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ABSTRACT
Sequential tabular data is one of the most commonly used data
types in real-world applications. Different from conventional tabu-
lar data, where rows in a table are independent, sequential tabular
data contains rich contextual and sequential information, where
some fields are dynamically changing over time and others are
static. Existing transformer-based approaches analyzing sequential
tabular data overlook the differences between dynamic and static
fields by replicating and filling static fields into each record, and
ignore temporal information between rows, which leads to three
major disadvantages: (1) computational overhead, (2) artificially
simplified data for masked language modeling pre-training task
that may yield less meaningful representations, and (3) disregard-
ing the temporal behavioral patterns implied by time intervals. In
this work, we propose FATA-Trans, a model with two field trans-
formers for modeling sequential tabular data, where each processes
static and dynamic field information separately. FATA-Trans is
field- and time-aware for sequential tabular data. The field-type em-
bedding in the method enables FATA-Trans to capture differences
between static and dynamic fields. The time-aware position em-
bedding exploits both order and time interval information between
rows, which helps the model detect underlying temporal behav-
ior in a sequence. Our experiments on three benchmark datasets
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demonstrate that the learned representations from FATA-Trans
consistently outperform state-of-the-art solutions in the down-
stream tasks. We also present visualization studies to highlight the
insights captured by the learned representations, enhancing our
understanding of the underlying data. Our codes are available at
https://github.com/zdy93/FATA-Trans.
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1 INTRODUCTION
Sequential tabular data is one of themost commonly used data types
in real-world applications such asmedical diagnosis[43], recommen-
dation systems[44], click-through-rate (CTR) prediction[31], and
transaction anomaly detection[46]. In a sequential tabular dataset,
there are multiple rows and columns, where each row corresponds
to a record and each column represents a field. An example of
sequential tabular data is the credit card transaction data which
captures purchasing activities of cardholders over time. Another
example is the user review data from a website, which logs users’
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comments and ratings for the products they rented or bought in
the past.

Figure 1 depicts a screenshot of a modified sequential tabular
dataset derived from a synthetic transaction dataset created by
[1, 33]. Each row in the dataset represents a transaction record. The
first six rows form a transaction sequence associated with User 0’s
card 0, while the last six rows represent another sequence linked to
User 1’s card 1. Within these transaction sequences, certain fields
in the data are dynamic, capturing a user’s local activities that are
transient in nature. Conversely, other fields are static, reflecting
a user’s global identity that remains stable over time. For exam-
ple, in Figure 1, dollar amounts are dynamic as they tend to vary
from one transaction to another. On the other hand, card type (e.g.,
Debit Card) and issuer bank (e.g., Example Bank) remain constant
throughout the transactions. Both dynamic and static fields play
distinct but significant roles within a transaction sequence.

The concept of dynamic and static fields extends beyond the
raw fields present in transaction data and can also include derived
fields or features. For example, a derived static field could be the
average dollar amount of each user’s transactions over a specific
time period. In the context of user review data, the ratings given
by a user to various products can be considered dynamic since
they can change over time. However, the user’s average rating
over a previous time period would be considered a static field, as it
represents an aggregated value that remains constant within that
specific period.

Furthermore, in sequential tabular datasets, capturing time and
order information is crucial for understanding user behaviors. Fig-
ure 2 provides an example of transaction sequences associated with
three different cardholders. Although the field values across the
three sequences are identical, the timing and order of the transac-
tions differ. The presence of time and order information becomes
critial in identifying abnormal transaction behaviors. In the given
example, the first sequence exhibits no abnormal transactions, but
the other sequences contain abnormal transactions. Hence, consid-
ering time and order information becomes essential during model
training to effectively capture user behaviors within sequential
tabular datasets.

Extensive research has been dedicated to modeling sequential
tabular data. In the early stage, recurrent neural networks (RNNs)
were employed and demonstrated outstanding performance[18,
42, 47]. However, more recent efforts have primarily focused on
transformer-based models due to their superior ability to capture
long-range dependencies and effectively handle sequential data.

The pioneering work of Kang and McAuley[22] has inspired
numerous subsequent studies, leading to the development of vari-
ous innovative transformer-based model architectures specifically
tailored for modeling sequential tabular data [6–8, 10, 33, 39, 41, 45,
48]. Among these architectures, TabBERT, initially developed by
Padhi et al.[33] and further enhanced in subsequent works[17, 30],
presents a powerful and comprehensive framework for processing
sequential tabular data. TabBERT is a pre-trained transformer archi-
tecture trained using masked language modeling (MLM)[11], where
it predicts masked tokens. It adopts a hierarchical approach to en-
code a series of transactions using two transformers. At the first
level, the transformer processes individual tabular rows (transac-
tions) by considering each field value as a token, thereby generating

Figure 1: A screenshot of a synthetic sequential tabular
dataset showing transaction records. Each row represents
a transaction associated with a user and card identifier
(columns 1 and 2). A user can ownmultiple cards. The dataset
contains dynamic fields (columns 3 to 7) that vary across
transactions and static fields (last three columns) that re-
main constant. The dataset includes two distinct sequences
of transactions: the first six rows and the last six rows.

Figure 2: Example of transaction record sequences with the
same field values but different order and timing. Abnormal
transactions in sequences 2 and 3 cannot be detected based
solely on field values. This highlights the significance of time
and order information in detecting abnormal transaction
patterns.

transaction embeddings. The second-level transformer takes these
transaction embeddings as input and produces sequence embed-
dings.

While TabBERT is applicable to a wide range of sequential tabu-
lar data, it has two limitations. First, although it can accommodate
both dynamic and static fields, it does not differentiate between
them. Static fields are replicated in every record within a sequence,
leading to computational overhead when multiple static fields or
lengthy sequences are present. Additionally, since TabBERT em-
ploys MLM to predict masked tokens, predicting a masked static
field in one record becomes relatively easy given the same field in
other records. This can potentially hinder the model’s ability to
learn meaningful representations for sequential tabular data during
pre-training. Second, although TabBERT leverages order informa-
tion through the position embedding layer, it fails to consider the
critical time information necessary to capture important user behav-
ior patterns in a sequence, as depicted in Figure 2. It is important to
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note that these limitations are not exclusive to TabBERT; they also
exist in other recently proposed transformer-based architectures
dealing with multivariate sequences[8, 41, 45, 48].

In general, previous methods have the following limitations:
• Failure to distinguish static and dynamic fields: Static and dy-
namic fields in sequential tabular datasets have distinct roles
and impacts. However, previous works did not differentiate
between these two types of fields, leading to an inability to
capture their unique characteristics.

• Negative effect caused by static field replication: Previous ap-
proaches replicated static fields across records, resulting in
unnecessary computational overhead and an excessive re-
duction in the complexity of the model’s pre-training task.

• Failure to utilize both time and order information: Time and
order information are crucial in tasks involving sequential
tabular data. However, previous methods either neglected or
only partially incorporated the influence of time and order
information. A more effective design is necessary to fully
leverage the importance of both time and order information.

To address these limitations, we present FATA-Trans, an innova-
tive transformer-based architecture designed to handle sequential
tabular datasets while considering field and time information. Our
proposed method employs a hierarchical approach for processing
input record sequences. At the first level, our method incorporates
two field transformers: a static field transformer and a dynamic
field transformer. These transformers independently encode the
static fields and dynamic fields within each record, resulting in a
static field embedding and a series of dynamic field embeddings. At
the second level of the architecture, the generated embeddings from
the first level are utilized to create sequence embeddings. Here, a
field-type embedding is introduced to discern between static and
dynamic fields. Additionally, a time-aware position embedding is
employed in the second-level transformer to capture time and order
information.

The contributions of our paper are as follows: We propose FATA-
Trans, an innovative transformer-based architecture that learns
representations of sequential tabular datasets. The architecture
consists of three key components: (1) two field transformers at
the first level that process static and dynamic fields separately,
(2) a field-type embedding in the second-level transformer that
can distinguish static and dynamic record embeddings, and (3)
a customized time-aware position embedding that considers the
impact of both time and order of records in a sequence.

Our experimental results demonstrate that the learned embed-
dings from FATA-Trans consistently yield improved performance
compared to state-of-the-art solutions. Notably, the pre-training
process of FATA-Trans outperforms TabBERT in terms of speed.
Furthermore, we employed visualization techniques to explore
the extracted embeddings from the pre-trained model, uncover-
ing meaningful patterns within the data.

2 METHODOLOGY
2.1 Problem Definition
In this study, we investigate the task of learning effective representa-
tions for sequential tabular datasets using a pre-training framework
based on transformer models. The process is visually depicted in

Figure 3: Record sequence representation learning with both
static and dynamic fields and time and order information.
Given a sequence of records, the sequence is associated with
both static fields and dynamic field. The order and time in-
formation of records are also given. The goal is to learn a
useful representation of the sequence of records that can be
used in downstream tasks.

Figure 3, which uses a record sequence as an illustrative example.
Each record represents a row in the tabular dataset, and records
associated with the same identifier form a sequence. In Figure 3,
all these records are associated with a specific user. The sequence
comprises multiple records, each containing both static and dy-
namic fields. Static fields maintain consistent values throughout
the sequence, while dynamic fields exhibit variations over time.
Additionally, the order and time information of the records are
provided.

More formally, given a sequential tabular dataset with𝑚 records
(rows), each record 𝑥𝑖 is composed of𝑛𝑠 static fields and𝑛𝑑 dynamic
fields. An input, 𝑋 , to our proposed method is represented as a
windowed sequence of 𝑙 time-dependent rows (records) 𝑥𝑖 ,

𝑋 = [𝑥0, 𝑥1, ..., 𝑥𝑙−1] (1)

𝑥𝑖 = {𝑢𝑠,0
𝑖
, 𝑢

𝑠,1
𝑖
, ..., 𝑢

𝑠,𝑛𝑠−1
𝑖

, 𝑢
𝑑,0
𝑖

, 𝑢
𝑑,1
𝑖

, ..., 𝑢
𝑑,𝑛𝑑−1
𝑖

} (2)

where 𝑙 (≪𝑚) is the number of consecutive records selected with a
window offset (or stride), 𝑢𝑠,𝑗

𝑖
are static fields, and 𝑢𝑑,𝑘

𝑖
are dynamic

fields. In the windowed sequence 𝑋 , we assume that static fields
always keep a constant value, that is 𝑢𝑠,𝑗

𝑖
= 𝑢𝑠,𝑗 for 𝑖 ∈ [0, 𝑙 − 1].

For each record 𝑥𝑖 , we are provided with the creation time 𝑡𝑖 . To
simplify and maintain generality, we set the initial time 𝑡0 as 0. 𝑡𝑖
represents the time interval between the creation time of record 𝑥𝑖
and 𝑥0. These record sequences can be effectively utilized for spe-
cific tasks, such as detecting anomalies in credit card transactions,
by leveraging the time and order information of the transactions.

Prior to training a model for specific tasks, pre-training can be
conducted to generate useful representations for record sequences.
The pre-trained model can then be fine-tuned for specific down-
stream tasks. The primary objective of the pre-training task is to
train a transformer-based model 𝑓𝜃 : 𝑋 → 𝑅, where 𝑅 denotes a
sequence of representations for records,

𝑅 = [𝑟0, 𝑟1, ..., 𝑟𝑙−1] (3)

where 𝑟𝑖 ∈ R𝑛𝑒 . Here, 𝑛𝑒 is the dimension of learned representa-
tions.

2.2 Previous Method: TabBERT
Our proposed method, FATA-Trans, is a variant of the TabBERT
framework introduced in [33]. TabBERT was originally designed
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Field Transformer Field Transformer

Tabular BERT: Sequence Encoding Transformer

Static Field Transformer Dynamic Field
Transformer

FATA-BERT: Field and Time-aware Sequence Encoding Transformer

Dynamic Field
Transformer
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Position
Embedding
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MASK
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Figure 4: TabBERT framework (left) and FATA-Trans framework (right). TabBERT framework processes record sequences in a
hierarchical fashion, but it does not separate static and dynamic fields. Static fields are replicated over records. Also, position
embedding in TabBERT does not consider time interval between records. FATA-Trans framework uses static and dynamic
field transformers to process two types of fields separately. Static Fields are not replicated over records. Field type embedding
distinguishes dynamic and static fields. Time-aware position embedding utilizes both time interval and sequence information.

for modeling transaction sequences, where each transaction can be
considered as a record in a general sequential tabular dataset. Tab-
BERT defines each field on its own local vocabulary and quantizes
numerical fields so that both categorical and numerical values can
be represented by a finite vocabulary.

TabBERT encodes the sequence of transactions in a hierarchical
fashion. As shown in the left panel of Figure 4, TabBERT first uses a
field transformer to process each transaction individually, creating
transaction embeddings (TE). Then these transaction embeddings
are fed into the second-level transformer to create sequence em-
beddings (SE). In this setting, the field transformer takes both static
and dynamic field tokens as input. Because the value of each static
field remains unchanged across transactions, static field tokens are
replicated 𝑙 times in every input. This replication of static field
tokens can lead to substantial computational resource usage if 𝑛𝑠 or
𝑙 is large. TabBERT uses the MLM procedure proposed in [11] for
pre-training. In MLM procedure, a certain percentage of the input
tokens are masked at random, and then the model predicts those
masked tokens. However, in TabBERT, if a static field token from
one transaction is masked, the model can easily predict it by refer-
nceing the same static field in other transactions. Consequently,
the pre-training task becomes too simple, and the transformer fails
to capture crucial relationships within transaction sequences. Fur-
thermore, TabBERT does not incorporate time interval information.
While the position embedding layer injects transaction order in-
formation into the second-level transformer, the influence of time
intervals is overlooked. This omission prevents TabBERT from fully
capturing the temporal aspect of the data.

2.3 Proposed Method: FATA-Trans
Our proposed method, Field And Time-Aware Transformer for Se-
quential Tabular Data (FATA-Trans), is depicted in the right panel
of Figure 4. FATA-Trans consists of two levels: (1) At the first level,
the static and dynamic fields are processed separately by the Static
Field Transformer andDynamic Field Transformer to generate record

embeddings. (2) At the second level, a field type embedding distin-
guishes static and dynamic record embeddings, and a customized
time-aware position embedding considers the impact of both time
and order of records in a sequence. The record embedding, field type
embedding, and time-aware position embedding are element-wise
summed together and fed into the field and time-aware sequence
encoding transformer (FATA-BERT) to generate sequence embed-
dings. The generated sequence embeddings can then be used for
downstream tasks.

2.3.1 Dynamic Field Transformer And Static Field Transformer. As
shown in the right panel of Figure 4, FATA-Trans uses two field
transformers to process static and dynamic fields separately. This
distinction is crucial as static and dynamic fields represent different
types of information in the record sequences. By processing them
separately, FATA-Trans reduces computational overhead and en-
ables the model to capture important patterns within the sequences.
The transformation of raw field values into tokens follows a similar
procedure to TabBERT. Both dynamic and static fields are tokenized.
Subsequently, a randommasking process is applied to some of these
tokens, as described below:

𝑣
𝑑,𝑗
𝑖

= ConvertToVocab(𝑢𝑑,𝑗
𝑖

), for 𝑖 ∈ [0, 𝑙 − 1], 𝑗 ∈ [0, 𝑛𝑑 − 1]
(4a)

𝑣
𝑑,𝑗
𝑖

, I
𝑑,𝑗
𝑖

= RandomMask(𝑣𝑑,𝑗
𝑖

), for 𝑖 ∈ [0, 𝑙 − 1], 𝑗 ∈ [0, 𝑛𝑑 − 1]
(4b)

𝑣𝑠,𝑗 = ConvertToVocab(𝑢𝑠,𝑗 ), for 𝑗 ∈ [0, 𝑛𝑠 − 1] (4c)

𝑣𝑠,𝑗 , I𝑠,𝑗 = RandomMask(𝑣𝑠,𝑗 ), for 𝑗 ∈ [0, 𝑛𝑠 − 1] (4d)

In Equation 4, I indicates whether a token is masked or not. If
I = 0, the token is replaced by [MASK]. This random masking pro-
cedure is for model pre-training only. After that, the Dynamic field
transformer processes each record individually with only dynamic
fields as input. The Static field transformer processes the static
fields only once without replication. This helps to reduce computa-
tional overhead and prevents the model from seeing the masked
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static field tokens repeatedly. The Static field transformer (𝑓𝜃𝑠 𝑓 )
produces the static record representation 𝑇𝐸𝑆 , and the Dynamic
field transformer (𝑓𝜃𝑑𝑓

) produces dynamic record representations
𝑇𝐸𝐷,0,𝑇𝐸𝐷,1, ...,𝑇𝐸𝐷,𝑙−1 as follows:

𝑇𝐸𝑆 = 𝑓𝜃𝑠 𝑓 ( [𝑣
𝑠,0, 𝑣𝑠,1, ..., 𝑣𝑠,𝑛𝑠−1]) (5a)

𝑇𝐸𝐷,𝑖 = 𝑓𝜃𝑑𝑓
( [𝑣𝑑,0

𝑖
, 𝑣
𝑑,1
𝑖

, ..., 𝑣
𝑑,𝑛𝑑−1
𝑖

]), for 𝑖 ∈ [0, 𝑙 − 1] (5b)

2.3.2 FATA-BERT: Field and Time-Aware Sequence Encoding Trans-
former. In the second level of the proposed architecture, we aim
to capture the differences and relationships between static and dy-
namic fields, and utilize time interval information. To achieve this,
we have customized the input representation for the second-level
transformer, which we refer to as the Field and Time-Aware Se-
quence Encoding Transformer (FATA-BERT). FATA-BERT is mostly
based on BERT-base [11] architecture. However, differing from the
original BERT and TabBERT models, the input representation of
FATA-BERT is constructed by adding the corresponding record,
field type, and time-aware position embeddings.

The field type embedding is a lookup table that stores embed-
dings of both static and dynamic field types. For 𝑇𝐸𝑆 , the corre-
sponding field type embedding 𝐹𝐸𝑆 is the static type embedding.
On the other hand, for each 𝑇𝐸𝐷,𝑖 , the corresponding field type
embedding 𝐹𝐸𝐷 is the dynamic type embedding. The embeddings
of each field type are updated during the training procedure.

The time-aware position embedding 𝑃 (𝑖) is defined as a vector
of length 𝑑 , where each element 𝑝 (𝑖, 𝑗 ) is defined by:

𝑇𝑃𝑜𝑠 (𝑖) = 𝑤𝑝 ∗ 𝑖 +𝑤𝑡 ∗ 𝑡𝑖 + 𝑏 (6a)

𝑝 (𝑖, 𝑗 ) =


sin 𝑇𝑃𝑜𝑠 (𝑖 )

10000( 2𝑗
𝑑
)

if 𝑗 is even

cos 𝑇𝑃𝑜𝑠 (𝑖 )
10000( 2𝑗

𝑑
)

if 𝑗 is odd
(6b)

In this context, we use the variables 𝑖 and 𝑗 to represent the position
index and time-aware position embedding dimension, respectively.
The 𝑇𝑃𝑜𝑠 (𝑖) function is used to merge information from both the
position index 𝑖 and time interval 𝑡𝑖 , which helps the model to
capture time-aware position information through the trainable
parameters 𝑤𝑝 , 𝑤𝑡 , and 𝑏, enabling the model to learn a flexible
function.

It is important to note that for dynamic fields in the 𝑖th record,
the corresponding time-aware position embedding is represented
as 𝑃 (𝑖). On the other hand, for static fields, we set 𝑖 to 0 and 𝑡𝑖 to 𝑡0
to obtain the time-aware position embedding. This implies that the
time-aware embedding for static fields is also represented as 𝑃 (0),
which is the same as the time-aware embedding for dynamic fields
in the 0th record.

The input representation for static fields (𝐼𝐸𝑆 ), and 𝑖th record’s
dynamic fields (𝐼𝐸𝐷,𝑖 ) are defined by the following formula:

𝐼𝐸𝑆 = 𝑇𝐸𝑆 + 𝑃 (0) + 𝐹𝐸𝑆 (7a)
𝐼𝐸𝐷,𝑖 = 𝑇𝐸𝐷,𝑖 + 𝑃 (𝑖) + 𝐹𝐸𝐷 (7b)

We feed [𝐼𝐸𝑆 , 𝐼𝐸𝐷,0, 𝐼𝐸𝐷,1, ..., 𝐼𝐸𝐷,𝑙−1] into FATA-BERT. The last
layer of FATA-BERT generates a series of sequence embeddings
[𝑆𝐸𝑆 , 𝑆𝐸𝐷,0, 𝑆𝐸𝐷,1, ..., 𝑆𝐸𝐷,𝑙−1] according to:

[𝑆𝐸𝑆 , 𝑆𝐸𝐷,0, 𝑆𝐸𝐷,1, ..., 𝑆𝐸𝐷,𝑙−1] =
𝑓𝜃 𝑓 𝑎𝑡𝑎 ( [𝐼𝐸𝑆 , 𝐼𝐸𝐷,0, 𝐼𝐸𝐷,1, ..., 𝐼𝐸𝐷,𝑙−1])

(8)

Here, 𝑆𝐸𝑆 represents embeddings for the static fields, and 𝑆𝐸𝐷,𝑖

represents embeddings for the dynamic fields in the 𝑖th record.
These sequence embeddings are then fed into the classification
head (𝑓𝜃𝑐𝑙𝑠 ) to predict each token in the input record as follows:

[ Pr
𝜃𝑐𝑙𝑠

(𝑣𝑠,0), Pr
𝜃𝑐𝑙𝑠

(𝑣𝑠,1), ..., Pr
𝜃𝑐𝑙𝑠

(𝑣𝑠,𝑛𝑠−1),

Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,00 ), Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,10 ), ... Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,𝑛𝑑−10 ),

Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,01 ), Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,11 ), ..., Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,𝑛𝑑−1
𝑙−1 ), ]

= 𝑓𝜃𝑐𝑙𝑠 ( [𝑆𝐸𝑆 , 𝑆𝐸𝐷,0, 𝑆𝐸𝐷,1, ..., 𝑆𝐸𝐷,𝑙−1])

(9)

In Equation 9, Pr𝜃𝑐𝑙𝑠 (𝑣) represents the prediction probability for
each token. Note that when we calculate the cross-entropy loss
for the MLM task, as defined by the following formula, we only
consider tokens that have been masked (masked indicator I = 0 in
our setting):

ℓ = −
𝑛𝑠−1∑︁
𝑗=0

(1 − I𝑠,𝑗 ) log Pr
𝜃𝑐𝑙𝑠

(𝑣𝑠,𝑗 ) −
𝑙−1∑︁
𝑖=0

𝑛𝑑−1∑︁
𝑗=0

(1 − I𝑑,𝑗
𝑖

) log Pr
𝜃𝑐𝑙𝑠

(𝑣𝑑,𝑗
𝑖

)

(10)

3 EXPERIMENTS
We compared the performance of FATA-Trans with two powerful
baseline models on three benchmark datasets. We also compared
FATA-Trans to TabBERT which served as an inspiration for our
study.

3.1 Datasets and Tasks
Synthetic Transaction Dataset - Transaction Anomaly Detection

Task. This synthetic dataset was created by [1, 33] for credit card
transactions 1. It contains 24,386,900 transactions from 2,000 users’
6,139 cards, covering a period of 1991 through 2020. Each trans-
action has attributes such as transaction time, merchant category
code (MCC), transaction location, transaction type (chip, swipe
or online), transaction amount, and an anomaly label indicating
abnormal transactions. Some static fields were derived from these
attributes such as average and standard deviation of transaction
amounts, the most frequent MCC observed in the card transaction
history, and the most frequent transaction type for each user.

The objective of this study was to predict whether the last trans-
action in a windowed sequence of card transactions is abnormal or
not. To create these windowed sequences for each card, 10 consec-
utive transactions were combined in a time-dependent manner, as
described in [30].

Amazon Product Reviews Dataset - Reviewer Rating Prediction
Task. This dataset, collected by [32], consists of product reviews
and metadata from Amazon 2. Each review record includes fields
such as review rating (range from 1 to 5), verification status, review
time, reviewerID, asin (product ID). Static fields were created based
on these attributes, including the average of historical ratings, the
count of historical ratings, the percentage of low ratings (rating
lower or equal to 3), and the percentage of high ratings (rating

1https://www.kaggle.com/datasets/ealtman2019/credit-card-transactions
2https://nijianmo.github.io/amazon/index.html

https://www.kaggle.com/datasets/ealtman2019/credit-card-transactions
https://nijianmo.github.io/amazon/index.html
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higher or equal to 4). This dataset contains 233.1 million reviews. In
this study, we used two subsets under two categories: 5-core Movies
and TV dataset (3,410,019 reviews) and 5-core Electronics dataset
(6,739,590 reviews). Here, "5-core" means that all the remaining
users and items in the dataset have at least 5 reviews each.

The objective of this task was to predict whether the last review
in a reviewer’s windowed sequence of reviews is a high rating or a
low rating. The length of the windowed review sequence is set as
10.

3.2 Compared Methods
We compared FATA-Trans with the following methods:

LightGBM. LightGBM, developed by Microsoft[24], belongs to
the family of gradient boosting trees [13] which have been the dom-
inant solutions in various Kaggle and other industry competitions
[21] and used by researchers as both inspiration and the standard by
which to compare model performance [2, 12, 15, 16, 36]. We chose
LightGBM as our first baseline because of its superior performance
in modeling tabular data.

RNN. Recurrent neural networks (RNNs) have demonstrated
remarkable performance in domains involving sequential data and
the availability of user identifiers (e.g., credit card numbers or login
IDs) [5, 18, 28, 29, 46, 47]. Thus, we selected RNNs as our second
baseline due to the sequential nature of our data and the presence
of user identifiers. Specifically, we chose the gated recurrent unit
(GRU) RNN [9], which uses less memory and is faster to train
compared with another commonly used RNN architecture known
as long short-term memory (LSTM) [19].

TabBERT. The TabBERT model, proposed by [33], follows a hier-
archical structure, where the first-level field transformer generates
transaction embeddings from individual transactions. These em-
beddings are then used as input for the second-level transformer to
generate sequence embeddings. However, it is important to note
that TabBERT does not take into account time interval information
when computing position embeddings, and it does not distinguish
between static and dynamic fields. To ensure comparability, we
included the time interval as a dynamic field in TabBERT, allowing
it to leverage transaction time information.

3.3 Experimental Setup
Data Preprocessing. For the synthetic credit card transaction

dataset, we divided all transactions occurring before 2018 into sep-
arate training and validation datasets. Transactions that occurred
after 2018 were designated as the test (holdout) dataset. Within the
training and validation datasets, we randomly selected 84% of the
transaction sequences for training purposes, while the remaining
sequences were used for validation.

For the Amazon product review dataset, we followed a similar
approach as described in [6, 22, 27]. For each user, we included the
last 10 reviews in the test dataset. The reviews from the 11th to the
second-to-last review were placed in the validation dataset, and all
the reviews before the second-to-last review were assigned to the
training dataset. In cases where the sequence length was less than
10, we added a special token to the left of the sequence repeatedly
until the length reached 10.

We created transaction/review sequences as sliding windows of
10 records, with a stride of 5 in training data and validation data, and
a stride of 1 in test data. We followed the same procedure outlined
in [33] to quantize numerical features and generate vocabularies.

Model Pre-training and Downstream Task Training. For our ex-
periments, we utilized TabBERT and FATA-Trans as our pre-trained
models. When working with the synthetic transaction dataset, we
intentionally excluded the label column, which indicates whether
a transaction is abnormal, to avoid any leakage of target informa-
tion during the pre-training phase [23]. However, for the Amazon
product review dataset, we included the label column representing
a reviewer’s rating on a product. This inclusion was based on the
assumption that previous ratings can be informative for predict-
ing future ratings. During our experiments, we followed a similar
procedure as described in [11, 33]. We randomly masked 15% of
the static field tokens and 15% of the dynamic field tokens in each
sequence. These masked tokens were replaced with the [MASK]
token 80% of the time, with random tokens 10% of the time, and
left unchanged 10% of the time. The model learned to restore these
masked tokens using the cross-entropy loss. We pre-trained all the
models for three epochs, using the same parameter settings in [33].

After pre-training, we applied a linear layer as the classification
head, taking the concatenated sequence embeddings as input. For
the synthetic transaction dataset, we down-sampled the normal
transaction sequences in the training dataset for the classification
task training procedure. This was done to make the ratio of normal
to abnormal transactions 20:1 since abnormal transactions are ex-
tremely rare. Note that during the pre-training procedures, models
used the whole training dataset. For the Amazon product review
datasets, we masked the rating column of the last review in each se-
quence to prevent target leaking [23]. This ensured that the model
did not have access to the prediction label during training. We
trained both models for 20 epochs and employed early-stop criteria
when the AUC (area under the receiver operating characteristic
curve) score for the validation dataset did not improve over three
consecutive evaluation steps.

It should be noted that both LightGBM and RNN models were
directly trained for the classification tasks without pre-training.
Again, for the synthetic transaction dataset, we down-sampled the
normal transaction sequences in the training dataset to achieve
a 20:1 ratio between normal and abnormal transactions. For the
LightGBM model, we utilized the LightGBM Python library3. We
primarily used the default parameter settings recommended by the
package but made adjustments to the learning rate and number of
boosting rounds based on the AUC score of the validation dataset.

The RNN model was trained using the Adam optimizer [25] with
a fixed learning rate of 0.001. A batch size of 64 was used for the
synthetic transaction dataset, while a batch size of 128 was used for
the two Amazon product review datasets. The model was trained
for 100 epochs, and early-stop decisions were determined by the
AUC score of the validation dataset. During our experimentation,
we evaluated both one-layer and two-layer GRU networks and
found that they exhibited nearly identical performance. Therefore,
we present the results obtained from a one-layer GRU network with
256 hidden nodes.
3https://pypi.org/project/lightgbm/

https://pypi.org/project/lightgbm/
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Table 1: Performance comparison on three datasets: Synthetic
Transaction Dataset, Amazon Movies and TV, and Amazon
Electronics.

Methods AUC

Synthetic Transaction

LightGBM 0.9624
RNN 0.9866
TabBERT 0.9985
FATA-Trans 0.9992

Amazon Movies and TV

LightGBM 0.7593
RNN 0.7634
TabBERT 0.7964
FATA-Trans 0.8057

Amazon Electronics

LightGBM 0.6962
RNN 0.7040
TabBERT 0.7098
FATA-Trans 0.7206

3.4 Experimental Results
We evaluated AUC scores on the testing dataset for both the trans-
action anomaly detection and review rating prediction tasks. As
depicted in Table 1, our method consistently outperforms other
methods across all three datasets. This indicates that FATA-Trans
effectively captures more precise user behavior patterns by lever-
aging the time interval and field-type information incorporated
within the specially designed embedding and transformer layers.

Table 2: Pre-training time comparison on three datasets: Syn-
thetic Transaction, Amazon Movies and TV, and Amazon
Electronics. We used batch size 64 for the Synthetic Transac-
tion dataset and batch size 128 for the other two datasets.

Methods Pretraining Time

Synthetic Transaction

TabBERT 3d11h
FATA-Trans 2d12h

Amazon Movies and TV

TabBERT 11h
FATA-Trans 6h33m

Amazon Electronics

TabBERT 2d13h
FATA-Trans 1d3h

We conducted a comparison of the pre-training time between
TabBERT and FATA-Trans. Both models were implemented using
PyTorch [34] and pre-trained on a single NVIDIA Tesla A100 GPU.
The batch size was set to 64 for the synthetic transaction dataset and
128 for the other two datasets. According to Table 2, our method
demonstrates significantly shorter pre-training times compared

to TabBERT. This is attributed to the fact that FATA-Trans avoids
redundant repetition of static fields in the sequence and only inputs
them into the static-field transformer. As a result, this approach
reduces memory usage and substantially saves training time.

Table 3: Performance of the proposed FATA-Trans and its
variations on three datasets: Synthetic Transaction, Amazon
Movies and TV, and Amazon Electronics.

Methods AUC

Synthetic Transaction

FATA-Trans (w/o time-aware position embedding) 0.9982
FATA-Trans (w/o field type aware design) 0.9966
FATA-Trans (w/o pretraining) 0.9970
FATA-Trans 0.9992

Amazon Movies and TV

FATA-Trans (w/o time-aware position embedding) 0.8036
FATA-Trans (w/o field type aware design) 0.8038
FATA-Trans (w/o pretraining) 0.7819
FATA-Trans 0.8057

Amazon Electronics

FATA-Trans (w/o time-aware position embedding) 0.7108
FATA-Trans (w/o field type aware design) 0.7174
FATA-Trans (w/o pretraining) 0.7072
FATA-Trans 0.7206

3.5 Ablation Study
We designed two variations of our proposed method to assess the
impact of our customized time-aware position embedding, static
field transformer, and field-type embedding. Each variant differs
from FATA-Trans in either position embedding or field transformer
and field-type embedding. We also compared FATA-Trans with a
variant that did not utilize pre-training, but instead directly trained
on the downstream classification task.

FATA-Trans (w/o time-aware position embedding). This variation
replaced the time-aware position embedding with the regular posi-
tion embedding proposed in [11]. It still used the time interval as a
dynamic field to capture the time information.

FATA-Trans (w/o field type aware design). This variation removed
the static field transformer and field type embedding. It replicated
the static fields in every record in a sequence as TabBERT did.

FATA-Trans (w/o pre-training). This variation skipped the pre-
training step and instead directly trained on the downstream task.

Table 3 shows the experimental results on all three datasets.
FATA-Trans achieves better results against all three variations,
which demonstrates that the time-aware position embeddings,
static field transformer, and field-type embedding can better exploit
the time interval information and better learn the latent patterns
across fields and records. Moreover, the pre-training procedure
can help the method obtain more useful representations for the
downstream tasks.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Dongyu Zhang, et al.

(a) Scatter plot for abnormal transactions in
the Synthetic TransactionDataset. Each dot
represents the first three principal compo-
nents of the concatenated sequence embed-
dings of a windowed transaction sequence.
The color of the dot indicates whether the
last transaction in the sequence is abnor-
mal or not.

(b) Scatter plot for the transaction types in
the Synthetic TransactionDataset. Each dot
represents the first three principal compo-
nents of a transaction’s sequence embed-
ding. The color of the dot represents trans-
action types: swipe, online, or chip.

(c) Scatter plot for top MCCs in the Syn-
thetic Transaction Dataset. Each dot rep-
resents the first three principal compo-
nents of a static fields’ sequence embedding.
Embeddings are generated by pre-trained
FATA-Trans. The color of the dot represents
the most frequent MCC in a card’s transac-
tion history.

(d) Scatter plot for top MCCs in the Syn-
thetic Transaction Dataset. Each dot repre-
sents the first three principal components
of a transaction’s sequence embedding. Em-
beddings are generated by pre-trained Tab-
BERT. The color of the dot represents the
most frequent MCC in a card’s transaction
history.

(e) Scatter plot for reviewer ratings in Ama-
zon Electronics. Each dot represents the
first three principal components of the con-
catenated sequence embeddings of a win-
dowed review sequence. Embeddings are
generated by pre-trained FATA-Trans. The
color of the dot represents if the last rating
in the sequence is high (>=4) or low (<=3).

(f) Scatter plot for high or low rating re-
viewer in Amazon Movies and TV. Each dot
represents the first three principal compo-
nents of a static fields’ sequence embedding.
Embeddings are generated by pre-trained
FATA-Trans. The color of the dot represents
if a reviewer gave more high rating (>=4)
or low rating (<=3) in the reviewer’s review
history.

3.6 Representation Visualization
We used the learned sequence embeddings from FATA-Trans, which
were not fine-tuned for any particular downstream task, to explore
the insights captured by our model. To analyze these embeddings,
we applied Principal Component Analysis (PCA) and generated
3D plots using the first three principal components. To create the
plot, we either concatenated the sequence embeddings within each
window or used a single sequence embedding and then applied
PCA.

In Figure 5a, we present the distribution of anomaly labels for the
synthetic transaction dataset. Each point in the figure represents

a windowed transaction sequence. Notably, we observe a clear
separation between abnormal and normal sequences, suggesting
that our learned representation has captured this information even
without explicitly training an anomaly detection model. Figure 5b
presents the distribution of transaction types within the 3D space.
Each point represents a transaction record. Again, we can observe
a near-perfect separation between the two common transaction
types: online and offline (or point-of-sale) involving swipe and chip
transactions. Figure 5c illustrates the distribution of several top
MCCs (the most frequent MCCs in a card’s transaction history).
Each point represents the sequence embedding of the static fields
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within a windowed transaction sequence. Notably, we can observe
significant separation among these MCCs. It’s important to note
that transaction type is a dynamic field, while the top MCC is
a static field. Additionally, we performed the same visualization
task using the sequence embeddings learned by the pre-trained
TabBERT model. Figure 5d displays the distribution of transaction
sequence embeddings learned by the TabBERT model. It is worth
noting that TabBERT does not differentiate between static and
dynamic fields.When comparing Figure 5c (FATA-Trans) and Figure
5d (TabBERT), we observe that the embeddings from TabBERT do
not effectively separate the top MCCs, which is a static field. This
indicates that FATA-Trans excels at capturing information from
static fields compared to the TabBERT model.

In Figure 5e, we visualize the distribution of reviewer ratings for
the Amazon Electronics dataset. Each point represents a windowed
review sequence, and we can observe a clear separation between
high and low rating sequences. This indicates that our method suc-
cessfully captures the underlying patterns associated with different
rating levels. In Figure 5f, we illustrate the separation between pos-
itive and negative reviewers based on their review history in the
Amazon Movie and TV dataset. The feature "is-pos" is a derived
feature that is created based on a user’s review history. It serves
as a static field and reflects a user’s overall preference. Each point
in the figure corresponds to the sequence embedding of the static
fields within a windowed review sequence. Notably, we can observe
a significant separation between positive and negative reviewers,
indicating that our approach effectively extracts patterns from both
static and dynamic fields within record sequences.

These figures collectively demonstrate the capability of our
method to successfully capture and extract meaningful information
from both static and dynamic fields within sequences.

4 RELATEDWORK
Sequential tabular data is ubiquitous across many industries. Differ-
ent from attributed sequences [49], where each attribute is static,
sequential tabular data has both static and dynamic feature fields.
Recently, there has been growing interest in applying transformer-
based models [11, 40] to tabular data. For example, SAINT[37]
introduces an inter-sample attention strategy for modeling tabu-
lar datasets. TabNet[2] uses a sequential attention mechanism to
choose a subset of semantically meaningful features to process at
each decision step. TabTransformer[20] uses a transformer encoder
to learn contextual embeddings on categorical features. AutoInt[38]
automatically learns high-order feature interactions for CTR pre-
diction using a self-attentive neural network. Shwartz-Ziv and
Armon[36], Gorishniy et al. [14, 15], Rubachev et al. [35], and Levin
et al. [26] conduct in-depth studies comparing the main families of
deep learning architectures against gradient boosting trees. Borisov
et al [4] and Badaro et al. [3] present extensive surveys in this field.
However, most of these works are focused on non-sequential tab-
ular data where rows in a table are independent and there are no
temporal dependencies between the rows.

There is another line of research in sequential recommenda-
tion which leverages the sequential nature of a user’s behavior
to make better recommendations. Early work utilized RNN mod-
els and achieved state-of-art performance[18, 42, 47]. Recently,

transformer-based models have become a proliferated approach.
For example, SASRec[22] uses a self-attention mechanism com-
bined with position embeddings to learn relevant items based on
a user’s past purchased items. TiSASRec[27] incorporates relative
time intervals between any two items in a sequence into a self-
attention mechanism to predict the next item that a user is likely
to engage with. BERT4Rec[39] applies bidirectional attention to
capture a users’ sequential behavioral patterns. TLSRec[7] simulta-
neously models the global stability and local fluctuation of a user’s
preference with a hierarchical attention network. Rec-Denosier[6]
adaptively eliminates the noisy items during the training process
to remove irrelevant information in a user’s behavior sequence.
Transformers4Rec[10] performs an empirical analysis with broad
experiments of various transformer architectures for the task of
sequential recommendation. Despite encouraging performance, a
common limitation of these approaches is their exclusive focus on
item IDs within a univariate sequence, disregarding other valuable
information associated with items and users, such as item category,
item popularity, user past comments and ratings, and more.

Several studies have addressed the limitation of exclusively re-
lying on item IDs by incorporating other valuable information
associated with items and users. For instance, FDSA [45] introduces
a feature-level self-attention block to integrate detailed attribute
information about items. BST [8] combines both item IDs and cat-
egory IDs to construct user behavior sequences, which are then
fed into a transformer layer. SSE-PT[41] incorporates user embed-
dings into a self-attentive neural network to personalize the trans-
former model. 𝑆3-Rec[48] utilizes mutual informationmaximization
within a self-attentive architecture to capture correlations among
attributes, items, subsequences, and sequences. TabBERT[33], from
which we got inspiration, provides a comprehensive framework
for modeling multivariate sequential tabular data. However, these
approaches overlook the distinction between static and dynamic
fields and do not account for time interval information in position
embedding.

5 CONCLUSION
In this paper, we present FATA-Trans, a novel Field- and Time-
Aware Transformer for modeling record sequences in sequential
tabular data. Compared to previous works, FATA-Trans has a spe-
cial design to process static and dynamic fields separately, and the
time interval information is also incorporated into time-aware po-
sition embedding. We show that the representations learned by
FATA-Trans provide consistent performance gain in both transac-
tion anomaly detection and product review rating prediction tasks,
achieved with substantially less training time. Visualization figures
also show that FATA-Trans can capture important information from
both static and dynamic fields.
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