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ABSTRACT

Graph convolutional networks (GCNs) have been shown to be vul-
nerable to small adversarial perturbations, which becomes a severe
threat and largely limits their applications in security-critical sce-
narios. To mitigate such a threat, considerable research efforts have
been devoted to increasing the robustness of GCNs against adver-
sarial attacks. However, current defense approaches are typically
designed to prevent GCNs from untargeted adversarial attacks and
focus on overall performance, making it challenging to protect im-
portant local nodes frommore powerful targeted adversarial attacks.
Additionally, a trade-off between robustness and performance is
often made in existing research. Such limitations highlight the need
for developing an effective and efficient approach that can defend
local nodes against targeted attacks, without compromising the
overall performance of GCNs. In this work, we present a simple yet
effective method, named Graph Universal AdveRsarial Defense
(Guard). Unlike previous works, Guard protects each individual
node from attacks with a universal defensive patch, which is gener-
ated once and can be applied to any node (node-agnostic) in a graph.
Guard is fast, straightforward to implement without any change to
network architecture nor any additional parameters, and is broadly
applicable to any GCNs. Extensive experiments on four benchmark
datasets demonstrate that Guard significantly improves robustness
for several established GCNs against multiple adversarial attacks
and outperforms state-of-the-art defense methods by large margins.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION

Graph structured data are ubiquitous in real world, with promi-
nent examples including financial networks [24], molecular finger-
prints [34], and recommender systems [28]. Graph convolutional
networks (GCNs) [15], a series of neural network models primarily
developed for graph structured data, have met with great success
in a variety of applications and domains. This is mainly due to
their great capacity in jointly leveraging information from both
graph structure and node features. Over the past few years, research
on GCNs has surged to become one of the hottest topics in deep
learning community [33].

Despite the success of GCNs in numerous graph-based machine
learning tasks, e.g., link prediction and node classification, they
suffer seriously from vulnerability to adversarial attacks. As shown
in [18, 36], slight perturbations on either node features or graph
structure can lead to incorrect predictions of GCNs on specific
nodes. This attack is also known as targeted attack [36]. Even worse,
[30] has recently shown the possibility of misleading GCNs’ classifi-
cation on “any” target node by performing a node-agnostic, universal
adversarial perturbation.

The adversarial targeted attack is a real threat. For example, it
provides a possibility of enabling a fraudster to disguise himself
as a regular user to bypass GCNs based anti-fraud systems and
disperse disinformation or reap end-users’ privacy [5]. Hence, the
need for countermeasures against such an attack becomes more
critical. So far, heuristics have been investigated in the literature
to mitigate the risk of adversarial attacks from different ways [3].
Among contemporary approaches, one of the most simple and ef-
fective ways of defense is to preprocess the graph and alleviate the
adversarial behaviors in advance. In this regard, [27] first propose
to remove suspicious edges between suspicious nodes based on
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Jaccard similarity, [6] leverage SVD to form a low-rank approx-
imation of graph to reduce the effect of attacks. Current works
can indeed protect GCNs from attacks toward the whole network.
Their defenses, however, are typically designed for the whole graph
while ignoring the protection of important local nodes, making
them suffer seriously from stronger adversarial targeted attacks. In
addition, there is often a particular tradeoff between performance
and robustness since they often hold the assumption that data has
already been poisoned.

In this work, we consider a more practical and flexible defense
strategy meant to generate what we term as universal defensive
patch that can be applied to an arbitrary node. The defensive patch
can be performed on the graph as an active defense, which mitigates
the risk of adversarial attacks at test time by removing malicious
edges from input graphs. Here a defensive patch is a 0-1 binary
vector, where 1 denotes the edge modification (e.g., removal) and 0
otherwise. To our best knowledge, we are the first to study universal
defense on graphs.

Why universal defense? As a new perspective of defense strat-
egy, our work is orthogonal to recent studies on robustifying GCNs.
The universal defense is advantageous as (i) no access to the target
node or victim model is needed at test time, and (ii) it drastically
lowers the barrier to defend against adversarial attacks: the uni-
versal defensive patch is generated once and can be applied to any
model (model-agnostic) and any node (node-agnostic) in a graph.

Is universal defense achievable? Although there have been
several successful attempts in vision research, the possibility of a
universal defense against adversarial targeted attacks on graphs
remains largely unexplored. Particularly, graphs often come with
complicated structures, in which relationships between nodes can
be challenging to capture. As a result, achieving a universal defense
may not be a straightforward task. In this paper, we seek to uncover
the intrinsic patterns of adversarial attacks, and one step further,
explore the feasibility of universal defenses on graphs. Specifically,
we empirically discover an interesting phenomenon that attackers
prefer picking the same attacker nodes from a set of low-degree
nodes when perturbing different target nodes. The finding suggests
that these nodes may be part of what makes the model vulnerable,
and thus a universal defense becomes possible if one can identify
them in advance.

In light of above insights, the core problem we raise and address
in this paper is:
How to design a universal defense that works for any individual node

to defend against adversarial attacks?

In this paper, we propose Graph Universal AdveRsarial Defense
(Guard) to address this problem for the first time. Unlike previous
works, Guard applies a universal patch to protect any node from
adversarial targeted attacks without knowledge of victim GCNs.
We empirically show that our method can significantly improve the
robustness of victim GCNs against a variety of adversarial targeted
attacks. Particularly, we demonstrate that GCNs equipped with
Guard can also outperform current state-of-the-art defenses with
large margins.

This paper offers the following main contributions:
• We demonstrate, both theoretically and empirically, that
current attacks tend to perturb a target node with a fixed set

of low-degree nodes. Our finding offers deeper insights on
understanding the vulnerability of GCNs.
• We propose Guard, an effective and scalable universal de-
fense to protect an arbitrary node from multiple adversarial
attacks.Guard comes with good generality and flexibility for
well-established GCNs, enabling them to be robust against
adversarial attacks.
• Extensive experiments on four public graph benchmarks
demonstrate that Guard can protect GCNs from strong ad-
versarial targeted attacks without sacrificing the clean per-
formance.

To our best knowledge, Guard is the first successful attempt in
applying universal defense on graphs. We believe that our work is
a step forward in the development of simple and provably effective
defenses, and hope that it will inspire both theoretical and practical
future research efforts.

2 RELATEDWORK

The robustness of graph convolutional networks against adversarial
attacks has gained increasing attention in the last few years [4, 17,
18, 35–37]. While there are numerous (heuristic) approaches aimed
at robustifying GCNs, there is always a newly devised stronger
attack attempts to break them, leading to an arms race between
attackers and defenders [3].

Adversarial attack on graphs. Literature is rich on attacking
GCNs with adversarial examples. The most widely used solution
for crafting adversarial examples on graphs is to utilize a locally
trained surrogate model (typically a GCN) [36]. In this way, an
attacker obtains the approximated gradient/loss towards edges or
edge modifications in a graph [2, 7, 27, 37] or subgraph [18] to craft
the worst-case perturbations, and subsequently transfer them to
other victim models as a practical gray-box attack. These surrogate-
based attacks have become a serious threat to GCNs because they
are able to attack the target GCNs without requiring sufficient
knowledge of them.

Adversarial defense on graphs. Extensive research efforts have
been made on improving the robustness of GCNs, which can be
typically classified into three categories: (i) robust training (e.g.,
adversarial training) [16, 29], (ii) model robustification that focuses
on either the message passing scheme or the network architec-
ture [4, 12, 35] and (iii) graph preprocessing [6, 27]. A general
drawback shared by previous methods is the lack of scalability,
which makes them less capable of dealing with graphs that are sub-
stantially larger than PubMed [23]. In addition, the aforementioned
defenses primarily aim to mitigate attacks on the entire network,
rather than protecting GCNs from local targeted adversarial attacks.

Universal attack and defense. Recent works show a new trend of
attacking neural networks by universal adversarial attacks [20, 31],
i.e., unique perturbations that transfer across different inputs. The
universal attacks have been widely studied in vision research. Until
recently, [30] first extend the idea to graph domain by crafting a
single and universal perturbation that is capable to fool a GCNwhen
applied to any target node. Another line of research is universal
defense, which devises a universal ‘watermark’ to protect neural
networks from multiple attacks [11]. Despite the recent interest
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in problems of universal defense among vision research, there has
been relatively little work that explores the universal defense in
the graph domain.

3 PRELIMINARIES

3.1 Notations

In line with the focus of our work, we briefly outline necessary
definitions used throughout this paper. Let G = (V, E) be an undi-
rected graph, with the node set V = {𝑣1, . . . , 𝑣𝑁 } and the undi-
rected edge set E = {𝑒1, . . . , 𝑒𝑀 }. The corresponding adjacency
matrix is denoted as 𝐴 ∈ {0, 1}𝑁×𝑁 with (𝑢, 𝑣) entry equaling to 1
if there is an edge between 𝑢 and 𝑣 and 0 otherwise. We denote 𝑑
the node degrees where 𝑑𝑢 =

∑
𝑣 𝐴𝑢,𝑣 . Also, each node is associated

with an 𝐹 -dimensional feature vector and 𝑋 ∈ R𝑁×𝐹 denotes the
feature matrix for all 𝑁 nodes. In the node classification task, each
node 𝑣 is associated with one class label 𝑦𝑣 ∈ C where C is the
set of all candidate classes. Given a subset of nodes Vtrain ⊂ V
are labeled, the goal is to learn a function 𝑓𝜃 that maps each node
𝑣 ∈ V to exactly one of the classes in C.

3.2 Graph Convolutional Networks

We introduce the well-established multi-layer GCN [15] for node
classification:

𝐻 (𝑙+1) = 𝜎 (�̃�−
1
2 �̃��̃�−

1
2𝐻 (𝑙 )𝑊 (𝑙 ) ), 𝑙 ≥ 0, (1)

where �̃� = 𝐴 + 𝐼𝑁 denotes the adjacency matrix with self-loop
and the corresponding degree matrix is �̃� . 𝐻 (0) = 𝑋 and 𝜎 is the
activation function such as ReLU. For the 𝑙-th graph convolutional
layer, we denote the node embeddings by 𝐻 (𝑙 ) and the learnable
weight by𝑊 (𝑙 ) .

Without loss of generality, we consider a two-layer GCN with
ReLU activation in the hidden layer, which is commonly used in
practice:

𝑍 = 𝑓𝜃 (𝐴,𝑋 ) = Softmax(𝐴 · ReLU(𝐴𝑋𝑊 (0) )𝑊 (1) ), (2)

where𝐴 = �̃�−
1
2 �̃��̃�−

1
2 . Let 𝑓𝜃 represent a GCNmodel with learnable

parameters denoted as 𝜃 = {𝑊 (0) ,𝑊 (1) }. The optimal parameters
𝜃 are learned by minimizing cross-entropy on the output of the
labeled nodes inVtrain:

L(𝑓𝜃 (𝐴,𝑋 )) = −
1

|Vtrain |
∑︁

𝑣∈Vtrain

ln𝑍𝑣,𝑦𝑣 . (3)

3.3 Adversarial Targeted Attack

Below, we present the definition of adversarial targeted attack under
the scenario of evasion (test-time) attack. Note that it is straightfor-
ward to extend the definition to adversarial untargeted attacks [37]
by suitably modifying the loss function.

Definition 1 (Adversarial targeted attack). Given a
graph G = (V, E), the goal of an attacker is to craft a perturbed
graph G′ = (V′, E′) within a budget Δ, and mislead the output of
GCNs on a target node 𝑢. The adversarial attack on GCNs can be
formulated as:

max
G′∈Φ(G)

L𝑢 (𝑓𝜃 (𝐴′, 𝑋 )),

where 𝐴′ is the perturbed adjacency matrix that represents the graph
G′, Φ(G) represents the set of all possible modified graphs that are
constrained by the attack budget Δ.

Typically, an attacker aims to find a perturbed graph G′ that
classifies target node 𝑢 as 𝑦′𝑢 such that 𝑦′𝑢 ≠ 𝑦𝑢 , which is equivalent
to maximizing the cross-entropy loss of the GCNs’ output on 𝑢.
According to [18, 36], the perturbation can be performed on the
targeted node 𝑢 or its neighborhoods, resulting in direct attack
or indirect/influence attack, respectively. In this paper, we mainly
consider the direct attack as it is more powerful than the indirect
attack [4, 18, 36].

As an attacker usually has no access to the target model in a
practical scenario, they instead train a surrogate model 𝑓𝜃 ∗ (𝐴,𝑋 )
locally and utilize the approximated loss L∗ ≈ L to find the worst-
case perturbations. The attack is also called surrogate attack [36].

3.4 Universal Defense on Graphs

We briefly outline necessary definitions of universal defense, a
newly studied defense strategy on graphs. In this work, the term
universal means applicable to any node [30], differs from that appli-
cable to any image in vision research [20].

A universal defense mainly focuses on edge-injection attacks
since (i) attackers tend to add edges between dissimilar nodes and
(ii) injection is an operation with stronger attack power compared
with deletion, the conclusions reached in prior studies [4, 27]. We
provide further discussion in Section 5. The core idea of universal
defense is to generate a unique patch 𝑝 —a length-𝑁 binary vector 𝑝 ,
where 1 indicates an attacker node1 and 0 otherwise. Without loss
of generality, we denote these attacker nodes asA and term them as
anchor nodes, a set of important nodes that may be potentially used
for attack. The universal patch 𝑝 is only computed once and can be
applied to any node. When applied to a node 𝑢, the universal patch
removes all potential adversarial edges (if exist) that are connected
to the anchor nodes:

𝐴′ = 𝐴 ◦ (1 − 𝑃),
E′ = E − {𝑒 = (𝑢, 𝑣) | 𝑣 ∈ A and (𝑢, 𝑣) ∈ E},

(4)

where ◦ is the element-wise product, 𝑃 ∈ {0, 1}𝑁×𝑁 is a derived
matrix with the 𝑢-th row and 𝑢-th column replaced by the patch
vector 𝑝 . The element (𝑖, 𝑗) in 𝑃 equals 1 indicates the corresponding
edge (𝑖, 𝑗) ∈ E is to be removed (if exists). Let G(𝑢 ) = (V, E′)
denote the modified graph and 𝐴′ the corresponding adjacency
matrix w.r.t. target node 𝑢, an effective defense should directly
prune all of the malicious edges and mitigate the adversarial effects,
while ensuring that the benign edges and downstream performance
are not compromised.

Figure 1 illustrates the universal defense in the context of adver-
sarial targeted attacks. In this case, a targeted attack aims at fooling
GCNs on a specific node 𝑣1 by modifying the graph structure. The
universal defense, in contrast, generates a universal defensive patch
𝑝 which could be applied to any nodes to defend against adversarial
attacks. We will elaborate in the next section an algorithm to find
such 𝑝 , or in other words, to identify the anchor nodes A.

1An attacker node is a maliciously added neighbor for a target node to achieve the
adversarial goal [18]
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Figure 1: An illustrative example of graph universal defense.

The universal patch 𝑝 can be applied to an arbitrary node

(here 𝑣1) to protect it from adversarial targeted attacks by

removing adversarial edges (if exist).

4 PRESENTWORK

In this section, we draw on the insights from the literature reviewed
in Related Work, and empirically investigate the intrinsic patterns
of adversarial attacks on graph data. Then, we analyze possible
reasons to understand the observations and further introduce our
proposed method.

4.1 Empirical Investigation on Adversarial

Attacks

In this subsection, we begin with an empirical study on Cora and
PubMed (dataset statistics are listed in Table 1). Specifically, we
attack different target nodes in the test set with three advanced
surrogate attacks: SGA [18], FGA [2] and IG-FGSM (IG) [27], which
craft the worst-case perturbations by leveraging the surrogate gra-
dients in different ways. The perturbation budget for each target
node is set as its degree, following [18, 36].

We perturb different nodes with these attacks and count the
frequency of each node selected as an attacker node, i.e., picked
for adversarial edges. We plot the frequency (in descending) of all
nodes on both datasets in Figure 2.

Observation I. Attackers tend to connect the target node to a
fixed set of attacker nodes, which also exhibits long-tailed distribu-
tions with a heavy imbalance in the measured frequency. As a result,
the top-50 nodes with the highest frequencies account for nearly
90% and 80% of the frequencies on both datasets, respectively.

Next, we plot the degree distribution of these high-frequency
attacker nodes in Figure 3.

Observation II.Most of the attacker nodes are low-degree nodes
(i.e., degree ≤ 2), and the phenomenon is more obvious on PubMed.
The results suggest that adversarial edges tend to link the target
node with low-degree nodes, and almost half of them are below 2
degrees. In other words, the low-degree nodes are more likely to
be maliciously added neighbors for a target node.

We will offer a further explanation on these findings in the next
subsection.

Figure 2: Frequency of top-500 selected attacker nodes by

different attacks on Cora and PubMed datasets. The top-50

nodes account for almost 90% and 80% of the frequencies on

both datasets, respectively.

Figure 3: Degree distribution of top-500 selected attacker

nodes by different attacks on Cora and PubMed datasets,

respectively.

4.2 Guard: Universal Defense on Graphs

The observation that a fixed set of low-degree nodes account for
most of the measured frequencies is surprising. This gives imme-
diately rise to a fundamental question: can we achieve a universal
defense for an arbitrary node by uncovering these attacker nodes at
test time? In the following, we will address this question with our
proposed Guard.

Recall that an optimal attack is typically achieved by exploiting
the vulnerability of a locally trained surrogate model, which de-
termines the (approximately) optimal perturbations by taking the
gradient of the surrogate loss L∗ w.r.t. the adjacency matrix 𝐴. The
largest magnitude of the gradient can be seen as a relaxation of
the worst-case perturbation determined in the brute force method.
Without loss of generality, we make the following assumption:

Assumption 1 (Optimal surrogate attack). Given a tar-
get node 𝑢, the worst-case perturbation (modification) on 𝑢 is an
edge (𝑢, 𝑣) with the largest magnitude of gradients 𝑔𝑢,𝑣 , where 𝑔 =

[ 𝜕L
∗
𝑢

𝜕𝐴
] ∈ R𝑁×𝑁 is the gradient matrix.

Assumption 1 can be easily satisfied and has been hold empiri-
cally in current works [2, 18, 27]. As we focus on the case of edge-
injection attacks, the key to identifying attacker nodes is to find
the edges corresponding to the maximum value of the gradients.

Proposition 1. For simplification, let us consider a 1-layer GCN
with output 𝑍 = Softmax(𝐴W) whereW = 𝑋𝑊 . Given a target
node 𝑢 labeled as 𝑦𝑢 , we have:

(𝑢, 𝑣∗) = argmax(𝑢,𝑣),𝑣∉N(𝑢 )

∑
𝑐∈C 𝑍𝑣,𝑐W𝑣,𝑐 −W𝑣,𝑦𝑢√

𝑑𝑣
,
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where (𝑢, 𝑣∗) denotes the edge corresponding to the largest gradient
𝑔𝑢,𝑣∗ and N(𝑢) is the set of nodes adjacent to 𝑢.

We give below the proof of Proposition 1.

Proof. The forward inference at the l-layer GCN is formally
defined as:

𝑍 = Softmax(𝐴W), 𝐴 = �̃�
1
2 �̃��̃�

1
2 . (5)

For a target node𝑢, attackers aim to find theworst-case perturbation
with the approximated loss L∗𝑢 = −ln𝑍𝑢,𝑦𝑢 . Taking derivatives by
applying the chain rule:

𝑔 =
𝜕L∗𝑢
𝜕𝐴

=
𝜕𝐴

𝜕𝐴

𝜕𝑍𝑢

𝜕𝐴

𝜕L𝑢
𝜕𝑍𝑢

∈ R𝑁×𝑁 . (6)

Following the chain rule of gradient backpropagation in terms of
the adjacency matrix 𝐴, it is easy to calculate the gradient of each
edge (𝑢, 𝑣) in the graph, or the element (𝑢, 𝑣) in 𝑔:

𝑔𝑢,𝑣 =
𝑔𝑢,𝑣√
𝑑𝑢𝑑𝑣

− 0.5 ×
∑︁

𝑤∈N(𝑢 )

𝑑𝑤𝐴𝑢,𝑤

(𝑑𝑢𝑑𝑤)
3
2
(𝑔𝑢,𝑤 + 𝑔𝑤,𝑢 ), (7)

where 𝑔𝑖, 𝑗 = [𝜕L∗𝑢/𝐴]𝑖, 𝑗 =
∑
𝑐∈C 𝑍𝑖,𝑐W𝑗,𝑐 −W𝑗,𝑦𝑖 .

According to Eq.(7), the determining term of 𝑔𝑢,𝑣 for different
nodes 𝑣 is 𝑔𝑢,𝑣/

√
𝑑𝑣 since 𝑣 ∉ N(𝑢) and other terms are constants

for a fixed target node 𝑢. For an edge (𝑢, 𝑣∗) with the largest value
of gradient, we have:

(𝑢, 𝑣∗) = argmax(𝑢,𝑣),𝑣∉N(𝑢 )𝑔𝑢,𝑣

= argmax(𝑢,𝑣),𝑣∉N(𝑢 )
𝑔𝑢,𝑣√
𝑑𝑣

= argmax(𝑢,𝑣),𝑣∉N(𝑢 )

∑
𝑐∈C 𝑍𝑣,𝑐W𝑣,𝑐 −W𝑣,𝑦𝑢√

𝑑𝑣
,

(8)

The desired result is attained.
□

Remark 1. Essentially, it is shown in Proposition 1 that the mag-
nitude of gradient 𝑔𝑢,𝑣 is determined by the term (∑𝑐∈C 𝑍𝑣,𝑐W𝑣,𝑐 −
W𝑣,𝑦𝑢 )/

√
𝑑𝑣 . That said, a node with a lower degree is more likely to

be a maliciously added neighbor for a target node under Assumption 1.

Proposition 1 is basically built on a 1-layer GCN, we made this
mild assumption to simplify our discussion and should not affect
our findings. The result still holds for an 𝑙-layer GCN, whereW
is computed by collapsing weight matrices between consecutive
layers, i.e.,W = 𝑋 ·𝑊 (0) · · ·𝑊 (𝑙−1) .

Remark 2. For any two target nodes 𝑢1 and 𝑢2, let 𝑒∗1 = (𝑢1, 𝑣∗1)
and 𝑒∗2 = (𝑢2, 𝑣∗2) be two edges corresponding to the largest gradients
for 𝑢1 and 𝑢2 respectively, then 𝑣∗1 = 𝑣∗2 ifW𝑣1,𝑦𝑢1

≈ W𝑣2,𝑦𝑢2
.

The result is straightforward from Proposition 1. The condition
W𝑣1,𝑦𝑢1

≈ W𝑣2,𝑦𝑢2
is often satisfied, since many modern neural

networks are typically overconfident in their predictions [8]. That is,
they often produce a high confidence probability for the predicted
class, while treating all others equally with an equally low probabil-
ity. The overconfidence issue of GCNs is also revealed in [18] and
still holds for the linear partW. In other words, attackers would
pick the same node when attacking different target nodes, which is
in line with our empirical results in Figure 2.

Algorithm 1 Graph Universal Adversarial Defense

Input: Graph G = (V, E); node features 𝑋 and degrees 𝑑 ; labeled
nodes setVsub, weight matrix𝑊 , target node𝑢, hyperparameters
𝑘 and 𝛼 ;

Output: Purified Graph G(𝑢 ) = (V, E′) for target node 𝑢;
1: W ← 𝑋 ·𝑊 ;
2: I∗ (𝑣) ← 0, ∀𝑣 ∈ V; ⊲ Initialize node influence score.
3: for 𝑣 ∈ V do

4: I∗ (𝑣) ← 1
𝑑𝛼
𝑣
(max𝑐∈CW𝑣,𝑐 − 1

|Vsub |
∑
𝑠∈VsubW𝑣,𝑦𝑠 );

5: end for

6: A ← {𝑣 | I∗ (𝑣) is 𝑘-largest}; ⊲ Anchor nodes.
7: E′ ← E − {𝑒 = (𝑢, 𝑣) | 𝑣 ∈ A and (𝑢, 𝑣) ∈ E};
8: return G(𝑢 ) = (V, E′);

Intuitively, for an edge to inject, we can determine how impactful
that change was by looking at the gradient w.r.t. the adjacency
matrix 𝐴. According to Proposition 1, we measure the sensitivity
of node 𝑢 to node 𝑣 , or the influence of 𝑣 on 𝑢, by measuring the
determining part of the gradient corresponding to the edge (𝑢, 𝑣).
For a target node 𝑢, the influence score I𝑢 (𝑣) captures the relative
influence of node 𝑣 on 𝑢, when 𝑢 being a target node:

I𝑢 (𝑣) =
∑
𝑐∈C 𝑍𝑣,𝑐W𝑣,𝑐 −W𝑣,𝑦𝑢

𝑑𝛼𝑣
, (9)

where 𝛼 is a scaling factor that controls the impact of node de-
gree and 𝛼 = 0.5 for a standard case in Proposition 1.W can be
easily obtained by training a surrogate SGC or linear GCN locally.
Note that

∑
𝑐∈C 𝑍𝑣,𝑐 = 1, we use the upper bound of I𝑢 (𝑣) as the

approximated influence score for the ease of computation:

I∗𝑢 (𝑣) =
max𝑐∈CW𝑣,𝑐 −W𝑣,𝑦𝑢

𝑑𝛼𝑣
. (10)

By using the upper bound of I𝑢 (𝑣), we can hereby reduce the
computational complexity of our approach while still achieving a
reasonable approximation of the true influence score.

To simulate the attacks on different target nodes 𝑢, we can com-
pute the influence distribution of all nodes based on a subset of
labeled nodesVsub ⊆ Vtrain, by averaging the influence scoreI𝑢 (𝑣)
w.r.t. different target node 𝑢 ∈ Vsub:

I∗ (𝑣) = 1
|Vsub |

∑︁
𝑢∈Vsub

I∗𝑢 (𝑣)

=
1
𝑑𝛼𝑣
(max
𝑐∈C
W𝑣,𝑐 −

1
|Vsub |

∑︁
𝑢∈Vsub

W𝑣,𝑦𝑢 )
(11)

Under Assumption 1, the node with the highest influence score
is the most likely to be an attacker node. Therefore, we derive the
set of anchor nodes (size 𝑘) as:

A = {𝑣 | I∗ (𝑣) is 𝑘-largest}. (12)

There is a trade-off between performance and robustness, with a
larger 𝑘 would result in a better defense, but might sacrifice predic-
tive accuracy on clean graphs as it removes a large proportion of
edges. The detailed algorithm of Guard is described in Algorithm 1.
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5 DISCUSSION

In this section, we provide further discussion of our proposed
Guard. We first explain the reason why Guard focuses only on
edge injection attacks rather than edge deletion attacks, and then
discuss its time complexity.

5.1 Edge Injection Attack & Deletion Attack

We focus on edge insertion rather than edge deletion due to the
following reasons: (i) Attackers tend to add edges between dis-

similar nodes. This is an important conclusion reached in [27], and
also validated in [13]. Therefore, a simple similarity-based prepro-
cessing method achieves is able to achieve good defensive results.
(ii) Insertion is a more powerful attack operation compared

to compared with deletion. In [4], the authors conduct an empir-
ical study by enumerating all possible attacks of one-edge insertion
and one-edge deletion. The results show that one-edge insertion
attacks are significantly more successful in attacking nodes than
one-edge deletion attacks. These findings are consistent with the
previous study [1]. (iii) Edge insertion attacks are more prac-

tical for real-world scenarios. In practice, attackers may not
have enough access to execute the ‘deletion’ manipulation due to
legal restrictions. For example, in a recommender system, users can
only buy/add new items (edge insertion) instead of deleting their
purchase/interaction histories (edge deletion). (iv) Edge deletion
attack is not usually the main concern for the vulnerability

of GNNs. Even in an extreme case, i.e., an attacker removes all the
edges connected to the target node, the GCNs are at worst degraded
to MLPs. Nevertheless, MLPs are also able to maintain a certain
classification accuracy although slightly underperforming GCNs.

5.2 Time Complexity

Here we discuss the time complexity of Guard. As described above,
the overall time complexity of Guard is O(𝑁 |Vsub | + 𝑁 log𝑘) 2.
Specifically, the computation of Guard consists of three main steps:
(i) obtainW = 𝑋 ·𝑊 (0) · · ·𝑊 (𝑙−1) ; (ii) compute the approximated
influence score I∗𝑣 for each node 𝑣 ∈ V; (iii) identify 𝑘 nodes with
largest I∗ as the anchor nodes A. Note that, step (i) is not usually
the major bottleneck of Guard, sinceW can be obtained directly
from the victim GCNs. Taken together, the overall time complexity
of Guard isO(𝑁 |Vsub |+𝑁 log𝑘)), where𝑁 is the number of nodes,
Vsub is a subset of labeled nodes, 𝑘 is the number of anchor nodes.
The computation of I∗ in step (ii) can be trivially parallelized,
and 𝑘 is usually small (𝑘 ≪ 𝑁 ), thus the overall computation
overhead is low and acceptable. Besides, the computation needs
to be performed only once for any node in the graph, which also
benefits the scalability of Guard.

6 EXPERIMENTS

In this section, we perform experimental evaluations of our pro-
posedGuardmethod. The goal of our experiments is to test whether
GCNs armedwithGuard aremore robust and reliable against adver-
sarial targeted attacks, particularly compared with current defenses.
In what follows, we first introduce the experimental settings and
then present empirical results.

2Note that |Vsub | and 𝑘 are often small.

Table 1: Dataset Statistics. For Cora and PubMed we extract

the largest connected component of graphs.

Cora PubMed arXiv Reddit

# Nodes 2,485 19,717 169,343 232,965
# Edges 10,138 88,648 1,166,243 11,606,919
# Features 1,433 500 128 602
# Classes 7 3 6 41
Feature Type Binary Binary Continuous Continuous
Avg. degree 4.08 4.50 13.70 99.65
degree≤2 36% 63% 65% 3%

6.1 Experimental Settings

6.1.1 Datasets. The experiments are conducted on four real-world
benchmark datasets, including three citation networks, i.e., Cora,
PubMed [23], and ogbn-arXiv (arXiv) [10], one social graph dataset
Reddit [9]. For Cora and PubMed, we preprocess and split them the
same as [4, 18], which extract the largest connected component of
the graph and split the dataset into 10%/10%/80% for training/valida-
tion/testing. For arXiv and Reddit, we use public splits and settings
in our experiments. Statistics of these datasets are summarized in
Table 1.

6.1.2 Attacks. We employ five state-of-the-art adversarial targeted
attacks, including four gradient-based attacks, i.e., FGA [2], IG
(short for IG-FGSM [27]), SGA [18], and RBCD [7], and one greedy-
based attack Nettack [36]. All these methods take GCN or SGC as
surrogate models to conduct transfer attacks. Following [18], we
randomly choose 1,000 nodes from the test set as target nodes for
each dataset. We define the perturbation budget Δ = 𝑑𝑢 for a target
node 𝑢 where 𝑑𝑢 is the degree of node 𝑢, as advocated in [18, 36].

6.1.3 Defenses. As graph universal defenses were barely studied,
we design two relevant baselines for Guard, including Rand and
Deg. Rand picks anchor nodes randomly while Deg picks anchors
nodes with the lowest degrees. Additionally, we compare Guard
with other non-universal defense methods: Jaccard [27], SVD [6],
RGCN [35], SimPGCN [12], ElasticGNN [19], MedianGCN [4], Soft-
Median [7], and GNNGUARD [32]. Among these methods, SVD and
Jaccard are preprocessing-based methods, which filter adversarial
perturbations based on a (dense) low-rank approximation of the
adjacency matrix and feature dissimilarity, respectively. They are
not universal defenses. RGCN, SimPGCN, ElasticGNN, MedianGCN,
SoftMedian, and GNNGUARD are improved GCNs (model-based)
with robust architectures, message passing schemes, or regulariza-
tions. All the defense methods are configured according to the best
performance setting in their results.

6.1.4 Victim models. In our evaluation, we use GCN [15] and
SGC [26] as the default victim models. We use two-layer GCN
with hidden units 16 for Cora, PubMed, and Reddit, and three-layer
GCNwith hidden units 256 for arXiv. For SGC, the number of layers
is set as 2 across all datasets. We train all models for 200 epochs
using Adam [14] optimizer, with an initial learning rate of 0.01.
The best models are picked according to their performance on the
validation set.
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Table 2: Comparison of clean accuracy (%) with preprocessing-based defenses. (OOM: out of memory. N/A: not applicable.)

GCN +Jaccard +SVD +Rand +Deg +Guard SGC +Jaccard +SVD +Rand +Deg +Guard

Cora 82.7±0.5 81.6±0.7 77.8±0.9 82.7±0.4 82.7±0.2 82.7±0.3 83.1±0.8 82.5±0.6 77.6±1.0 82.6±0.5 83.3±0.3 83.1±0.5
PubMed 84.2±0.3 84.2±0.6 OOM 84.1±0.2 84.2±0.1 84.3±0.4 83.1±0.4 83.3±0.5 OOM 82.8±0.5 83.1±0.3 83.3±0.3
arXiv 65.1±0.5 N/A OOM 64.5±0.2 65.1±0.3 65.0±0.2 63.4±0.7 N/A OOM 63.1±0.5 63.4±0.5 63.3±0.4
Reddit 92.7±0.5 N/A OOM 92.4±0.2 92.9±0.2 92.7±0.4 94.3±0.6 N/A OOM 94.0±0.3 94.1±0.4 94.3±0.2

Table 3: Comparison of classification accuracy (%) with preprocessing-based defenses against adversarial targeted attacks. The

best results on GCN and SGC are boldfaced, respectively.

Dataset Attack GCN +Jaccard +SVD +Rand +Deg +Guard SGC +Jaccard +SVD +Rand +Deg +Guard

Cora

SGA 13.8±0.4 30.1±0.4 69.5±0.7 15.3±0.4 38.7±0.2 81.7±0.3 3.2±0.3 24.3±0.5 70.0±0.6 5.3±0.2 36.3±0.3 81.4±0.2
FGA 11.9 ±0.3 31.7±0.5 74.2±0.6 14.2±0.4 34.9±0.3 75.5±0.4 13.4±0.6 34.6±0.6 74.9±0.9 16.8±0.5 40.2±0.4 79.9±0.5
IG 15.2±0.8 40.9±0.6 77.5±0.8 16.1±0.4 29.5±0.6 64.8±0.6 12.9±0.7 44.4±0.7 75.8±1.2 15.3±0.5 37.1±0.6 72.9±0.6
RBCD 10.7±0.3 28.8±0.6 70.1±0.4 14.5±0.8 35.2 71.3±0.4 8.5±0.5 23.9±0.5 69.4±0.6 12.5±0.5 39.6±0.3 78.7±0.7
Nettack 7.9±0.8 35.4±0.6 65.2±0.3 10.9±0.7 22.6±0.9 56.4±0.2 4.8±0.6 19.2±0.4 62.7±0.4 8.4±0.3 22.7±0.5 59.4±0.2

PubMed

SGA 4.0±0.4 8.6±0.2 OOM 4.3±0.3 4.0±0.3 77.6±0.2 1.3±0.3 6.4±0.3 OOM 1.9±0.5 1.3±0.2 76.7±0.2
FGA 2.6±0.4 5.9±0.5 OOM 2.9±0.5 2.6±0.4 72.7±0.4 3.7±0.6 6.5±0.4 OOM 4.1±0.6 3.7±0.4 71.5±0.5
IG 9.6±0.5 14.1±0.4 OOM 9.9±0.4 9.6±0.4 77.1±0.3 9.5±0.4 14.0±0.3 OOM 10.3±0.6 9.5±0.2 76.8±0.3
RBCD 2.3±0.8 7.4±0.4 OOM 8.4±0.7 10.2±0.7 71.9±0.2 2.1±0.5 6.3±0.6 OOM 8.8±0.5 9.5±0.8 70.4±0.3

arXiv

SGA 0.5±0.5 N/A OOM 1.1±0.5 10.1±0.6 62.3±0.3 0.3±0.9 N/A OOM 0.9±0.9 10.4±0.8 62.0±0.8
RBCD 0.3±0.1 N/A OOM 0.8±0.4 6.4±0.3 60.9±0.5 0.1±0.2 N/A OOM 0.6±0.6 9.2±0.7 61.7±0.4

Reddit

SGA 3.1±0.2 N/A OOM 4.2±0.3 86.5±0.6 89.8±0.4 0.0±0.0 N/A OOM 0.0±0.1 84.1±0.7 87.2±0.3
RBCD 2.7±0.1 N/A OOM 3.8±0.5 72.4±0.7 87.9±0.6 0.3±0.0 N/A OOM 0.3±0.0 74.5±0.5 85.6±0.8

6.1.5 Hyperparameter setting. For universal defense methods, i.e.,
Rand, Deg and Guard, we set different 𝑘 across different datasets,
where 𝑘 = 200 for Cora, 𝑘 = 500 PubMed, 𝑘 = 10, 000 for arXiv
and 𝑘 = 20, 000 for Reddit. The scaling factor 𝛼 for Guard is set to
2 across all datasets. We discuss them in Section 6.4. For baseline
methods, the approximated rank of SVD is set as 50 and the thresh-
old of Jaccard is set as 0.01 to filter adversarial perturbations. For
the remaining configuration, we closely follow the setup of [4, 18].

6.1.6 Evaluation protocol. We first use various attacks to obtain
the perturbed graphs w.r.t. the 1,000 target nodes in test set. Then,
for all generated graphs we record the classification accuracy of
GCNs on these target nodes. We evaluate the models/methods on
the evasive setting, i.e., the attack happens after the model is trained.
Performance is reported by the average accuracy with standard
deviation based on five runs on the clean/perturbed graphs.

6.1.7 Implementation details. We implement our method in Py-
Torch [22] and DGL [25]. For the other methods, we use all the
original papers’ code from their GitHub pages. All experiments
are conducted on an NVIDIA RTX 3090 Ti GPU with 24 GB mem-
ory unless specified. Code for reproducibility is available at https:
//github.com/EdisonLeeeee/GUARD.

6.2 Clean Performance

We will first investigate whether Guard hinders the performance
of GCNs in the absence of adversarial attacks. Table 2 summarizes
the results on clean datasets. Here we only compare our methods
with preprocessing-based defenses for a fair comparison. Note that

SVD requires high computation overhead (typically O(𝑁 3)) for
approximating the low-rank components, making it challenging
to scale to large datasets. Jaccard is not applicable for arXiv and
Reddit since it can only operate on binary node features to calculate
similarity scores between nodes. Both approaches applied to GCNs
result in a decrease in classification accuracy. In particular, the
performance of GCNs has a significant drop when SVD is applied.
One promising property of universal defenses (particularly Guard)
we want to remark on is the clean performance. We can observe
from Table 2 that universal defense methods, when applied on
GCNs, have little impact on the clean accuracy of the model. In
this regard, we find Guard and Deg to be superior. This is due
to the fact that both Guard and Deg tend to identify low-degree
nodes as potential attacker nodes, which are usually not connected
with the target node in a sparse graph without adversarial attacks.
Therefore, the accuracy of GCNs armed with universal defenses is
not sacrificed in benign situations. Also in terms of scalability and
flexibility, we find Guard to be superior compared with SVD and
Jaccard. It can easily scale to large datasets like arXiv and Reddit
without any constraints and additional overheads.

6.3 Robustness against Adversarial Attacks

6.3.1 Robustness compared with preprocessing-based defenses. In
Table 3, we present the experimental results against different ad-
versarial attacks. Note that Nettack is a greedy-based exhaustive
attack that is not feasible for datasets larger than Cora. Addition-
ally, both FGA and IG require a dense adjacency matrix to compute

https://github.com/EdisonLeeeee/GUARD
https://github.com/EdisonLeeeee/GUARD
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Table 4: Comparison of classification accuracy (%) withmodel-based defenses against adversarial targeted attacks.

Method

Cora PubMed arXiv Reddit

SGA FGA IG RBCD Nettack SGA FGA IG RBCD SGA RBCD SGA RBCD

GCN 13.8±0.4 11.9±0.3 15.2±0.8 10.7±0.3 8.7±0.9 4.0±0.4 2.6±0.4 9.6±0.5 2.3±0.8 0.5±0.5 0.3±0.1 3.1±0.2 2.7±0.1
SGC 3.2±0.3 13.4±0.6 12.9±0.7 8.5±0.8 4.8±0.6 1.3±0.3 3.7±0.6 9.5±0.4 2.1±0.5 0.3±0.9 0.1±0.2 0.0±0.0 0.3±0.0

RGCN 21.4±0.4 15.4±0.5 15.4±0.6 12.2±0.7 9.1±0.9 12.4±0.2 13.6±0.5 19.0±0.4 4.9±0.5 OOM OOM OOM OOM
SimPGCN 11.4±0.5 13.5±0.6 12.5±0.3 14.2±0.3 8.3±0.7 16.4±0.5 13.5±0.5 18.6±0.7 9.4±0.9 OOM OOM OOM OOM
ElasticGNN 35.5±0.4 37.2±0.5 35.8±0.4 32.7±0.4 29.5±0.2 22.6±0.3 20.4±0.4 27.2±0.2 23.3±0.8 OOM OOM OOM OOM
MedianGCN 34.9±0.7 35.1±0.6 42.3±0.8 32.5±0.5 31.4±0.7 52.3±0.4 50.2±0.7 59.4±0.7 51.7±0.8 OOM OOM OOM OOM
SoftMedian 35.2±0.3 36.4±0.3 45.5±0.6 33.7±0.6 32.9±0.1 51.6±0.2 54.7±0.5 61.4±0.8 55.3±0.4 53.2±0.8 50.7±0.6 78.6±0.9 74.3±0.8
GNNGUARD 59.9±0.3 54.1±0.3 62.6±0.4 60.4±0.5 57.8±0.9 66.2±0.2 58.9±0.3 67.1±0.5 62.3±0.4 OOM OOM OOM OOM

GCN+Guard 81.7±0.3 75.5±0.4 64.8±0.6 71.3±0.4 56.4±0.2 77.6±0.2 72.7±0.4 77.1±0.3 71.9±0.2 62.3±0.3 60.9±0.5 89.8±0.4 87.9±0.6
SGC+Guard 81.4±0.2 79.9±0.5 72.9±0.6 78.7±0.7 59.4±0.2 76.7±0.2 71.5±0.5 76.8±0.3 70.4±0.3 62.0±0.8 61.7±0.4 87.2±0.3 85.6±0.8

the approximated gradients of each edge, which throw an out-of-
memory error when applied to larger datasets arXiv and Reddit.
We found that Guard can successfully defend against adversarial
attacks for GCNs and achieves the best results in most cases. The
results suggest that the adversarial attacks are “reversible” by a
well-designed defensive patch. Also, one can see that Deg achieved
a good performance on Cora and Reddit, reflecting the attacker’s
tendency to pick low-degree nodes to craft adversarial edges. On
PubMed and arXiv, two datasets exhibit a more significant long-
tail distribution, Deg did not perform as well as expected, which
indicates that simply identifying anchor nodes based on node de-
grees can not ensure the attacker nodes are included. By contrast,
Guard is more stable and achieves the best performance in most
cases. Although Guard is built upon the empirical observations on
gradient-based attacks, we can also see that Guard is still effective
in defending against Nettack, which is a non-gradient-based attack.
This demonstrates the versatility and generalizability of Guard as
a defense mechanism.

6.3.2 Robustness compared with model-based defenses. Given the
promising results demonstrating the increased robustness of GCNs
with Guard, we conduct further comparisons with other state-of-
the-art robust GCNs. We use vanilla GCN and SGC as backbone
models in our experiments. In Table 4, we present the experimental
results on four datasets under different attacks. The results have
shed light on the vulnerability of current defenses, which suffer
seriously from adversarial targeted attacks. The results are sobering
– most defenses show no or only marginal improvement compared
to an undefended baseline. This is also in line with the results re-
ported in [21] Among the compared methods, MedianGCN and
SoftMedian, which leverage median as an aggregation function
during message passing, have demonstrated good performance
against adversarial attacks. GNNGUARD has achieved the best per-
formance among the baselines by utilizing the attention mechanism
to assign smaller weights for adversarial edges. However, they are
not able to scale to large graphs. It is obvious that although the
vanilla GCN and SGC are less robust, with the help of Guard, the
robustness can be significantly improved and even outperforms the
state-of-the-art methods with large margins. Overall, the results
provide empirical evidence of our method’s superior performance
and scalability compared to state-of-the-art approaches.

(a) (b)

Figure 4: (a) Visualization of Cora citation graph with anchor

nodes highlighted in pink. (b) Influence score of all nodes

on Cora dataset. Many anchor nodes have low degrees but

contribute significantly to the overall node importance.

6.4 Exploratory Results

6.4.1 Visualization on anchor nodes. We present the visualization
of the Cora citation graph with anchor nodes (here 𝑘 = 50) identi-
fied by Guard in Figure 4(a). It reveals that the anchor nodes are
typically low-degree nodes, which means that most of the nodes in
a large and sparse graph will not be connected with anchor nodes.
In benign situations, a clean graph is insensitive to Guard, since
the connection between a target node and an anchor node which
Guard attempts to remove does not exist in most cases. However,
malicious attackers tend to exploit these nodes to perturb the target
nodes, which makes Guard effective for an attacked graph.

6.4.2 Influence score. According to Proposition 1, we can also
consider the influence score I∗𝑢 in Eq. (11) as the influence on the
GCNs’ outputs when connecting node 𝑢 to any target node. In
this regard, a larger I∗𝑢 would lead to a stronger attack when node
𝑢 becomes the attacker node. Based on the analysis, we plot the
influence score of all nodes on Cora dataset in Figure 4(b), as an
illustrative example. The results suggest a long-tailed distribution
where the influence score of tailed nodes ranked after 200th is
marginal. In other words, GCNs are more sensitive to the top 200
nodes on Cora. Therefore, if we set the anchor set size 𝑘 as 200 in
Guard, most of the attacks on Cora could be defended. This is in
line with the results in Table 3 and further explains why Guard is
effective in defending against adversarial targeted attacks.
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Table 5: Running time of Guard on four datasets.

Cora PubMed arXiv Reddit

Size 𝑘 200 500 10,000 20,000
Time 2ms 10ms 292ms 102ms

Table 6: Performance of Guard on Cora and Pubmed datasets

under various attacks. The results are averaged over five runs.

Cora PubMed

GAT +Guard JKNet +Guard GAT +Guard JKNet +Guard

Clean 83.3 83.2 83.2 83.3 84.8 84.8 83.9 83.7

SGA 29.2 82.1 6.2 81.5 12.2 84.0 4.3 74.1
FGA 36.9 79.4 16.2 79.2 12.4 78.5 8.1 75.0
IG 29.0 75.9 12.3 69.2 17.0 83.9 28.3 83.2
RBCD 25.4 73.5 9.3 76.7 10.4 82.1 6.2 77.5

6.4.3 Efficiency of Guard. As a universal defense method, Guard
also enjoys high efficiency and low complexity given its superior
effectiveness as demonstrated in previous sections. Table 5 shows
the running time of Guard on four datasets. The running time
reported here does not include the training time of the surrogate
model. We can see that the computation of anchor nodes is efficient
once the surrogate model is given. The running time is quite ac-
ceptable even on large datasets arXiv and Reddit. Moreover, Guard
can be trivially parallelized and accelerate the computations on
larger graphs. Note that the anchor nodes are only computed once
to form the universal patch, which further shows the superiority
of our method in terms of efficiency.

6.4.4 Performance on other GCNs. To make our results more con-
vincing, we conduct additional experiments on GAT and JKNet.
The results are summarized in Table 6, which reveal similar obser-
vations: (i) Guard effectively enhances the robustness of GAT and
JKNet without compromising their clean performance. (ii) Guard
significantly outperforms undefended baselines against a variety
of attacks. These observations further demonstrate the generaliz-
ability and effectiveness of Guard in improving the robustness of
various GCNs against adversarial attacks. Most importantly, the
proposed universal defense can be a valuable addition to existing
defenses, providing a reliable defense against adversarial attacks in
real-world applications.

6.4.5 Hyper-parameter analysis. We perform case studies on four
datasets to qualitatively evaluate the impact of 𝑘 and 𝛼 in Guard,
respectively. We report the performance of GCN with Guard by
varying one and fixing another as the optimal value. As shown in
Figure 5, a larger value of 𝑘 leads to a larger set of anchor nodes
and thus improves the robustness of GCN. When 𝑘 reaches a crit-
ical value, e.g., 450 on Cora, the accuracy of GCN against attacks
reaches the clean accuracy, which means the adversarial attacks
are successfully defended. In most cases, the performance of GCN
changes smoothly on the clean graph, which indicates that GCN
is not sensitive to Guard in benign situations. Observed from Fig-
ure 6, we can see that Guard is more sensitive to 𝛼 on Cora and
Reddit, as evidenced by increasing 𝛼 can significantly improve the

Figure 5: The accuracy of GCN+Guard on four datasets with

varying the number of anchor nodes 𝑘 , repeated five times.

Figure 6: The accuracy of GCN+Guard on four datasets with

varying the scaling factor 𝛼 , repeated five times.

performance of Guard and the best performance is achieved when
𝛼 = 2. In contrast, Guard is less sensitive to 𝛼 on PubMed and
arXiv. The difference may be due to the different sparsity of the
two datasets. Overall, the results are consistent with our findings
in Figure 3 as the malicious edges are typically those connected
with low-degree nodes. These findings highlight the importance of
identifying low-degree nodes as potential targets for adversarial
attacks in advance.

7 CONCLUSION AND FUTUREWORK

In this work, for the first time, we study a novel problem of protect-
ing GCNs from adversarial targeted attacks with a universal defense
method. We demonstrate that attackers tend to perturb target nodes
with a fixed set of low-degree nodes. We analyze possible reasons
to explain the finding. Our understanding motivates us to propose
Guard, a simple yet effective method to enhance the robustness of
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GCNs. Specifically, Guard generates a universal patch by explicitly
identifying the possible attacker nodes and pruning all suspicious
edges in advance to protect important local nodes from multiple
adversarial targeted attacks. In our extensive experimental evalua-
tion, Guard can successfully defend against various strong attacks,
achieving state-of-the-art robustness without sacrificing accuracy
when applied to several established GCNs.

Despite the promising experimental justifications, our method
might potentially suffer from some limitations: (i) Currently, we
only consider the purification in the context of structural pertur-
bations, however, adversarial perturbations will occur at the level
of features and nodes. The defense strategy should be adapted to
meet the requirements to defend against other forms of adversarial
attacks (e.g., attacks on node features). (ii) Our work is specific to
the node classification task, although it is also possible to extend
the proposed method in the future to other node-related tasks (e.g.,
link prediction) by suitably modifying the loss function. We leave
these for future work.
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