature since it captures balanced protected

groups. For the image classification task, we use one benchmark

dataset and two additional state-of-the-art approaches as baselines

to validate the generalizability of GAIA.

Datasets. The benchmark tabular datasets and image dataset for

fair machine learning are detailed below:

• Adult [49]: This dataset consists of multiple features ranging

from work class, age, education, and sex. Each instance has a

binary label based on whether an individual’s income exceeds

$50,000/yr. This dataset consists of 48,842 samples.

• German [25]: This dataset consists of features related to the

financial status of individuals. The label represents whether the

attributes represent good or bad credit risk. This dataset consists

of 1,000 samples.

• CelebA [35]: This dataset contains aligned faces of celebrities

with annotations of various attributes, such as gender, age, ex-

pression, hair type, and attractiveness. This dataset contains

202,599 face images from 10,177 celebrities.

Gender is considered as the protected attribute in each dataset.

Features in tabular datasets are binarized, preprocessed, and scaled

following Bellamy et al. [4]. Preprocessing for CelebA follows the

conventions established by Chuang and Mroueh [16].

Baselines. For tabular data, we compare GAIA against seven well-

established baseline approaches. These approaches can be divided

into pre-processing, in-processing, and post-processing methods.

• Reweighting [27]: Reweighing is a pre-processing approach that
adjusts the weight assigned to examples in each (group, label)

pairing to promote fairness prior to classification.

• Learning Fair Representations (LFR) [53]: A preprocessing
technique aimed at discovering a latent representation that effec-

tively encodes the data while concealing information pertaining

to protected attributes.

• Optimized Preprocessing [9]: Optimized preprocessing is a

pre-processing approach that employs a probabilistic transforma-

tion to modify both features and labels in the data while con-

sidering fairness with respect to groups, minimizing individual

distortion, and preserving data integrity.

• Adversarial Debiasing [54]: Adversarial debiasing is an in-
processing technique that trains a classifier to achieve high pre-

diction accuracy while simultaneously reducing the adversary’s

capacity to infer protected attributes from the predictions. This

results in a fair classifier, as the predictions are rendered devoid

of any group discrimination information that could be leveraged

by the adversary.

• MetaFair [11]: An in-processing meta-algorithm for fair classifi-

cation that handles a broad range of fairness constraints, includ-

ing non-convex linear fractional constraints such as predictive

parity.



Fairness through Aleatoric Uncertainty

• Calibrated Equalized-Odds [41]: A post-processing technique

which uses the calibrated predicted scores to adjust the labels

towards better equalized-odds.

• Reject Option Classification (ROC) [28]: A post-processing
technique that balances favorable outcomes between privileged

and unprivileged groups by altering the decision boundary in

regions of the highest uncertainty.

To further examine the effectiveness of the incorporated aleatoric

uncertainty, we compare GAIA against its two sub-module variants:

BNN LS is the uncertainty estimation component where a BNN is

trained using Label Shift (Section 2.1.1), and BNN ALS where it is

trained using Attribute Label Shift (Section 2.1.2).

The baseline methods for tabular data are not designed for image

modality. Thus, for fair comparisons, we consider the following

two state-of-the-art approaches for fair image classification:

• FairBatch: [44] FairBatch seeks to improve the batch selection

process through bi-level optimization such that the downstream

model achieves improved fairness.

• FairMixup [16]: FairMixup uses data augmentation to improve

the fairness-utility tradeoff by making the underlying model

more generalizable through regularization on interpolates.

Implementation Details. For the sake of simplicity in our experi-

ments, we employ a logistic regression model, which is essentially a

multi-layer perceptron (MLP) without any hidden layers. The uncer-

tainties utilized for training the classification model are generated

using a BNN that consists of three hidden layers. The activation

functions employed for the BNN and MLP are LeakyReLU [36]

and ReLU [2], respectively. When necessary, we utilize the Adam

optimizer [29]. Both the BNN and MLP are designed using the JAX

framework [8] and Oryx [20] for sampling from distributions. For

image classification, ResNet-18 [24] is used as the backbone for

both the BNN and the final classifier. We provide the source code

for our implementation
1
.

To select the best model from training, we use a simple approach:

During the training phase, between each mini-batch, we calcu-

late the smoothed training prediction accuracy by using a run-

ning average. We select the model parameters corresponding to

the best-smoothed accuracy during training for inference. For the

baselines, we use standard implementations provided by the AI

Fairness 360 Toolkit [4] using the recommended hyper-parameters

where needed. For image baselines, we follow the open-source code

provided by the authors, respectively [44, 16].

4.2 Experimental Results
Tabular Data.We present the experimental results forRQ1 regard-
ing the trade-off between models’ utility and fairness. We visualize

the comparison of Pareto fronts regarding group fairness in Fig. 2

(left). Our model displays pareto dominance in most of the cases

overall. We observe that the in-processing approaches (Adversarial

Debiasing, MetaFair) prefer fairness over utility. In contrast, pre-

(Reweighting, LFR, Optimized Preprocessing) and post-processing

(Calibrated EO, ROC) approaches have a more balanced trade-off.

We also observe a difference in the trade-off across the Adult and

German datasets due to variations in their sample sizes. The Adult

1
https://github.com/aniquetahir/GAIA

FairBatch FairMixup GAIA

Bal Acc ↑ 0.562 (0.138) 0.549 (0.035) 0.602 (0.065)
AOD ↓ 0.047 (0.105) 0.041 (0.032) 0.108 (0.068)

EOD ↓ 0.035 (0.077) 0.044 (0.040) 0.021 (0.018)
GE ↓ 0.086 (0.070) 0.260 (0.144) 0.079 (0.022)

Table 1: GAIA shows an overall improvement over baselines
w.r.t. balanced accuracy, group (AOD and EOD), and individ-
ual fairness (GE) metrics on CelebA image dataset.

dataset (∼48k samples) is significantly larger compared to the Ger-

man dataset (1,000 samples). This may cause each method to per-

form distinctly from the perspective of the fairness-utility trade-off.

For the Adult dataset, we see a smaller disparity between the

performance for versions of our approach using Label Shift (LS) and

Attribute Label Shift (ALS). We hypothesize that this is due to the

larger size of the Adult dataset compared to the German dataset. The

larger dataset size allows the model to make better generalizations

and reduce the uncertainty overall. Thus, the shift used in the BNN

training is less relevant. By comparison, we see a more diverse

performance for the German dataset. The ALS counterparts of both

BNN and GAIA outperform LS in terms of utility. However, we see

slightly better fairness from the LS counterparts. We believe this is

due to the LS versions falling closer towards random chance which

increases fairness since instances of the protected attribute are

treated equally random. For GAIA LS and GAIA ALS, the disparity

between fairness is less pronounced since both versions perform

comparatively better than random chance.

Fig. 2 also illustrates the value of uncertainty-guided training

in GAIA which considers a weighted sum of utility and fairness

objectives. Even though BNN with distribution shift (BNN LS and

BNN ALS) by itself shows competitive performance compared to

the baselines, GAIA consistently outperforms the BNN in terms of

utility while matching it in terms of fairness. This improvement

is more pronounced in the Adult dataset, where there are more

samples for GAIA to leverage the disparity between ambiguous and

non-ambiguous subsets of data. Our results highlight the viability

of GAIA in improving the fairness-utility trade-off (RQ1).
Image Data. To analyze the generalizability of our approach, we

also evaluate its performance in the image domain using the Celebrity

Faces dataset (CelebA) [35]. We do not report the Consistency Score

for fair image classification since the consistency distance in image

data at a pixel level is affected by spurious features, such as the

background. We highlight our results in Table 1.

Formulti-objective optimization, an outcome is considered Pareto

dominant if both utility and fairness are improved [5]. GAIA is

Pareto dominant over FairMixup and FairBatch for all compared

fairness metrics except for AOD. FairBatch is Pareto dominant in

the same metrics over FairMixup. While FairMixup is not Pareto

dominant for AOD since it has lower accuracy, it shows superior

AOD performance. We hypothesize this is due to its predictions

being closer to random chance since random predictions are con-

sidered fair under AOD.
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Figure 3: Pruning the most uncertain samples leads to an
improvement in both utility and fairness for the Adult and
German datasets. We make similar findings across datasets
and various versions of our approach.

FairBatch uses meta-optimization of the batch selection process

to make the underlying model training to be fair. GAIA uses a sim-

ilar idea for batch selection using Label Shift (LS), and Attribute

Label Shift (ALS). However, while our approach explicitly inter-

venes in the label distribution and the attribute-label correlation,

FairBatch uses an outer loss that attempts to train the model in

batch selection. In addition, GAIA is capable of premonition re-

garding uncertainty, allowing it to make informed predictions that

lead to a better trade-off. In contrast, Fair-Mixup uses data aug-

mentation. The counterfactuals generated by data augmentation

through interpolation may not reflect reality. However, when the

batch selection process is changed in FairBatch and GAIA, each

sample comes from the training data. Thus, while the data distribu-

tion changes, each sample reflects a real sample. This explains the

superior performance of both FairBatch and GAIA over FairMixup.

4.3 Relation among Aleatoric Uncertainty,
Utility, and Fairness

To test our central hypothesis that samples with high aleatoric

uncertainty contribute more to algorithmic unfairness and predic-

tion errors, we conduct additional experiments for tabular data to

examine how GAIA performs in terms of utility and fairness when

removing samples with high aleatoric uncertainty (RQ2). Fig. 3
shows results for pruning samples with high aleatoric uncertainty.

For both Adult and German datasets, we observe improved accuracy

and EOD as we filter out the most uncertain predictions. Group

fairness metrics, such as EOD and AOD, consider the difference

between the TPR and FPR. When the predictions completely match

the ground truth, these metrics approach 1 and 0, respectively, for

all instances of the protected group. The result is an improvement

in both accuracy and fairness. Thus, if we consider the samples with

the most confident predictions, the likelihood of improving both

utility and fairness increases. This serves as sound empirical evi-

dence in favor of our main hypothesis which targets the dichotomy

between samples based on aleatoric uncertainty for shifting focus

between fairness and utility.

4.4 Individual Fairness
Our fairness notion is inspired by group fairness metrics since it

optimizes over the cross-entropy difference for separate instances of

the protected attribute. This raises concern over its applicability for

individual fairness (RQ3). However, empirical evidence from both

the tabular data (Fig. 2, right) and image data (Table 1) shows that

GAIA also performs well on the trade-off when individual fairness

metrics are of particular interest. To understand these results, we

again consider the dichotomy between regions of high and low

aleatoric uncertainty and the two individual fairness metrics we

used (GE and CS).

The Generalized Entropy Error (GE) is a metric that quantifies

the entropy index within each group. When we have low aleatoric

uncertainty within a single group, the predictor tends to closely

match the ground truth for each sample. This is because higher

confidence increases the likelihood of a prediction aligning with

the actual label. On the other hand, when the aleatoric uncertainty

is high, GAIA aims to optimize for equal cross-entropy between

groups, which contributes to improved fairness. However, it is

important to note that in scenarios where aleatoric uncertainty is

high, the labels themselves are inherently noisy. Consequently, the

predictive output for each sample tends to be closer to a random

assignment. Thus, at an individual level, samples are treated equally.

The Consistency Score (CS) is ametric that evaluates how a classifier

treats its 𝑘 nearest neighbors. In essence, it quantifies the impact

of high aleatoric uncertainty, which signifies increased variability

among the labels of neighboring samples. As this noise is considered

theoretically irreducible, our hypothesis is that leveraging aleatoric

uncertainty can effectively identify areas where consistency can be

enhanced. This approach offers insights into the improved empirical

performance observed in relation to this metric.

4.5 Summary
Since prior works focused on epistemic uncertainty, we study the

connection between aleatoric uncertainty and fairness. We show

how our approach compares against both group and individual fair-

ness. The results complement the findings by Binns [6], who suggest

that group and individual fairness may not always be conflicting

objectives. Our experiments also suggest that ALS introduces an

improvement over LS. In addition, we observe that GAIA outper-

forms BNN consistently in terms of utility, while the BNN has

a minuscule advantage in terms of fairness. BNN has a coherent

representation due to the regularization effect of the variational

inference on the encoding space, where the encoder must output

a probabilistic distribution over the latent variables that approxi-

mates the true posterior. This encourages similar samples to have

similar encodings, leading to a more organized and smoother la-

tent space representation. Therefore, it is not surprising that BNNs

demonstrate high performance on individual fairness metrics, as

they evaluate the consistency in the treatment of similar covariates.

Both GAIA and BNN outperform baseline approaches consistently

in terms of the fairness-utility trade-off. Results over both image

and tabular datasets show the generalizability of GAIA. Different

architectures can be plugged in and sampling from a distribution

over the model weights can be used to measure uncertainty.

5 RELATEDWORK
Current work on fairness ML relies on identifying and mitigat-

ing spurious correlations or reducing epistemic uncertainty. We

highlight the novelty of our approach in comparison.



Fairness through Aleatoric Uncertainty

5.1 Bias Mitigation and Fairness
There are three main types of methods for reducing bias in machine

learning, which depend on where in the model training process

they are applied: (i) pre-processing, (ii) in-processing, and (iii) post-

processing. In addition, there are various metrics for evaluating

fairness that can be grouped into group fairness or individual fair-

ness metrics. Preprocessing methods [27, 53, 21, 9, 12] aim to reduce

bias by modifying the data, labels, or sample importance in the

dataset. For example, the Disparate Impact Remover [21] technique

attempts to adjust the label distribution to ensure that protected

attributes have the same median outcome. The Learning Fair Repre-

sentations (LFR) [53] approach creates a latent representation of the

data to obscure protected attributes. In-processing methods [3, 54,

13] rely on the model architecture to achieve fairness. Adversarial

Debiasing [54] involves an adversary that tries to predict the pro-

tected attribute. The goal is to make the best predictions in a way

that prevents the adversary from distinguishing the protected at-

tribute. Post-processing methods [28, 23, 41] adjust the predictions

of a trained model after inference to make them unbiased. There

are various approaches with different debiasing objectives. Some

methods target specific fairness metrics, such as Calibrated Equal

Odds Difference [41], which aims to minimize Equalized Odds.

5.2 Uncertainty based Learning
Deep Learning has achieved unprecedented success in making ac-

curate predictions in various domains; therefore, it is increasingly

important to evaluate the reliability and uncertainty of AI systems

before deployment. The principles of uncertainty play an impor-

tant role in AI settings such as concrete learning algorithms [38]

and active learning [40]. There are two main types of uncertainty,

i.e., aleatoric (or data) uncertainty and epistemic (or model) uncer-

tainty [26]. Common techniques used in uncertainty quantification

include Bayesian [39, 51] and Ensemble [55, 32] methods. The high-

lights come in the form of popular variational inference approaches

such as Variational Auto-Encoders (VAE) [30]. The specialty of

VAE comes from the estimation of a distribution in the latent space

rather than a specific latent representation. Similarly, Bayesian Neu-

ral Networks (BNNs) use a distribution over the weights, rather

than specific weights to estimate the uncertainty for predictions.

One common variation of BNNs is Bayes by Backprop [7] which

leverages the standard backpropagation used in traditional NNs.

Despite the popularity of uncertainty quantification, approaches

using uncertainty to improve fairness are scarce. ROC [28] is one

such instance. Liu et al. [34] use a multi-task model for predicting

the under-represented class label in addition to the classification

label to create a robust representation space. Singh et al. [46] pro-

pose an approach for fair ranking where the probability of being

assigned a higher rank is in proportion to the estimated merit.

Our approach complements past work by incorporating aleatoric

uncertainty in particular. While prior works suggest good heuristics

and processing techniques to overcome the challenge of lack of

data, our approach suggests that when the model is likely to make

the correct prediction, it is also likely to be fair. Conversely, when

the model is unlikely to make the correct prediction due to data

ambiguity, we optimize it to ensure fairness. Past approaches can

easily be incorporated into our proposed framework by substituting

them with the utility objective.

6 CONCLUSION AND FUTUREWORK
This study introduces a novel concept balancing fairness and utility

via aleatoric uncertainty. By optimizing objectives based on uncer-

tainty levels, our approach improves fairness and utility trade-off.

Aleatoric uncertainty informs model decisions for better trade-off.

To mitigate the confounding effects associated with protected at-

tributes, we propose a distributional intervention approach when

estimating uncertainty using BNN. We then optimize for fairness in

the solution space with high aleatoric uncertainty, and utility else-

where. The proposed GAIA approach yields an improved fairness-

utility trade-off regarding both group and individual fairness. A

thorough evaluation of our approach is conducted using multiple

datasets across various domains, various metrics, and comparisons

to established baseline methods. The theoretical analyses and em-

pirical evidence provide insights into the advantages, limitations,

and areas for further improvement in our concept.

Our work significantly contributes to the field of ML by offering a

new solution to the balance between fairness and utility. The study

highlights the potential link between fairness and predictive uncer-

tainty, and future research will delve into the robustness, scalability,

and potential applications of this concept in other domains.

While our approach demonstrates promising results, we acknowl-

edge a few limitations. GAIA relies on the differences in uncertainty

between training samples. If themajority of samples consistently ex-

hibit low uncertainty, it suggests both high utility and fairness, even

with simple approaches that do not specifically focus on fairness,

such as Empirical Risk Minimization [50]. However, if most samples

consistently exhibit high uncertainty, our training objective leans

toward maintaining fairness rather than utility.

Altering the uncertainty quantification backbone architecture,

such as using an auto-encoder, could provide additional insights,

and our design allows for suchmodifications.We separate the down-

streammodel from the uncertaintymodel, enabling easy integration

of GAIA with existing architectures for downstream tasks.
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