
iHAS: Instance-wise Hierarchical Architecture Search
for Deep Learning Recommendation Models

Yakun Yu
yakun2@ualberta.ca
University of Alberta

Edmonton, Alberta, Canada

Shi-ang Qi
shiang@ualberta.ca
University of Alberta

Edmonton, Alberta, Canada

Jiuding Yang
jiuding@ualberta.ca
University of Alberta

Edmonton, Alberta, Canada

Liyao Jiang
liyao1@ualberta.ca
University of Alberta

Edmonton, Alberta, Canada

Di Niu
dniu@ualberta.ca

University of Alberta
Edmonton, Alberta, Canada

ABSTRACT
Current recommender systems employ large-sized embedding ta-
bles with uniform dimensions for all features, leading to overfitting,
high computational cost, and suboptimal generalizing performance.
Many techniques aim to solve this issue by feature selection or
embedding dimension search. However, these techniques typically
select a fixed subset of features or embedding dimensions for all in-
stances and feed all instances into one recommender model without
considering heterogeneity between items or users. This paper pro-
poses a novel instance-wise Hierarchical Architecture Search frame-
work, iHAS, which automates neural architecture search at the in-
stance level. Specifically, iHAS incorporates three stages: searching,
clustering, and retraining. The searching stage identifies optimal
instance-wise embedding dimensions across different field features
via carefully designed Bernoulli gates with stochastic selection and
regularizers. After obtaining these dimensions, the clustering stage
divides samples into distinct groups via a deterministic selection
approach of Bernoulli gates. The retraining stage then constructs
different recommender models, each one designed with optimal
dimensions for the corresponding group. We conduct extensive ex-
periments to evaluate the proposed iHAS on two public benchmark
datasets from a real-world recommender system. The experimental
results demonstrate the effectiveness of iHAS and its outstanding
transferability to widely-used deep recommendation models.

CCS CONCEPTS
• Information systems→ Recommender systems; Online ad-
vertising.

KEYWORDS
recommender system, instance-wise, embedding dimension search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3614925

ACM Reference Format:
Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, and Di Niu. 2023. iHAS:
Instance-wise Hierarchical Architecture Search for Deep Learning Recom-
mendation Models. In Proceedings of the 32nd ACM International Confer-
ence on Information and Knowledge Management (CIKM ’23), October 21–25,
2023, Birmingham, United Kingdom. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3583780.3614925

1 INTRODUCTION
Recommender systems, which aim to predict the preference of
users, have been widely deployed in various real-world scenarios,
e.g., online advertising [3, 27], social media [9], news apps [39], etc.
Deep learning recommendation models (DLRMs) typically take a
large amount of categorical (e.g., gender) or numerical (e.g., age)
field features as input. These features are first encoded into high-
dimensional sparse one-hot vectors, which are later mapped into
real-valued dense vectors via embedding tables. The recommender
model then feeds these embeddings into a feature interaction layer
which usually consists of deep neural network (DNN) [6] or factor-
ization machine (FM) [8, 14, 26, 34] to model user preferences for
final prediction.

The embedding tables play a fundamental role in the recom-
mendation system, as they dominate the majority of parameters.
However, most existing methods construct their proposed recom-
mender models with large-sized embedding tables and a uniform
dimension size for all possible fields [8, 10, 29], which may lead to
overfitting, high computational cost, and poor model generalization
[15, 25, 33]. Therefore, the first objective for an optimal DLRM is to
find optimal embedding dimensions for different fields and remove
redundant dimensions. Performing embedding dimension search
is also sufficient to include feature selection, i.e., the optimal di-
mension for a field feature could be zero, which means completely
excluding this feature.

A common approach for embedding dimension search is to em-
ploy the l0 norm on the dimensions to penalize the count of non-
zero dimension entries. However, as the l0 norm poses a computa-
tional challenge for gradient descent, researchers have attempted
to substitute l0 with a surrogate function, such as the l1 norm for
LASSO [32], yet achieving limited selection ability [35]. Recently,
probabilistic approaches [18, 33] suggest utilizing Bernoulli random
variables (RVs) with Gumbel-Softmax approximations to identify
the top 𝐾 features with the highest probabilities. Though these

ar
X

iv
:2

30
9.

07
96

7v
1 

 [
cs

.I
R

] 
 1

4 
Se

p 
20

23

https://doi.org/10.1145/3583780.3614925
https://doi.org/10.1145/3583780.3614925


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, & Di Niu

methods can be applied for dimension selection, we have empiri-
cally observed that the probabilities learned are often indistinguish-
able. Therefore, selecting the top 𝐾 features/dimensions based on
these probabilities may inadvertently result in either the exclusion
of critical features/dimensions or the inclusion of irrelevant ones.

Furthermore, prior approaches uniformly apply embedding di-
mension selection across all instances in the datasets, therefore
disregarding the inherent variations between individual samples.
This one-size-for-all approach can be inadequate in many scenarios,
especially when dealing with highly heterogeneous populations
where relevant features can significantly diverge across users or
across items. For example, in a movie recommendation system, the
feature “age” usually plays a crucial role in recommending Disney
movies, thereby possibly necessitating a larger embedding dimen-
sion. Conversely, “age” is less relevant for comedy films, resulting
in a smaller dimension size. Thus, it is evident that treating all
instances identically may overlook these context-specific nuances.
Intuitively speaking, when dimension selection is performed at the
instance level, we can create neural architectures that are better
suited to individual samples. Such an approach not only results in
superior performance but also enables faster inference times by
focusing on the most relevant dimensions of each sample.

In this paper, we propose an instance-wise Hierarchical Archi-
tecture Search framework, iHAS, which attempts to perform auto-
matic architecture search on the instance level, using hierarchical
training procedures for DLRMs. Specifically, iHAS includes three
learning stages: searching, clustering, and retraining. The searching
stage aims to find the optimal instance-wise embedding dimensions
across different fields via a carefully designed “Bernoulli gate” with
stochastic selection mode and a regularizer. After selecting instance-
wise embedding dimensions, we separate samples into different
groups based on a novel deterministic selection approach in the
clustering stage. The retraining stage trains different recommender
models, with optimal dimensions tailored to different groups. Dur-
ing inference time, each test sample will first be assigned to a
suitable group, where predictions are made by the corresponding
recommender model. We summarize our major contributions as:

• We propose a hierarchical training framework that uses
instance-wise “Bernoulli gates” to facilitate effective dimen-
sion search for each sample.

• We apply a sparse and bi-polarization regularizer in the
objective function to help the model learn distinguishable
Bernoulli RVs, and use a threshold selector for downstream
deterministic selection.

• To balance the trade-off between the one-size-for-all and
full-customization (which is not applicable with finite data
size) strategies, we propose to divide samples into clusters
and develop tailored recommender models for each cluster.

We empirically evaluate the performance of our framework on two
large-scale benchmark datasets. Our experimental results indicate
a notable superiority of our approach over various state-of-the-art
baseline models on both datasets. Furthermore, the transferability
analysis demonstrates our framework can be effectively transferred
to diverse deep recommender models, thereby enhancing their

performance. Additionally, our framework offers an efficiency ad-
vantage as it requires less inference time than competing baseline
models.

2 RELATEDWORK
This section introduces the main related works to our study, focus-
ing on feature-based recommender models and AutoML approaches
for recommendation systems.

2.1 Feature-based Recommender Models
Feature-based recommender models take sparse, high-dimensional
features from users and items as input and transform them into
low-dimensional representations to capture user preferences for
improved recommendations. For example, Cheng et al. [4] propose
Wide&Deep (W&D), a model composed of a linear module and
a Multi-Layer Perceptron (MLP) layer to combine the benefits of
memorization and generalization for recommender systems. Guo
et al. [8] propose DeepFM that further integrates the power of fac-
torization machines based on W&D to learn high-order feature
interactions for recommendations. Recently, advanced neural net-
works, such as attention-based models [29], have been developed.
However, these techniques apply a fixed embedding dimension for
all features, which would downgrade the model performance and
consume substantial computational resources.

2.2 AutoML for Recommendations
Automated Machine Learning (AutoML) has recently become a
research hotspot due to its potential to automate the design process
for recommender systems, minimizing human involvement. The
research directions include feature selection [15, 33], embedding
dimension search [37, 38], model architecture search [5], and other
component search [30, 31, 36]. Feature selection involves selecting
a subset of field features in recommendation systems. For example,
AutoField [33] uses a simple controller based on differentiable ar-
chitecture search [16] to select the top 𝐾 field features. AdaFS [15]
enhances AutoField by modifying the controller to assign feature
weights to fields for different samples. The objective of embedding
dimension search is to find mixed embedding sizes for each field.
For example, AutoEmb [38] finds the optimal dimension for each
feature using differentiable search [16]. AutoDim [37] selects the
best dimension for each field from a group of candidate dimensions
in the same way as AutoEmb. Model architecture search explores
various network architectures and selects the optimal one [5].

Our method is in alignment with embedding dimension search.
All instances in the above methods share a uniform dimension size
for each field. In contrast, our approach adaptively selects dimen-
sions for each instance via the proposed Bernoulli gates, thereby
considering the difference between individuals. Moreover, we in-
troduce a polarization regularizer to overcome the shortcomings of
the commonly-used top 𝐾 selection strategy. Furthermore, rather
than processing all samples through a single model, we propose
to divide samples into clusters and train different recommender
models with optimal dimensions tailored to different clusters. These
unique and innovative designs in our proposed method have been
proven effective in terms of both performance enhancement and
inference cost saving.



iHAS: Instance-wise Hierarchical Architecture Search for DLRMs CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

3 METHOD
This section introduces the technical specifications of the proposed
iHAS framework, as visualized in Figure 1. We first provide a con-
cise overview of the entire hierarchical training framework. Subse-
quently, the primary modules within our framework are described,
as well as how to optimize them within each hierarchical stage.

3.1 Overview
The methodology for the iHAS framework comprises three stages:
searching, clustering, and retraining. It involves three principal
modules: deep recommendation models (consisting of an embed-
ding layer and an MLP component) for predicting user preferences,
a Bernoulli gates layer responsible for dimension selection, and a
K-means cluster algorithm that partitions the heterogeneous data.

In the searching stage, the key objective is to identify the optimal,
instance-wise embedding dimensions across different fields, thus
facilitating an accurate recommendation prediction. As shown in
Figure 1, the categorical field features are directed to an embedding
layer to generate embedding representations. These representations
are then processed through the Bernoulli gates to produce embed-
ding masks using a stochastic selection mode (see Section 3.3.1).
Each embedding mask comprises a binary vector that serves as
a gate on whether the corresponding dimension should be incor-
porated into the downstream architecture. Then the framework
conducts an element-wisemultiplication between a sample’s embed-
ding representations and embedding masks. This resultant masked
embedding representation is then directed to the base MLP compo-
nent to predict user preference.

In the clustering stage, the main objective is to utilize K-Means
algorithm [28] to cluster samples into groups. This stage mostly
mirrors the procedure used in the searching stage: using the em-
bedding layer and Bernoulli gates (but using deterministic selection
mode, see Section 3.3.2) to calculate the masked embedding repre-
sentations. These masked embedding representations are then used
to train a mini-batch K-Means cluster [28]. As shown in Figure 1,
the K-means separates the red and yellow samples from the blue
and green samples.

The retraining stage aims to develop cluster-customized DLRMs,
considering the variation in dimension patterns across different
clusters. In each cluster, we calculate the embedding masks (using
deterministic selection mode) for all samples. The resultant masks
are then averaged to obtain one vector, which is used to determine
the final embedding dimensions of each DLRM.

3.2 Deep Learning Recommender Models
In this subsection, we provide a brief introduction to the basic
architecture of the DLRM. It typically comprises two primary com-
ponents: an embedding layer and an MLP component.

3.2.1 Embedding Layer. In classic DLRM, the embedding layer is
commonly used to convert the categorical inputs into a dense vector
of real numbers.

Let us denote the input of 𝑁 categorical field features for sample
𝑖 as 𝑿𝑖 = [𝒙𝑖,1, · · · , 𝒙𝑖,𝑛, · · · , 𝒙𝑖,𝑁 ], where 𝒙𝑖,𝑛 ∈ Z |𝑛 | represents
the one-hot vector comprising sparse, high-dimensional binary
values. The term |𝑛 | denotes the number of unique values for 𝑛-th

categorical field. For instance, a categorical field such as “gender”
with unique values – male, female, and unknown – can be expressed
through three-bit vectors [1, 0, 0], [0, 1, 0], and [0, 0, 1], respectively.
To process a numerical field feature, we will discretize it through
custom-width binning, followed by applying a one-hot operation.
Then, the operation of the embedding layer can be represented as:

𝒆𝑖,𝑛 = 𝒗𝑛 𝒙𝑖,𝑛,

where 𝒗𝑛 ∈ R𝑑×|𝑛 | is the embedding table of the 𝑛-th field, 𝑑 is the
predefined embedding dimension (typically consistent across all
fields), and 𝒆𝑖,𝑛 is the low-dimensional embedding representation.
Therefore, the final embedding of the input data 𝑿𝑖 through 𝑁
embedding tables is 𝑬𝑖 = [𝒆𝑖,1, · · · , 𝒆𝑖,𝑛, · · · , 𝒆𝑖,𝑁 ].

Notably, the embedding dimension search techniques we dis-
cussed earlier in Section 2.2 (also the focus of this paper) aim
at searching the optimal dimensions for embedding tables 𝑽 =

[𝒗1, · · · , 𝒗𝑛, · · · , 𝒗𝑁 ]. Specifically, our goal is to discover the op-
timal individual embedding dimension for each field, given the
inherent diversity in the heterogeneous dataset. This could poten-
tially enhance prediction performance.

3.2.2 MLP Component. The MLP component plays a crucial role
in DLRMs, tasked with encoding embedding representations and
predicting the recommendation. Empirically, it comprises multiple
fully-connected (FC) layers (characterized by parameter 𝜽 ) and is
also equipped with non-linear activation functions such as ReLU [1]
or Sigmoid, thereby facilitating the nonlinear encoding process of
these representations.

In the iHAS system, we will train three different DLRMs, as
illustrated in Figure 1. Each DLRM consists of an embedding layer
and an MLP component. These three models are named the base
recommender model, recommender model 1, and recommender
model 2, which are characterized by the parameter groups {𝑽 , 𝜽 }𝑏 ,
{𝑽 , 𝜽 }1, and {𝑽 , 𝜽 }2, respectively.

3.3 Bernoulli Gates
Bernoulli gates operate as switches, facilitating the transmission
of a sample’s information from embedding tables to the down-
stream MLP component. Analogous to the l0 norm, we hope these
“switches” to be capable of fully opening or closing without com-
promising the information integrity (shrinking the embedding rep-
resentation). Inspired by the approach presented in [18, 35], we use
Bernoulli gates to predict each sample’s relevant dimensions given
its embedding representation. The detailed process of the Bernoulli
gates is graphically depicted in Figure 2.

The Bernoulli gates operate in two distinct modes: stochastic
selection and deterministic selection. Under the stochastic selection
mode, the gates operate as independent Bernoulli distributions, to
independently “open” or “close” dimensions given the probabilities.
The principle behind stochastic selection rests on the assumption
that, given a sufficiently large number of training iterations, the
gates will stochastically and comprehensively traverse all potential
combinations of dimensions. This prompts the Bernoulli parameters
to increase for beneficial dimensions and penalize unhelpful ones.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, & Di Niu

Figure 1: Overview of the three-stage training process in the iHAS framework. The four edge colors of the vectors (red, blue,
yellow, and green) correspond to four different samples, which also correspond to the points in the clusters. The brightness
level indicates the values of an element. “

⊙
” represents the element-wise product operation.

Once the Bernoulli distributions (gates) have been fully explored,
we capitalize on the learned distribution by deterministically open-
ing the most advantageous dimensions in the deterministic selec-
tion mode. However, learned Bernoulli probabilities often exhibit
heavy-tailedness, making it challenging to distinguish between im-
portant and unimportant dimensions. To mitigate this, we suggest
employing a polarization regularizer and an automatic threshold
searcher (both discussed in Section 3.3.3) inside Bernoulli gates.

3.3.1 Stochastic Selection. In our previous discussion, we aim for
Bernoulli gates to function as independent Bernoulli distributions
in the stochastic selection mode during the searching stage. The
first objective is to encode the embedding representations to the
desired independent Bernoulli probabilities. To this end, we em-
ploy an FC layer (with parameter𝒘) and a Sigmoid activation layer
(𝜎) to project these embedding representations of the 𝑖-th sample
onto Bernoulli probabilities (upper left of Figure 2), denoted by
{𝑝𝑖, 𝑗 }𝑁

∗
𝑗=1 = 𝜎 (𝒘 𝑬𝑖 ), where 𝑁 ∗ = 𝑁 × 𝑑 is the total length of the

embedding representations. This enables us to initiate a combina-
torial search process over the space of Bernoulli probabilities and
FC parameters.

However, optimizing a loss function, which includes discrete
RVs (Bernoulli distributions), incurs high variance [23]. To over-
come this obstacle, we adopt Gumbel-Softmax [11] (aka Concrete
distribution [21]), which offers a viable continuous approximation
to the Bernoulli distribution, as visualized in Figure 2 (right).

Recall that Gumbel-Max [7, 22] is an effective method for draw-
ing samples from a Bernoulli distribution (or any type of discrete
random variables), as long as we provide the class probabilities. For
instance, if we use 𝑝𝑖, 𝑗 and 1 − 𝑝𝑖, 𝑗 as the probabilities for select-
ing and not selecting the 𝑗-th embedding dimension for sample
𝑖 , respectively, the Gumbel-Max trick to approximate Bernoulli
distribution sampling can then be expressed as:

𝒛𝑖, 𝑗 = one hot (arg max (log𝑝𝑖, 𝑗 +𝐺𝑖, 𝑗 , log(1 − 𝑝𝑖, 𝑗 ) +𝐺 ′
𝑖, 𝑗 )), (1)

where𝐺𝑖, 𝑗 and𝐺 ′
𝑖, 𝑗

are i.i.d. samples drawn from a Gumbel distribu-
tion with the location at 0 and scale of 1, denoted as Gumbel(0, 1).
However, both the “one hot()” and “arg max()” operations are non-
differentiable, making them intractable for gradient descent opti-
mization. Therefore, the softmax function is used as a continuous,



iHAS: Instance-wise Hierarchical Architecture Search for DLRMs CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 2: The detailed process of Bernoulli gates to generate embedding masks from the embedding representation. “
⊕

”
represents the element-wise summation operation.

differentiable approximation of these operations. The softmax func-
tion uses a temperature parameter 𝜏 ∈ R+ to regulate the approxi-
mation degree (or the entropy of the distribution), as formalized:

𝒛𝑖, 𝑗 =

[
exp( (log𝑝𝑖, 𝑗 +𝐺𝑖, 𝑗 ) /𝜏 ) , exp( (log(1 − 𝑝𝑖, 𝑗 ) +𝐺 ′

𝑖, 𝑗
) /𝜏 )

]
exp( (log 𝑝𝑖, 𝑗 +𝐺𝑖, 𝑗 ) /𝜏 ) + exp( (log(1 − 𝑝𝑖, 𝑗 ) +𝐺 ′

𝑖, 𝑗
) /𝜏 ) .

(2)
As 𝜏 approaches 0, 𝒛𝑖, 𝑗 approximates the true binary vector, making
the Gumbel-Softmax distribution become identical to the desired
Bernoulli distribution. Then the final embedding masks, 𝒎𝑖 , are
created by concatenating the first bit of {𝒛𝑖, 𝑗 }𝑁

∗
𝑗=1.

However, our goal remains to produce true binary masks, which
would effectively eliminate information from unimportant dimen-
sions, as opposed to significantly shrinking them. The straight-
through (ST) Gumbel-Softmax [2, 11] serves well in this context. In
the ST variant, the operation from Equation 1 is implemented in the
forward pass while the continuous approximation from Equation 2
is used in the backward gradient descent. This approach enables
sparse selection even when the temperature 𝜏 is high, while still
allowing the gradient to propagate and update the parameters.

3.3.2 Deterministic Selection. After training the Bernoulli probabil-
ities (𝑝𝑖, 𝑗 ) during the searching phase, we utilize these probabilities
to determine which dimensions will contribute to the accuracy of
the recommendation predictions. However, 𝑝𝑖, 𝑗 are characterized by
high variance and heavy-tailedness, as shown by the histogram in
Figure 3 (left). These present two complications: (1) distinguishing
important dimensions from unimportant ones becomes challenging;

0.0 0.5
Probabilities

10
0

10
1

10
2

Fr
eq

ue
nc

y

(a) w/o polarization

0.0 0.5
Probabilities

10
0

10
1

10
2

Threshold

(b) w/ polarization

Figure 3: Histogram of the Bernoulli probabilities for a sam-
ple from Avazu dataset, trained (a) with and (b) without po-
larization regularizer. Note that y-axes use log scales, and
within the same range, to facilitate better visual comparison.

and (2) even the unimportant dimensions still possess a small prob-
ability of being selected. Moreover, masks created using Bernoulli
gates introduce an element of randomness (Gumbel noise), which
hinders their direct application during inference (where given the
same data each time, consistent results should be generated).

To overcome these limitations, we propose a deterministic selec-
tion mode that directly selects the beneficial dimensions using the
knowledge derived from the well-trained Bernoulli probabilities.
This process is outlined in Figure 2 (bottom left). Firstly, we use the
same FC layer and sigmoid layer to estimate the Bernoulli probabili-
ties, 𝑝𝑖, 𝑗 , analogous to the first step in the stochastic selection mode.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, & Di Niu

Then, for each sample 𝑖 , we search a threshold among the probabil-
ities {𝑝𝑖, 𝑗 }𝑁

∗
𝑗=1 (see details in Section 3.3.3). We automatically adjust

the gates to be open for probabilities exceeding this threshold and
closed for those falling below it. The resulting embedding masks are
utilized during the clustering and retraining phase (see Figure 1).

3.3.3 Polarization and Automatic Threshold Searcher. Let’s consider
an empirical optimization procedure with an l0 regularization on
the embedding masks during the searching stage:

R ( {𝑽 , 𝜽 }𝑏 , 𝒎 ) = E𝑖 E𝒎𝑖

[
L( 𝑓𝜽𝑏

( 𝑽𝑏 · 𝑿𝑖 ⊙ 𝒎𝑖 ), 𝑦𝑖 )
]
, (3)

with regularizer R (𝒎) = E𝑖 E𝒎𝑖
[ 𝜆 ∥𝒎𝑖 ∥0 ] , (4)

whereL(·, ·) represents the binary cross-entropy (BCE) loss, 𝑓𝜽𝑏
(·)

represents the base MLP component with parameters 𝜽𝑏 , 𝑦𝑖 is the
ground truth label for the 𝑖-th sample, and 𝜆 is a balancing factor
for the regularizer. Since we use Gumbel-Softmax to produce the
embedding masks, 𝒎𝑖 , the term E𝑖 E𝒎𝑖

∥𝒎𝑖 ∥0 effectively equals to
the sum of Bernoulli probabilities,

∑
𝑖

∑𝑁 ∗
𝑗=1 𝑝𝑖, 𝑗 .

Our experimentation, however, indicates that simply using this
l0 regularizer still experiences the heavy-tailedness and distinction
difficulties, as discussed in Section 3.3.2. Inspired from Zhuang et
al. [41], we incorporate a polarization regularizer into Equation 4:

R (𝒎) =
∑︁
𝑖

𝑁 ∗∑︁
𝑗=1

𝜆 𝑝𝑖, 𝑗 − |𝑝𝑖, 𝑗 − 𝑝𝑖 |, with 𝑝𝑖 =
1
𝑁 ∗

𝑁 ∗∑︁
𝑗=1

𝑝𝑖, 𝑗 . (5)

The intuition of the second term (which is the polarization regular-
izer) is to maximally distance 𝑝𝑖, 𝑗 from their mean 𝑝𝑖 . Empirically,
we have observed this polarization term effectively separates the
probabilities of important and unimportant dimensions into two
groups, thereby making them distinguishable (see Figure 3).

Despite employing the regularizer as stated in Equation 5, a
threshold searcher is still required to identify the threshold for
𝑝𝑖, 𝑗 . Currently, the histogram of 𝑝𝑖, 𝑗 trained with the polarization
regularizer should have at least two peaks, with one of them located
close to 0. Following the strategy from [41], we scan the histogram
from left to right to identify the first saddle point, i.e., the bin that
contains the local minimum (the red pin in Figure 2). The lower
bound of this bin is subsequently set as the threshold.

3.4 Clusters
Once obtaining a sample’s unique embedding masks, our aim is
to pass this sample through a recommender model tailored to its
distinct dimension selection. This implies that, for every sample
with its individual selected dimensions, there always exists a cus-
tomized recommender model capable of handling this distinct input
and generating a precise prediction. Nonetheless, training an ex-
tensive number of recommender models is impractical due to the
constraint of finite data size. For example, with a obviously underes-
timated dimension, 𝑁 ∗ = 100, the number of possible combinations
of dimensions is

∑100
𝑘=0

(100
𝑘

)
= 2100, meaning at least 2100 distinct

samples should be collected.
Consequently, wemust strike a balance between using a one-size-

fits-all recommender model (inadequate for highly heterogeneous
samples) and using a fully-customized recommender model for
each sample. Our resolution is to leverage clustering algorithms to
segregate samples into separate groups. We anticipate that samples

Algorithm 1 Optimization Strategy for iHAS
Require: Training dataset Dtrain, validation dataset Dval
Ensure: Bernoulli gates parameters 𝒘 , K-Means with two clus-

ters, base recommender model {𝑽 , 𝜽 }𝑏 , recommender model 1
{𝑽 , 𝜽 }1, and recommender model 2 {𝑽 , 𝜽 }2

1: ### Searching ###
2: Pretrain {𝑽 , 𝜽 }𝑏 for 5 epoch using Dtrain
3: while not converge on Dval do
4: sample a mini-batch ∈ Dtrain, get 𝒎 by stochastic selection
5: update {𝑽 , 𝜽 }𝑏 according the objective from Eq. 3
6: sample a mini-batch ∈ Dval, get 𝒎 by stochastic selection
7: update𝒘 according the objective from Eq. 3 and 5
8: end while
9: ### Clustering ###
10: while not converge on cluster centroids do
11: sample a mini-batch ∈ Dtrain, get 𝒎 by deterministic selec-

tion, assign samples to their closest centroid
12: update the cluster centroids of K-means
13: end while
14: ### Retraining ###
15: Based on the K-Means cluster, split Dtrain → Dtrain 1,Dtrain 2,

and split Dval → Dval 1,Dval 2
16: find the optimal dimensions for Dtrain 1 via Bernoulli gates,

and initialize {𝑽 , 𝜽 }1 with the corresponding dimensions
17: while not converge on Dval 1 do
18: sample a mini-batch from Dtrain 1
19: update {𝑽 , 𝜽 }1 according the objective from Eq. 3
20: end while
21: repeat lines 16-20 with Dtrain 2, Dval 2, and {𝑽 , 𝜽 }2

within the same group display similar patterns, which could be used
to explore identical dimension patterns and identical recommender
models. Furthermore, partitioning the data into clusters facilitates
the training of small and manageable models for each cluster, thus
accelerating the inference speed.

In this iHAS framework, we opt for the mini-batch K-Means
clustering algorithm [28] to partition the samples. We chose this
variant due to its computational efficiency in handling large datasets
(comprised of tens of millions of samples), and its capacity to avoid
getting stuck at local optima.

3.5 Optimization Strategy
In the iHAS framework, we adopt a hierarchical training strategy to
optimize different modules in different stages, inspired by [12, 15, 24,
33], to tackle the encoding issue of jointly optimizing all modules.
The detailed optimization strategy in each stage is illustrated in
Algorithm 1.

3.5.1 Searching Stage. As mentioned in [35], the use of Gumbel-
Softmax approximation for the discrete random variable suffers
from high variance, which can lead to inconsistency in the set of
selected dimensions. Inspired by [15], we first pretrain the base
recommender model for a few epochs to obtain a tentative reli-
able embedding representation. During these pretrain epochs, the
Bernoulli gates are always deterministically open (no matter what
embedding representation it receives). Then, after we’ve obtained a



iHAS: Instance-wise Hierarchical Architecture Search for DLRMs CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 1: The statistics of Avazu and Criteo datasets.

Dataset #Instances #Fields #Features

Avazu 40,400,000 22 645,394
Criteo 45,840,617 39 1,086,810

tentative reliable embedding representation, we initialize the param-
eters for the Bernoulli gates and start the stochastic selection. Later
we adopt the bi-level optimization strategy [12, 24] to disjointly
update the parameters 𝒘 in Bernoulli gates and the parameters
{𝑽 , 𝜽 }b in the base recommender model.

3.5.2 Clustering Stage. In the clustering stage, we can obtain the
masked embedding representations using the embedding tables and
Bernoulli gates which have been trained during the searching stage.
Remember we use deterministic selection mode for Bernoulli gates
to generate embedding masks in this clustering stage. For each
sample, compute its Euclidean distance to the centroid using the
masked embedding representations, then assign it to the nearest
centroid (group), and later update the centroids.

3.5.3 Retraining Stage. As to the retraining stage, we first divide all
samples via the trained K-Means cluster. Then we find the majority
dimensions for each group from their embedding masks using the
deterministic mode. After that, we initialize the deep recommender
model 1 and 2 by their corresponding optimal dimensions and train
them separately using the samples of each cluster.

4 EXPERIMENT
In this section, we conduct extensive experiments to evaluate our
proposed framework. Specifically, the main research questions we
care about are as follows:

• RQ1: How does iHAS perform compared with other main-
stream selection methods?

• RQ2: Can the proposed iHAS be successfully transferred to
more powerful recommender models?

• RQ3: How does each component contribute to the overall
performance of the proposed iHAS?

• RQ4: Does the proposed iHAS demonstrate efficiency when
compared to baseline models?

• RQ5: Does iHAS construct rational recommender model
structures?

4.1 Datasets
We conduct our experiments mainly on two commonly used pub-
lic datasets, Avazu1 and Criteo2, which are both large-scale real-
world datasets and serve as benchmarks in click-through rate (CTR)
prediction tasks. Table 1 presents the detailed statistics of both
datasets. Each dataset has been randomly segmented into train-
ing/validation/testing sets based on the proportions of 80%, 10%,
and 10%.

• Avazu dataset consists of 40 million users’ click records on
ads over 11 days. Each record contains 22 categorical field
features. Following the general preprocessing steps [29, 40],

1https://www.kaggle.com/c/avazu-ctr-prediction/
2https://www.kaggle.com/c/criteo-display-ad-challenge/

we group fields of which frequency is less than ten as a single
field “others”.

• Criteo dataset consists of 46 million users’ click records on
display ads. Each record contains 26 categorical fields and 13
numerical fields. we use the preprocessing method as Avazu
for the low-frequency fields (less than ten) and transform
each numerical field 𝑥 by 𝑙𝑜𝑔2 (𝑥) if 𝑥 > 2.

4.2 Evaluation Metrics
Following the previous works [17, 25], we evaluate the performance
of our method using two common metrics:AUC and Logloss. AUC
refers to the area under the ROC curve, which means the proba-
bility that a model will rank a randomly selected positive instance
higher than a randomly selected negative one. A higher AUC value
indicates superior model performance. On the other hand, Logloss,
aka binary cross-entropy loss, directly quantifies the model’s per-
formance, with a lower score denoting more accurate predictions.
Note that a marginal 0.001-level improvement in AUC (increase)
or Logloss (decrease) is perceived as a significant enhancement in
model performance [19, 33, 37].

4.3 Baseline Methods
We compare our proposed method with the following state-of-the-
art methods:

• PEP [17]: It adopts trainable thresholds to prune redundant
embedding dimensions.

• AutoField [33]: It utilizes neural architecture search tech-
niques [16] to select important field features.

• OptEmbed [20]: It trains a supernet with various selected
embedding dimensions, then uses evolution search to find
the optimal embedding dimensions based on the supernet.

• AdaFS [15]: It assigns weights to different fields in a soft
manner (AdaFS-soft) or masks unimportant fields in a hard
manner (AdaFS-hard) via a novel controller network.

• OptFS [19]: It simultaneously selects optimal field features
and the optimal interactions between these features using
“binary gates”.

4.4 Implementation Details
We implement our method based on a public library3 that in-
volves sixteen commonly-used DLRMs. As our framework is model-
agnostic, it can be seamlessly integrated with any of these models,
see Section 4.6. For the embedding layer, we set the initial embed-
ding size of all fields as 16 in accordance with the previous works
[15, 33]. For the MLP component, we adopt two fully-connected
layers of size (16, 8) with the ReLU activation function. We use
Adam optimizer [13] with an initial learning rate of 0.001, and
weight decay of 1e-6. The batch size is set to 2048. We sample one
validation batch every 100 training batches for bi-level optimization.
The temperature 𝜏 for ST Gumbel-Softmax is set to 0.1.

The baseline models are implemented by the codes provided by
their authors. For a fair comparison, we set the initial embedding
dimension as 16 for all baselines. All the experiments are run on a
single machine with an Nvidia RTX 3090 GPU.

3https://github.com/rixwew/pytorch-fm

https://www.kaggle.com/c/avazu-ctr-prediction/
https://www.kaggle.com/c/criteo-display-ad-challenge/
https://github.com/rixwew/pytorch-fm


CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, & Di Niu

Table 2: Performance comparison between iHAS and baseline models.

Dataset Metric Methods

PEP AutoField OptEmbed AdaFS-soft AdaFS-hard OptFS iHAS

Avazu AUC ↑ 0.7665 0.7773 0.7630 0.7777 0.7763 0.7724 0.7815
Logloss ↓ 0.3874 0.3813 0.3894 0.3812 0.3821 0.3840 0.3791

Criteo AUC ↑ 0.8006 0.8029 0.7962 0.8039 0.8031 0.8015 0.8043
Logloss ↓ 0.4507 0.4490 0.4543 0.4484 0.4560 0.4504 0.4478

4.5 Overall Performance (RQ1)
Table 2 compares the overall performance of our proposed iHAS
and other baseline models on the Avazu and Criteo datasets. We
summarize our observations below.

First, our iHAS outperforms all the state-of-the-art baselinemeth-
ods as it can achieve higher AUC and lower Logloss on both datasets,
demonstrating the effectiveness of iHAS in deep recommendation
systems. Specifically, iHAS outperforms the runner-ups by 0.0038
(AUC) and 0.0021 (Logloss) on the Avazu datasets, and by 0.0004
(AUC) and 0.0006 (Logloss) on the Criteo datasets.

Secondly, among all baselines, AdaFS-soft is the most effective
model for the Avazu and Criteo datasets. However, it only shrinks
the field features using a feature weighting layer and therefore does
not completely eliminate the effect of unimportant fields. Although
AdaFS-hard attempts to mask unimportant fields by uniformly
keeping the top 𝐾 features, the trained feature weights may still
exhibit a high variance pattern (remember the non-distinguishable
probabilities in Figure 3, left panel). Therefore, this top 𝐾 selection
manner may lead to selecting unimportant features or omitting
the important feature in their final model, further compromising
the model performance. Our polarization regularizer and threshold
searcher can help with this issue, as detailed in Section 3.3.3 and
evidenced by the empirical ablation study in Section 4.7.

Lastly, other baselines apply global feature/dimension selection
across all samples, which fails to account for inherent variations
among heterogeneous individuals, and consequently leads to sub-
optimal performance. Additionally, PEP mainly emphasizes on the
model size, i.e., it stops searching once the embedding table reaches
a predefined parameter size. This approach may result in a sub-
optimal embedding table due to overlooking themodel performance.
AutoField4 also employs the top 𝐾 selection manner, again leading
to feature misselection and inferior model performance.

4.6 Transferability Analysis (RQ2)
In this subsection, we explore the transferability of iHAS. Specifi-
cally, we freeze the parameters of the well-trained Bernoulli gates
and utilize them to help train other popular deep recommendation
models, including FM [26], W&D [4], and DeepFM [8].

Table 3 shows the experimental results on Avazu, where “origi-
nal” refers to the corresponding model without any selection. We
can observe that: (i) all the recommendation models have great
improvement by adopting iHAS, which again demonstrates the
importance of performing selection in the recommendations; (ii)

4The performance score for AutoField is borrowed from its original paper [33] as they
use the same experimental settings and have not publicly released the codes.

Table 3: Transferability of iHAS on the Avazu dataset.

Model Metric Transfer Type

Original AdaFS-soft iHAS

FM AUC ↑ 0.7766 0.7799 0.7826
Logloss ↓ 0.3815 0.3797 0.3793

W&D AUC ↑ 0.7772 0.7790 0.7797
Logloss ↓ 0.3815 0.3802 0.3800

DeepFM AUC ↑ 0.7806 0.7817 0.7840
Logloss ↓ 0.3795 0.3786 0.3784

Table 4: Ablation study on the Avazu datasets.

Metric Methods

Base iHAS-1 iHAS-2 iHAS-3 iHAS-4 iHAS

AUC ↑ 0.7765 0.7772 0.7767 0.7801 0.7768 0.7815
Logloss ↓ 0.3818 0.3813 0.3816 0.3800 0.3817 0.3791

The transferability of iHAS is better than the best baseline (by com-
paring the iHAS and AdaFS-soft in Table 3), which validates the
effectiveness of our Bernoulli gates.

In summary, we conclude that iHAS has outstanding transfer-
ability across different recommendation models, which enables it
to be leveraged in complicated real-world recommender systems.

4.7 Ablation Study (RQ3)
In this subsection, we conduct the ablation study of key components
in iHAS, as shown in Table 4. The Base model keeps all fields and
the uniform embedding dimensions without any selections, and
we derive four variants from iHAS: (i) iHAS-1: This variant is the
model directly obtained in the searching stage, i.e., we remove the
clustering and retraining stages; (ii) iHAS-2: This variant consists
of a searching stage and a retraining stage. After we have the well-
trained Bernoulli gates, we select dimensions across all samples to
retrain one recommender model instead of separating samples into
different clusters for retraining cluster-customized recommender
models; (iii) iHAS-3: This variant is the standard iHAS without
using the polarization regularizer described in Section 3.3.3; (iv)
iHAS-4: This variant doesn’t consider instance-wise differences
by disconnecting the Bernoulli probabilities with the embedding
representations of each sample. That means the Bernoulli proba-
bilities become {𝑝 𝑗 }𝑁

∗
𝑗=1 = 𝜎 (𝑤∗) where 𝑤∗ is simply a randomly



iHAS: Instance-wise Hierarchical Architecture Search for DLRMs CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Ada
FS-ha

rd

Ada
FS-so

ft

OptF
S

PEP

OptE
mbe

d
iHAS

10
1

10
2

Se
co

nd
s

Figure 4: Inference time (in log scale) of iHAS and other
baselines on the Avazu dataset.

initialized vector of the dimension length, making every sample
share the same probability for every dimension.

Based on the results in Table 4, we can find: (i) iHAS and its vari-
ants can increase the AUC and decrease the Logloss compared with
the Base model, which indicates the necessity of performing selec-
tion on embedding dimensions for boosting model performance; (ii)
iHAS performs better than iHAS-1, which indicates the necessity of
the subsequent clustering and retraining stages; (iii) iHAS-1 outper-
forms iHAS-2, therefore, separating instances into different groups,
i.e., the clustering stage, is beneficial for boosting the performance;
(iv) Polarization is vital for acquiring better Bernoulli gates by com-
paring iHAS with iHAS-3; (v) Respecting the difference between
instances can further boost the performance by comparing iHAS
with iHAS-4.

4.8 Efficiency Analysis (RQ4)
In addition to model performance, efficiency is vital when deploying
the recommendation model into online systems, especially infer-
ence efficiency. We report the inference time on the whole test set
of iHAS and other baselines in Figure 4. We can find that iHAS
achieves the least inference time. This is because iHAS feed differ-
ent test data into its preferred recommender model of smaller size
instead of feeding all test data into a single model which may lead
to additional inference cost on some data. On the contrary, PEP
requires the longest inference time because its embedding table is
usually sparse and hardware-unfriendly.

4.9 Case Study (RQ5)
In this subsection, we first use a case study to investigate the optimal
embedding dimensions for each cluster from iHAS. We show the
results on Avazu as an example and exclude all anonymous field
features in Figure 5.

We can observe that: (i) Each field’s optimal dimensions greatly
vary from one to another (from 4 to 12), which highlights the
necessity of dimension search in recommender systems; (ii) id-
related features, e.g., site_id and app_id, typically possess more
dimensions. This aligns with human intuition as the id-related
features are the core of recommender systems; (iii) Samples within
different clusters tend to select different dimensions for each field,
which validates our claim that different clusters present different

ho
ur

ba
nn

er_
po

s
sit

e_
id

sit
e_

do
main

sit
e_

ca
t

ap
p_

id

ap
p_

do
main

ap
p_

ca
t

de
v_

id
de

v_
ip

de
v_

mod
el

de
v_

typ

de
v_

co
nn

_ty
p

0
2
4
6
8

10
12
14

# 
D

im
en

si
on

s

Recommder Model 1
Recommder Model 2

Figure 5: Case study of selected dimensions of each field for
each DLRM in iHAS on the Avazu dataset.

Recommerder Model 2

0 0 1 1

0.17 0.87 0.89 0.21 0.74 0.02 0.23 0.67

Recommender Model 1

Prediction

Samples

Figure 6: Example data predictions on the Avazu dataset,
where the samples with the same edge color belong to the
same cluster. The ground truths and prediction scores are
displayed in the diamonds.

patterns and should be trained separately to enhance performance
and reduce inference time in Section 3.4.

Furthermore, we use four samples to illustrate the effectiveness of
the iHAS framework consisting of group-customized recommender
models. Figure 6 shows four samples grouped into two clusters
(two in pink and two in cyan). Each cluster has its customized
recommender model. We can find that the predictions are more
correct (lower Logloss) if we feed the sample into its corresponding
model. However, if feeding all of them together into one of the
recommender models, we will receive some wrong predictions.

5 CONCLUSION
This study proposes an instance-wise Hierarchical Architecture
Search framework, iHAS, as an innovative solution to the chal-
lenges associated with identifying optimal embedding dimensions
for DLRMs. iHAS employs a three-stage hierarchical training strat-
egy including searching, clustering, and retraining. The searching
stage aims to identify the optimal embedding dimensions for each
sample across different fields. Subsequent stages of clustering and
retraining provide a mechanism for gathering similar samples as
clusters and training cluster-customized DLRMs based on the in-
dividual optimal dimensions, thereby enhancing recommendation
predictions. We conduct extensive experiments on two large-scale
datasets to authenticate the efficacy of the proposed framework.
The results demonstrate that iHAS could boost the performance of
deep recommendations while reducing inference costs. Addition-
ally, iHAS exhibits outstanding transferability to popular DLRMs.



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Yakun Yu, Shi-ang Qi, Jiuding Yang, Liyao Jiang, & Di Niu

REFERENCES
[1] Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375 (2018).
[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or

propagating gradients through stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432 (2013).

[3] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2014. Simple and scalable
response prediction for display advertising. ACM Transactions on Intelligent
Systems and Technology (TIST) 5, 4 (2014), 1–34.

[4] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[5] Mingyue Cheng, Zhiding Liu, Qi Liu, Shenyang Ge, and Enhong Chen. 2022.
Towards Automatic Discovering of Deep Hybrid Network Architecture for Se-
quential Recommendation. In Proceedings of the ACMWeb Conference 2022. 1923–
1932.

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[7] Emil Julius Gumbel. 1954. Statistical theory of extreme values and some practical
applications: a series of lectures. Vol. 33. US Government Printing Office.

[8] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a factorization-machine based neural network for CTR prediction. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence.
1725–1731.

[9] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel. 2010.
Social media recommendation based on people and tags. In Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval. 194–201.

[10] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse
predictive analytics. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 355–364.

[11] Eric Jang, Shixiang Gu, and Ben Poole. [n. d.]. Categorical Reparameterization
with Gumbel-Softmax. In International Conference on Learning Representations.

[12] Neil Jethani, Mukund Sudarshan, Yindalon Aphinyanaphongs, and Rajesh Ran-
ganath. 2021. Have We Learned to Explain?: How Interpretability Methods Can
Learn to Encode Predictions in their Interpretations.. In International Conference
on Artificial Intelligence and Statistics. PMLR, 1459–1467.

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[14] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xdeepfm: Combining explicit and implicit feature in-
teractions for recommender systems. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 1754–1763.

[15] Weilin Lin, Xiangyu Zhao, Yejing Wang, Tong Xu, and Xian Wu. 2022. AdaFS:
Adaptive Feature Selection in Deep Recommender System. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
3309–3317.

[16] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable
Architecture Search. arXiv preprint arXiv:1806.09055 (2018).

[17] Siyi Liu, Chen Gao, Yihong Chen, Depeng Jin, and Yong Li. [n. d.]. Learnable Em-
bedding sizes for Recommender Systems. In International Conference on Learning
Representations.

[18] Christos Louizos, Max Welling, and Diederik P Kingma. [n. d.]. Learning Sparse
Neural Networks through L_0 Regularization. In International Conference on
Learning Representations.

[19] Fuyuan Lyu, Xing Tang, Dugang Liu, Liang Chen, Xiuqiang He, and Xue Liu.
2023. Optimizing Feature Set for Click-Through Rate Prediction. In Proceedings
of the ACM Web Conference 2023. 3386–3395.

[20] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming Tang,
and Xue Liu. 2022. OptEmbed: Learning Optimal Embedding Table for Click-
through Rate Prediction. In Proceedings of the 31st ACM International Conference
on Information & Knowledge Management. 1399–1409.

[21] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. [n. d.]. The Concrete Distri-
bution: A Continuous Relaxation of Discrete Random Variables. In International
Conference on Learning Representations.

[22] Chris J Maddison, Daniel Tarlow, and Tom Minka. 2014. A* sampling. Advances
in neural information processing systems 27 (2014).

[23] Andriy Mnih and Danilo Rezende. 2016. Variational inference for monte carlo
objectives. In International Conference on Machine Learning. PMLR, 2188–2196.

[24] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient
neural architecture search via parameters sharing. In International conference on
machine learning. PMLR, 4095–4104.

[25] Liang Qu, Yonghong Ye, Ningzhi Tang, Lixin Zhang, Yuhui Shi, and Hongzhi
Yin. 2022. Single-shot Embedding Dimension Search in Recommender System.
In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 513–522.

[26] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International conference
on data mining. IEEE, 995–1000.

[27] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. 521–530.

[28] David Sculley. 2010. Web-scale k-means clustering. In Proceedings of the 19th
international conference on World wide web. 1177–1178.

[29] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,
and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th ACM International Conference
on Information and Knowledge Management. 1161–1170.

[30] Yixin Su, Rui Zhang, Sarah Erfani, and Zhenghua Xu. 2021. Detecting benefi-
cial feature interactions for recommender systems. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 35. 4357–4365.

[31] Yixin Su, Yunxiang Zhao, Sarah Erfani, Junhao Gan, and Rui Zhang. 2022. De-
tecting arbitrary order beneficial feature interactions for recommender systems.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 1676–1686.

[32] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[33] YejingWang, Xiangyu Zhao, Tong Xu, and XianWu. 2022. Autofield: Automating
feature selection in deep recommender systems. In Proceedings of the ACM Web
Conference 2022. 1977–1986.

[34] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional factorization machines: learning the weight of feature in-
teractions via attention networks. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence. 3119–3125.

[35] Yutaro Yamada, Ofir Lindenbaum, Sahand Negahban, and Yuval Kluger. 2020.
Feature selection using stochastic gates. In International Conference on Machine
Learning. PMLR, 10648–10659.

[36] Xiangyu Zhao, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, and Chong Wang.
2021. Autoloss: Automated loss function search in recommendations. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
3959–3967.

[37] Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida
Wang, Huiji Gao, and Bo Long. 2021. Autodim: Field-aware embedding dimension
searchin recommender systems. In Proceedings of the Web Conference 2021. 3015–
3022.

[38] Xiangyu Zhaok, Haochen Liu, Wenqi Fan, Hui Liu, Jiliang Tang, Chong Wang,
Ming Chen, Xudong Zheng, Xiaobing Liu, and Xiwang Yang. 2021. Autoemb:
Automated embedding dimensionality search in streaming recommendations. In
2021 IEEE International Conference on Data Mining (ICDM). IEEE, 896–905.

[39] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: A deep reinforcement learning framework
for news recommendation. In Proceedings of the 2018 world wide web conference.
167–176.

[40] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open
benchmarking for click-through rate prediction. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. 2759–2769.

[41] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and
Xiang Li. 2020. Neuron-level structured pruning using polarization regularizer.
Advances in neural information processing systems 33 (2020), 9865–9877.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Feature-based Recommender Models
	2.2 AutoML for Recommendations

	3 Method
	3.1 Overview
	3.2 Deep Learning Recommender Models
	3.3 Bernoulli Gates
	3.4 Clusters
	3.5 Optimization Strategy

	4 Experiment
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Baseline Methods
	4.4 Implementation Details
	4.5 Overall Performance (RQ1)
	4.6 Transferability Analysis (RQ2)
	4.7 Ablation Study (RQ3)
	4.8 Efficiency Analysis (RQ4)
	4.9 Case Study (RQ5)

	5 Conclusion
	References

