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ABSTRACT
Graph domain adaptation models have become instrumental in

addressing cross-network learning problems due to their ability

to transfer abundant label and structural knowledge from source

graphs to target graphs. A crucial step in transfer involves measur-

ing domain discrepancy, which refers to distribution shifts between

graphs from source and target domains. While conventional models

simply provide a node-level measurement, exploiting information

from different levels of network hierarchy is intuitive. As each hi-

erarchical level characterizes distinct and meaningful properties

or functionalities of the original graph, integrating domain dis-

crepancy based on such hierarchies should contribute to a more

precise domain discrepancy measurement. Moreover, class condi-

tional distribution shift is often overlooked in node classification

tasks, which could potentially lead to sub-optimal performance.

To address the above limitations, we propose a new graph domain

adaptation model and apply it to cross-network node classification

tasks. Specifically, a hierarchical pooling model to extract mean-

ingful and adaptive hierarchical structures is designed, where both

marginal and class conditional distribution shifts on each hierarchi-

cal level are jointly minimized. The effectiveness is demonstrated

through theoretical analysis and experimental studies across vari-

ous datasets.

CCS CONCEPTS
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1 INTRODUCTION
Inspired by domain adaptation (DA) technique, which transfers

knowledge from source domain to target domain in the presence of

distribution shifts, graph domain adaptation models (GDA) adapt

DA technique to graphs and aim to tackle practical cross-network

learning problems, such as cross-network node classification. In

particular, they leverage abundant label information from source

graphs (source domains) to classify nodes in unlabeled target graphs

(target domains), thus transferring valuable knowledge to the tar-

get network and reducing labeling costs associated with complex

graphs. Such a task has wide-ranging real-world applications, in-

cluding predicting user interests across online social networks [33,

42], inferring nodal properties in urban systems across different

regions [17, 25], and annotating protein functions in various protein-

protein interaction (PPI) networks [26, 43].

In the realm of cross-network learning problems, GDA models

face significant shifts in both node attribute distribution and graph

structures across source and target graphs. Following general DA

framework, the majority of GDA models adopt Graph Neural Net-

works (GNNs) to integrate these domain shifts holistically in the

embedding space. Following this, they interpret node embedding

shift as domain discrepancy and apply common discrepancy mea-

surements, such as Jensen–Shannon divergence [11, 34, 40, 47] or

Wasserstein distance [6, 46]. Consequently, these models provide a

node-level computation of domain discrepancy. However, unlike
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non-structural data, such as images, graphs typically exhibit in-

trinsic hierarchical structures [5, 41], each level of which embodies

meaningful and distinct properties of the original graphs. Moreover,

the differences in functionality across graphs tend to become more

evident when examining their high-level hierarchies. Therefore, it

is intuitive to exploit information from hierarchical levels for mea-

suring domain discrepancy more accurately. Figure 1 presents an

example from online social networks. Users are naturally grouped

by similar interests, and such user groups could be further assem-

bled into larger communities. Beyond the individual user-level,

distribution shifts at both group-level and community-level may

highlight the subtle differences that are not immediately apparent

at the user-level, thereby leading to a more precise discrepancy

computation.

Figure 1: Domain shifts at different hierarchical levels carry
meaningful and distinct information for computing domain
discrepancy.

In addition to employing hierarchical discrepancy computation,

GDA models, particularly when applied to cross-network node

classification tasks, could benefit from considering the shifts in

class-conditional distribution between node embeddings. Given

source domain 𝑠 , target domain 𝑡 , node embedding 𝑧, and node

label 𝑦, GDA models typically measure the marginal distribution

shift between 𝑃 (𝑧𝑠 ) and 𝑃 (𝑧𝑡 ). However, the difference between
𝑃 (𝑧𝑠 |𝑦𝑠 ) and 𝑃 (𝑧𝑡 |𝑦𝑡 ) also carries critical information for accurately

measuring domain discrepancy in graphs. The absence of𝑦𝑡 further

underscores the necessity for an effective pseudo-labeling strategy.

To mitigate the limitations of existing GDA models, we propose

a novel model JHGDA, which jointly minimizes both marginal and

class conditional distribution shifts based on hierarchical structures

on graphs. We mainly apply JHGDA to solve a significant task

in cross-network learning: cross-network node classification. To

this aim, we employ a differentiable hierarchical pooling model

to extract network hierarchies for both source and target graphs.

These hierarchical structures carry meaningful semantic informa-

tion, such as user communities or functional molecule units, while

remaining adaptive to downstream tasks. At each hierarchical level,

we jointly compute both marginal and class conditional distribution

shifts and aggregate the results across all levels to obtain a com-

prehensive domain discrepancy. Specifically, we adopt Maximum

Mean Discrepancy (MMD) as a basic discrepancy measurement and

apply it to source and target node embeddings. We also propose a

corresponding pseudo-label strategy for obtaining class conditional

information on unlabeled target graphs, which is formulated as a

linear sum assignment problem. To enhance the understanding of

JHGDA, we provide a theoretical proof demonstrating that such

hierarchical domain discrepancy equals the combination of graph

kernels. As graph kernels are widely adopted to assess graph simi-

larity [16, 28], such proof strengthens the interpretability of JHGDA.
We also establish a generalization bound for JHGDA to guarantee

its efficacy. Finally, we evaluate the superiority of JHGDA through

various real-world tasks, and we propose solutions to optimize

both time and space complexity accordingly. To sum up, the major

contributions of this paper are summarized as follows.

• We investigate GDA models which are applicable in a wide

range of cross-network learning tasks, and we discover that

their computation of domain discrepancy at the node-level

may lead to sub-optimal performance on graphs.

• We propose a model, JHGDA, to improve the performance

of GDA models in cross-network node classification task. It

jointly minimizes both marginal and class conditional distri-

bution shifts based on hierarchical graph structures. Through

theoretical proofs, we demonstrate its interpretability and

effectiveness.

• We conduct extensive experiments on various real-world

datasets to prove the superiority of JHGDA.

2 RELATEDWORK
The scarcity of high-quality labels and the sparsity of graph struc-

ture in many real-world applications pose challenges to the effec-

tiveness of GNNs. To mitigate these issues and enhance perfor-

mance, researchers have proposed cross-network learning tasks

to transfer abundant label knowledge and structural knowledge

from relevant source graphs to target graphs [34, 35]. They cover

various types including node classification [6, 17, 27, 42], link pre-

diction [19, 39, 44] and graph classification [2, 4, 37]. Graph do-

main adaptation is among the important approaches to solving

cross-network learning tasks. Most GDA models apply discrep-

ancy measurement, including MMD, Jensen–Shannon divergence

and Wasserstein distance to node embedding distributions for mea-

suring domain discrepancy [6, 11, 34, 35, 39, 40, 46, 47]. Such dis-

crepancy is minimized together with source task errors during

training. Among them, UDAGCN [40] develops a dual graph convo-

lutional network which jointly exploits local and global consistency

for better adaptation. GRADE-N [39] characterizes graph domain

discrepancy from the perspective of Weisfeiler-Lehman graph iso-

morphism test. Given Wasserstein distance as discrepancy mea-

surement, SpecReg [46] proposes a theory-grounded spectral regu-

larization method for a tightened generalization bound. ASN [47]

and DGDA [4] are disentanglement-based models which only mea-

sure the discrepancy between domain-related components. These

models neither consider hierarchical graph structures nor class con-

ditional distribution shift, leading to a sub-optimal performance. In

this work, we focus on cross-network node classification tasks and

jointly minimize both marginal and class conditional distribution

shifts on each level of network hierarchy.

Graph pooling is an essential tool for obtaining a holistic graph-

level representation of the entire graph, and it could be roughly

divided into flat pooling and hierarchical pooling [20]. Flat pooling

models iteratively delete nodes with comparatively lower impor-

tance according to scoring functions [9, 13]. In this work, we utilize
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hierarchical pooling models to extract meaningful and adaptive net-

work hierarchy. It preserves the hierarchical structural information

by iteratively coarsening the graph into a new graph of smaller

size [7, 21, 45].

3 PROBLEM STATEMENT
A graph 𝐺 is composed of node set 𝑉 and edge set 𝐸, which can

be represented by 𝐺 = (𝐴,𝑋,𝑌 ). 𝐴 ∈ R𝑁×𝑁 , 𝑋 ∈ R𝑁×𝐹 and

𝑌 ∈ R𝑁×𝐶 denote adjacency matrix, node feature matrix and label

matrix, respectively. 𝑁 = |𝑉 | is the size of node set, 𝐹 is the di-

mension of node feature space and𝐶 is the number of node classes.

𝑌𝑖,𝑐 = 1 indicates node 𝑖 is associated with class 𝑐 .

In the context of cross-network node classification, we assume

one source graph 𝐺𝑠 and one target graph 𝐺𝑡 could be accessed

during training. The relevance between 𝐺𝑠 and 𝐺𝑡 is defined from

two aspects: 1) 𝑋𝑠 and 𝑋 𝑡 are sampled from the same feature space

but have different distributions, and 2) the classification task keeps

unchanged across domains [29, 49]. 𝐺𝑠 is associated with the label

matrix 𝑌 𝑠 , while 𝐺𝑡 is unlabeled. Given 𝐺𝑠 = (𝐴𝑠 , 𝑋𝑠 , 𝑌𝑠 ) and
𝐺𝑡 = (𝐴𝑡 , 𝑋 𝑡 ), GDA model ℎ aims to predict 𝑌 𝑡 by jointly learning

on source and target domains: 𝑌 𝑡 = ℎ(𝐺𝑠 ,𝐺𝑡 ).

4 METHODOLOGY
4.1 Model Overview
As previously stated, it is necessary to extract hierarchical struc-

tures for graphs in each domain for better characterizing domain

discrepancy. Furthermore, such hierarchy should adapt to down-

stream tasks and can be optimized through training. Inspired by

DiffPool [45], we adaptively coarsen the input graph and learn the

optimal hierarchical representations by modeling both structural

and label information on graphs. Subsequently, we aggregate the

domain discrepancy calculated between each hierarchical level of

source and target graphs to obtain a comprehensive domain discrep-

ancy. In addition, a pseudo labeling module is applied to the original

target graph for generating pseudo labels. The overall framework

is illustrated by Figure 2.

4.2 Hierarchical Pooling
By alternatively stacking graph convolution blocks (gconv) and
graph pooling blocks (gpool) in each domain, we obtain a sequence

of graphs as hierarchical structures: (𝐺 (0) ,𝐺 (1) , ...,𝐺 (𝐿) ). Each
block comprises several graph convolution layers [15], and𝐺 (0) in-
dicates the original graph. First of all, we update node embeddings

on 𝐺 (𝑙 ) with 𝑔𝑐𝑜𝑛𝑣 . Given node feature matrix 𝑋 (𝑙 ) and adjacency

matrix 𝐴(𝑙 ) , 𝑔𝑐𝑜𝑛𝑣 learns a function 𝐺𝐶𝑁𝑒𝑚𝑏,𝑙 to update node em-

beddings:

𝑍 (𝑙 ) = 𝐺𝐶𝑁𝑒𝑚𝑏,𝑙 (𝑋 (𝑙 ) , 𝐴(𝑙 ) ) (1)

Meanwhile, the pooling is achieved by assigning a group of nodes

on 𝐺 (𝑙 ) into a cluster, which appears to be a node at 𝐺 (𝑙+1) . Thus,
we apply 𝑔𝑝𝑜𝑜𝑙 to learn a function 𝐺𝐶𝑁𝑝𝑜𝑜𝑙,𝑙 which computes the

cluster assignment matrix 𝑆 (𝑙 ) ∈ R |𝑉 (𝑙 ) |× |𝑉 (𝑙+1) | :

𝑆 (𝑙 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐺𝐶𝑁𝑝𝑜𝑜𝑙,𝑙 (𝑋 (𝑙 ) , 𝐴(𝑙 ) )) (2)

where row-wise 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 is applied. By setting pooling rate 𝑟 (𝑙 ) ∈
(0, 1) in advance, |𝑉 (𝑙+1) | = 𝑟 (𝑙 ) |𝑉 (𝑙 ) |. Generally, 𝑆 (𝑙 )

𝑖, 𝑗
indicates the

probability of assigning node 𝑖 to cluster 𝑗 .

Given updated node embedding 𝑍 (𝑙 ) and pooling mapping 𝑆 (𝑙 ) ,
the node feature 𝑋 (𝑙+1) and adjacency matrix 𝐴(𝑙+1) on 𝐺 (𝑙+1) is
computed as:

𝑋 (𝑙+1) = 𝑆 (𝑙 )
𝑇

𝑍 (𝑙 ) (3)

𝐴(𝑙+1) = 𝑆 (𝑙 )
𝑇

𝐴(𝑙 )𝑆 (𝑙 ) (4)

To further compute the class conditional distribution shift, label

information on 𝐺 (𝑙 ) is needed. Thus, given soft label matrix 𝑌 (𝑙 ) ,
where𝑌

(𝑙 )
𝑖,𝑐

indicates 𝑃 (𝑦𝑖 = 𝑐 |𝑣𝑖 ) and each row sums up to 1 ,𝑌 (𝑙+1)

is computed as:

𝑌 (𝑙+1) = 𝑆 (𝑙 )
𝑇

𝑌 (𝑙 ) (5)

At 𝑙 = 0, 𝑌 𝑠,(0) equals ground-truth labels 𝑌 𝑠 , and 𝑌 𝑡,(0) is given
by pseudo label strategy proposed in section 4.4.

To sum up, the hierarchical pooling model extracts network

hierarchy as a series of graphs for each domain and attaches each

hierarchy with node feature matrix, adjacency matrix and soft label

matrix.

4.3 Hierarchical Domain Discrepancy
As our objective is to measure domain discrepancy from different hi-

erarchical levels, we calculate discrepancy 𝑑𝑏 (𝐺𝑠,(𝑙 ) ,𝐺𝑡,(𝑙 ) ) at each
level and aggregate the results to obtain a comprehensive domain

discrepancy. Consequently, the hierarchical domain discrepancy is

formulated as follows:

𝑑 (𝐺𝑠 ,𝐺𝑡 ) =
𝐿∑︁
𝑙=0

𝑑𝑏 (𝐺𝑠,(𝑙 ) ,𝐺𝑡,(𝑙 ) ) (6)

where 𝑑𝑏 represents base discrepancy measurement, such as MMD.

In this work, we initially adopt the exponential form of MMD to

measure marginal distribution shift:

𝑑𝑏 (𝐺𝑠,(𝑙 ) ,𝐺𝑡,(𝑙 ) ) = 𝑒−𝛼𝑀𝑀𝐷 (𝑍
𝑠,(𝑙 ) ,𝑍 𝑡,(𝑙 ) )

(7)

Empirically, the exponential form has additional advantages,

including smoother loss curves which are easier to optimize. The

basic idea behind MMD is that if the generating distributions are

identical, all the statistics are the same as well [10]. Formally, MMD

defines the difference between two distributions with their mean

embeddings in the reproducing kernel Hilbert space (RKHS). Given

kernel mapping𝜙 (·) and kernel𝑘 in the corresponding RKHS,MMD

is empirically estimated by comparing the square distance between

the empirical kernel mean embeddings:

𝑀𝑀𝐷 (𝑍𝑠,(𝑙 ) , 𝑍𝑠,(𝑙 ) )

= ∥ 1

𝑛𝑠,(𝑙 )

∑︁
𝑖

𝜙 (𝑍𝑠,(𝑙 )
𝑖
) − 1

𝑛𝑡,(𝑙 )

∑︁
𝑖

𝜙 (𝑍 𝑡,(𝑙 )
𝑖
)∥2

2

=

𝑛𝑠,(𝑙 )∑︁
𝑖

𝑛𝑠,(𝑙 )∑︁
𝑗

𝑎𝑘𝑖, 𝑗 +
𝑛𝑡,(𝑙 )∑︁
𝑖

𝑛𝑡,(𝑙 )∑︁
𝑗

𝑏𝑘𝑖, 𝑗 −
𝑛𝑠,(𝑙 )∑︁
𝑖

𝑛𝑡,(𝑙 )∑︁
𝑗

𝑐𝑘𝑖, 𝑗 (8)
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where 𝑘𝑖, 𝑗 = 𝑘 (𝑍𝑠,(𝑙 )𝑖
, 𝑍
𝑠,(𝑙 )
𝑗
), 𝑛 (𝑙 ) indicates the number of nodes,

a,b and c represent 1/𝑛𝑠,(𝑙 ) 2,1/𝑛𝑡,(𝑙 ) 2 and 2/𝑛𝑠,(𝑙 )𝑛𝑡,(𝑙 ) , respec-
tively.

For better characterizing domain discrepancy, we further in-

tegrate class conditional MMD, named CMMD, to measure class

conditional distribution shift [23, 24]. CMMD is formulated as the

summation of MMD calculated for each class:

𝐶𝑀𝑀𝐷 (𝑍𝑠,(𝑙 ) , 𝑍𝑠,(𝑙 ) )

=

𝐶∑︁
𝑐

∥ 1

𝑛𝑠,𝑐,(𝑙 )

∑︁
𝑖

𝜙 (𝑍𝑠,(𝑙 )
𝑖
) − 1

𝑛𝑡,𝑐,(𝑙 )

∑︁
𝑖

𝜙 (𝑍 𝑡,(𝑙 )
𝑖
)∥2

2

=

𝐶∑︁
𝑐

(
𝑛𝑠,𝑐,(𝑙 )∑︁
𝑖=1

𝑛𝑠,𝑐,(𝑙 )∑︁
𝑗=1

𝑎′𝑘𝑖, 𝑗 +
𝑛𝑡,𝑐,(𝑙 )∑︁
𝑖=1

𝑛𝑡,𝑐,(𝑙 )∑︁
𝑗=1

𝑏′𝑘𝑖, 𝑗 −
𝑛𝑠,𝑐,(𝑙 )∑︁
𝑖=1

𝑛𝑡,𝑐,(𝑙 )∑︁
𝑗=1

𝑐′𝑘𝑖, 𝑗 )

(9)

where 𝑛𝑐,(𝑙 ) indicates number of nodes belonging to class c on𝐺 (𝑙 ) .
It is counted after assigning the most probable label to the node, and

such probability is given by 𝑌 (𝑙 ) . a’, b’ and c’ are similarly defined

as they are in Equation 8.

By integrating MMD and CMMD, we could jointly minimize the

domain shifts of both marginal and class conditional distribution:

𝑑𝑏 (𝐺𝑠,(𝑙 ) ,𝐺𝑡,(𝑙 ) ) = 𝑝𝑒−𝛼𝑀𝑀𝐷
(𝑙 )
+ (1 − 𝑝)𝑒−𝛼𝐶𝑀𝑀𝐷

(𝑙 )
(10)

where 𝑝 indicates balancing coefficient, and 𝑀𝑀𝐷 (𝑙 ) , 𝐶𝑀𝑀𝐷 (𝑙 )

are short for MMD or CMMD computed at hierarchical level 𝑙 .

4.4 Pseudo Labeling
Pseudo labeling strategy is proposed for unlabeled target graph to

obtain class conditional information. We generate pseudo labels

on 𝐺𝑡,(0) and propagate them to the successive hierarchical levels

through Equation 5. Finally, nodes at all hierarchical levels of the

target graph are labeled.

Motivated by the principle that target nodes should align closely

with source nodes of the same class in the embedding space, we

propose a non-parametric strategy that transfers abundant label in-

formation from source graph to target graph for generating pseudo

labels. Specifically, we initially cluster target nodes into𝐶 groups by

KMeans algorithm, and 𝑂𝑡,𝑘 denotes the center of the 𝑘𝑡ℎ cluster,

which is computed by averaging node embeddings inside. Subse-

quently, We compute𝐶 class centers𝑂𝑠,𝑘 on source graph. As there

are 𝐶 target centers and 𝐶 source centers, we formulate pseudo

labeling as linear sum assignment problem:

min

𝑀

𝐶∑︁
𝑖

𝐶∑︁
𝑗

𝐷𝑖, 𝑗𝑀𝑖, 𝑗

𝑠 .𝑡 .

𝐶∑︁
𝑗=1

𝑀𝑖, 𝑗 = 1, 𝑖 = 1, . . . ,𝐶

𝐶∑︁
𝑖=1

𝑀𝑖, 𝑗 = 1, 𝑗 = 1, . . . ,𝐶

𝑀𝑖, 𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, . . . ,𝐶

where 𝐷 is the cost matrix and cosine dissimilarity is adopted for

𝐷 : 𝐷𝑖, 𝑗 =
1

2
(1 − 𝑐𝑜𝑠 (𝑂𝑡,𝑖 ,𝑂𝑠,𝑗 )). 𝑀 is the assignment matrix to be

solved, and𝑀𝑖, 𝑗 = 1 indicates pseudo label 𝑗 is assigned to all target

nodes in the 𝑖𝑡ℎ cluster. The generated pseudo labels are propagated

to the successive hierarchies through pooling (i.e., Equation 5).

4.5 Proposed Model
In this section, we propose JHGDA by putting all the ingredients

introduced above together, and we analyze algorithm complexity

subsequently.

Following the settings in DiffPool, we add two side loss terms

to improve the performance of pooling. Initially, we encourage the

model to learn clear cluster assignment between the successive

hierarchical levels by adding regularization 𝐿
(𝑙 )
𝑒 = 1

𝑛 (𝑙 )
∑𝑛 (𝑙 )
𝑖 𝐻 (𝑆𝑖 ),

where 𝐻 (·) denotes entropy function and 𝑆𝑖 is the i-th row of 𝑆 . In

addition, the model should preserve local structure during pooling.

As a result, we encourage the model to assign neighboring nodes to

the same cluster through regularizing 𝐿
(𝑙 )
𝑠𝑝 = ∥𝐴(𝑙 ) − 𝑆 (𝑙 )𝑆 (𝑙 )𝑇 ∥𝐹 ,

where ∥ · ∥𝐹 denotes Frobenius norm. 𝐿
(𝑙 )
𝑠 = 𝐿

(𝑙 )
𝑒 + 𝐿

(𝑙 )
𝑠𝑝 indicates

the sum of side loss terms at hierarchical level 𝑙 .

However, 𝐿
(𝑙 )
𝑠 is not enough to guarantee a good computation of

class conditional distribution shift, for the label distribution 𝑌
(𝑙 )
𝑖

of

node 𝑖 tends to be uniform, and such class information is ambiguous.

In the contrary, we expect 𝑌
(𝑙 )
𝑖

to be deterministic (i.e., 𝑌
(𝑙 )
𝑖

should

be similar to one-hot vector). Therefore, we regularize the entropy

of label distribution for each node by minimizing label entropy loss

𝐿
(𝑙 )
𝑙𝑒

:

𝐿
(𝑙 )
𝑙𝑒

=
1

𝑛 (𝑙 )

𝑛 (𝑙 )∑︁
𝑖

𝐻 (𝑌 (𝑙 )
𝑖
) (11)

In addition, the model should preserve local patterns related

to class distribution. In practice, we encourage nodes of the same

class to be pooled to the same cluster by minimizing class pattern

preserving loss 𝐿
(𝑙 )
𝑐𝑝𝑝 :

𝐿
(𝑙 )
𝑐𝑝𝑝 = ∥𝑆 (𝑙 ) − 𝑌 (𝑙 )𝑌 (𝑙+1)

𝑇

∥𝐹 (12)

Consequently, we denote class-relevant side loss term at level

𝑙 as 𝐿
(𝑙 )
𝑐𝑠 = 𝐿

(𝑙 )
𝑙𝑒
+ 𝐿 (𝑙 )𝑐𝑝𝑝 . All sides loss terms are computed on both

domains, and they are aggregated from all hierarchical levels: 𝐿𝑠 =∑
𝑙 𝐿
(𝑙 )
𝑠 , 𝐿𝑐𝑠 =

∑
𝑙 𝐿
(𝑙 )
𝑐𝑠 .

Finally, JHGDA is jointly trained on source and target graphs,

and it is optimized with the following objective function consisting

of four integral parts:

𝐿 = 𝐿𝐶𝐸 (𝑌 𝑠 , 𝑌𝑠 ) + 𝛽𝑑 (𝐺𝑠 ,𝐺𝑡 ) + 𝛾1𝐿𝑠 + 𝛾2𝐿𝑐𝑠 (13)

where 𝐿𝐶𝐸 represents cross entropy loss computed between ground-

truth source labels 𝑌 𝑠 and predicted source labels 𝑌 𝑠 , which are

generated by applying classifier in model ℎ to 𝑍𝑠,(0) . 𝑑 (𝐺𝑠 ,𝐺𝑡 ) is
defined from Equation 6 and 10. 𝛽 , 𝛾1 and 𝛾2 are coefficients. After

training, we could apply the trained model to 𝐺𝑡,(0) for obtaining
target node embeddings and predicting node labels.

5 OPTIMIZATION
Given two graphswith approximately𝑛 nodes and𝑚 edges each, the

time complexity of JHGDA with one pooling block and two graph

convolution blocks is 𝑂 (𝑚 + 𝑟2𝑛2). This complexity is comparable
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Figure 2: Overview of model framework to compute hierarchical domain discrepancy, where an alternative stacking of gconv
and gpool blocks is adopted to extract hierarchical structures, and the domain discrepancy computed at each level is aggregated.
gpool-s and gpool-t indicates separate gpools for source and target graphs. 𝑑 (𝑙 )

𝑏
is short for 𝑑𝑏 (𝐺𝑠,(𝑙 ) ,𝐺𝑡,(𝑙 ) ).

Algorithm 1 Training JHGDA for one epoch

Input: 𝐺𝑠 = (𝐴𝑠 , 𝑋𝑠 , 𝑌𝑠 ), 𝐺𝑡 = (𝐴𝑡 , 𝑋 𝑡 ), model ℎ with initialized

parameters 𝜃ℎ , number of gpool 𝐿 and other related parameters

Output: Optimized ℎ

1: Initialize 𝐿𝑠 , 𝐿𝑐𝑠 , 𝑑 (𝐺𝑠 ,𝐺𝑡 ) with 0

2: Initialize 𝐴𝑠,(0) , 𝐴𝑡,(0) , 𝑋𝑠,(0) , 𝑋 𝑡,(0) and 𝑌 𝑠,(0)

3: for 𝑙 < 𝐿 + 1 do
4: Update node embeddings 𝑍𝑠,(𝑙 ) and 𝑍 𝑡,(𝑙 ) //Eq. 1
5: if 𝑙 == 0 then
6: Update target pseudo labels 𝑌 𝑡,(0) // Sect. 4.4
7: Compute source cross-entropy loss 𝐿𝐶𝐸
8: end if
9: 𝑑 (𝐺𝑠 ,𝐺𝑡 )+ = 𝑑 (𝑙 )

𝑏
// domain discrepancy at level 𝑙

10: if 𝑙 < 𝐿 then
11: for 𝑘 ∈ {𝑠, 𝑡} do
12: Compute 𝑆𝑘,(𝑙 ) ,𝐴𝑘,(𝑙+1) ,𝑋𝑘,(𝑙+1) ,𝑌𝑘,(𝑙+1) // Pooling
13: 𝐿𝑠+ = 𝐿 (𝑙 )𝑠 , 𝐿𝑐𝑠+ = 𝐿 (𝑙 )𝑐𝑠 // side loss terms at level 𝑙

14: end for
15: end if
16: end for
17: 𝐿𝑜𝑠𝑠 = 𝐿𝐶𝐸 (𝑌 𝑠 , 𝑌𝑠 ) + 𝛽𝑑 (𝐺𝑠 ,𝐺𝑡 ) + 𝛾1𝐿𝑠 + 𝛾2𝐿𝑐𝑠
18: 𝜃ℎ ← 𝜃ℎ − 𝑙𝑟 ∗ ∇𝜃ℎ𝐿𝑜𝑠𝑠

to that of baseline GDA models applying GCN to K-hop PPMI

matrix [40, 47].

In our model, the high complexity mainly comes from the dense

adjacency matrix at higher hierarchical levels. One way to improve

the practicality is setting a moderately low but efficient value for 𝑟 .

While a higher value of 𝑟 keeps richer structural information, it also

significantly increases the size of adjacency matrix. We propose two

additional solutions to achieve a balance between effectiveness and

efficiency. First of all, we sparsify cluster assignment matrix 𝑆 (𝑙 ) .
As dense 𝑆 (𝑙 ) leads to a fully connected𝐺 (𝑙+1) , which significantly

increases model complexity, we sparsify it by only keeping top-K

assignment for each node. Such sparsification converts 𝑆
(𝑙 )
𝑖

into

a one-hot vector, indicating which cluster the node 𝑖 should be

mapped to. Besides, we further share gpool between source and

target graphs to reduce space complexity. Experimental results in

Section 7.5 validate the effectiveness of the proposed optimization

methods.

6 THEORETICAL ANALYSIS
In this section we first provide a theoretical insight of JHGDA by

proving the proposed domain discrepancy (i.e., Equation 6, 10) could

be viewed as the combination of graph kernels, each of which com-

pares source and target graphs at different levels of hierarchy. Such

specially designed graph kernels have additional merits including

task-adaptive and differentiable compared to conventional graph

kernels. Subsequently, we prove the effectiveness of JHGDA by

demonstrating its target risk is bounded, and such upper bound

could be progressively reduced.
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Definition 1. (Convolution Graph Kernel) Graph kernels are
widely adopted to measure similarity between graphs. We consider
graph kernels that perform pairwise comparisons between local sub-
structures centered at every node [16, 28]. Given mapping 𝑅−1 which
decompose graph into such sub-structures, the graph kernel 𝐾 could
be defined as:

𝐾 (𝐺,𝐺 ′) =
∑︁

𝑥∈𝑅−1 (𝐺 )

∑︁
𝑦∈𝑅−1 (𝐺 ′ )

𝑘𝑏𝑎𝑠𝑒 (𝑥,𝑦)

By using the definition of graph kernel, we first prove that

𝑑 (𝐺𝑠 ,𝐺𝑡 ) defined without class conditional distribution shit (i.e.,

defined by Equation 7) equals the combination of graph kernels.

Theorem 1.

𝑑 (𝐺𝑠 ,𝐺𝑡 ) =
𝐿∑︁
𝑙=0

𝑄𝑙𝑒𝛼𝑐
𝑙𝐾𝑙 (𝐺𝑠 ,𝐺𝑡 )

where 𝐾𝑙 , 𝑄𝑙 and 𝑐𝑙 denotes graph kernels, terms unrelated to dis-
crepancy and constant terms at level 𝑙 , respectively.

Proof 1. Firstly, we rewrite Equation 8 as:

𝑀𝑀𝐷 (𝑍𝑠,(𝑙 ) , 𝑍 𝑡,(𝑙 ) ) = 𝐴𝑙 + 𝐵𝑙 − 𝑐𝑙
𝑛𝑠,(𝑙 )∑︁
𝑖

𝑛𝑡,(𝑙 )∑︁
𝑗

𝑘𝑖, 𝑗 (14)

where 𝐴 and 𝐵 are unrelated to discrepancy.
When 𝑙 = 0, substituting Equation 14 into 𝑑 (𝐺𝑠 ,𝐺𝑡 ) would yield:

𝑑𝑏 (𝐺𝑠,(0) ,𝐺𝑡,(0) ) = 𝑄0 ∗ 𝑒𝛼𝑐
0
∑𝑛𝑠,(0)

𝑖=1

∑𝑛𝑡,(0)
𝑗=1 𝑘 (𝑍𝑠,(0)

𝑖
,𝑍

𝑡,(0)
𝑗
)

(15)

where 𝑄0 = 𝑒−𝛼 (𝐴
0+𝐵0 ) .

As 𝐺 (0) is the original input graph, we use V as 𝑅−1 which de-
composes graph into node sets. Therefore, 𝑑 (𝐺𝑠,(0) ,𝐺𝑡,(0) ) could be
rewritten by graph kernel 𝐾0:

𝑑𝑏 (𝐺𝑠,(0) ,𝐺𝑡,(0) ) = 𝑄0𝑒
𝛼𝑐0

∑
𝑢∈V(𝐺𝑠,(0) )

∑
𝑣∈V(𝐺𝑡,(0) ) 𝑘 (𝑢,𝑣)

= 𝑄0𝑒𝛼𝑐
0𝐾0 (𝐺𝑠 ,𝐺𝑡 )

(16)

When 𝑙 = 1, 𝑅−1 is represented by pooling mapping S (0) which
maps nodes to clusters. Thus, Equation 14-16 could be rewritten ac-
cordingly and 𝑑 (𝐺𝑠,(1) ,𝐺𝑡,(1) ) is represented by:

𝑑 (𝐺𝑠,(1) ,𝐺𝑡,(1) ) = 𝑄1𝑒
𝛼𝑐1

∑
𝑢∈S(0) (𝐺𝑠,(0) )

∑
𝑣∈S(0) (𝐺𝑡,(0) ) 𝑘 (𝑢,𝑣)

= 𝑄1𝑒𝛼𝑐
1𝐾1 (𝐺𝑠 ,𝐺𝑡 )

(17)

When extending hierarchical level from 𝑙 to 𝐿, 𝑅−1 could be rep-
resented by the composite function: S (𝑙−1) ◦ S (𝑙−2) ◦ · · · S (0) , and
𝐾𝑙 (𝐺𝑠 ,𝐺𝑡 ) is computed accordingly.

As 𝐾𝑙 represents graph kernel, the proposed domain discrep-

ancy is in fact a combination of graph kernels. 𝐾𝑙 compares sub-

structures extracted by S (𝑙−1) ◦S (𝑙−2) ◦ · · · S (0) . All 𝐾𝑙 s are differ-
entiable and adaptive to tasks. Following the similar idea, we could

prove that 𝑑 (𝐺𝑠 ,𝐺𝑡 ) defined with class conditional distribution shit

(i.e., defined by Equation 10) is also a combination of graph kernels.

Theorem 2.

𝑑 (𝐺𝑠 ,𝐺𝑡 ) =
𝐿∑︁
𝑙=0

Π𝑐𝑊
𝑐,𝑙𝑒𝛼𝐾

𝑐,𝑙 (𝐺𝑠 ,𝐺𝑡 )

where 𝐾𝑐,𝑙 and 𝑊 𝑐,𝑙 denote graph kernel and terms unrelated to
discrepancy for each class 𝑐 at level 𝑙 .

Proof 2. As most of the proof is similar to Proof 1, here we only
emphasize the formulation of graph kernel 𝐾𝑐,𝑙 for simplicity. We
define graph kernel for each class at each hierarchical level, and the
mapping 𝑅−1 for 𝐾𝑐,𝑙 is defined as C ◦ S (𝑙−1) ◦ S (𝑙−2) ◦ · · · S (0)
where mapping C maps 𝐺 (𝑙 ) to a set of nodes belonging to class 𝑐 .

Finally, we show that target risk of the proposedmodel is bounded

based onHΔH -divergence [1]. We use 𝜖 (ℎ) to denote task risks

on both domains.

Theorem 3.

𝜖𝑇 (ℎ) ≤ 𝜖𝑆 (ℎ) +
𝑝

2

𝐿∑︁
𝑙=0

𝑄𝑙𝑒𝛼𝑐
𝑙𝐾𝑙 (𝐺𝑠 ,𝐺𝑡 )

+ 1 − 𝑝
2

𝐿∑︁
𝑙=0

Π𝑐𝑊
𝑐,𝑙𝑒𝛼𝐾

𝑐,𝑙 (𝐺𝑠 ,𝐺𝑡 )

+ 𝜆∗ + C
where 𝜖𝑆 (ℎ) approximates 𝜖𝑆 (ℎ) by cross entropy loss 𝐿𝐶𝐸 in prac-
tice. The second and the third term on the RHS represent domain
discrepancy. 𝜆∗ is the ideal joint error on both domains, and C is
constant.

Therefore, Theorem 3 provides insights on the effectiveness of

JHGDA because it progressively reduce the first three terms of

target risk upper bound.

7 EXPERIMENTS
We evaluate JHGDA against several state-of-the-art GDA models

and other possible baselines, with the aim of addressing the follow-

ing questions:

Q1 How does JHGDA perform compared to other baselines on

multiple datasets? Is there a way to predetermine in which scenarios

the model will perform better?

Q2 What is the effectiveness of 1) extracting hierarchical graph

structures and 2) jointly modeling marginal and class conditional

distribution shifts?

Q3 What is the sensitivity of hyper-parameters?

Q4 What is the effectiveness of the proposed optimization solu-

tions?

7.1 Experimental Settings
To prove the superiority of JHGDA on cross-network node classifica-

tion tasks, we evaluate it on various types of datasets, including Air-
port [32], Citation [35] and Blog [35]. Airport contains airport traffic

networks from three countries: USA, Brazil and Europe, in which

the node indicates airport and the edge indicates the existence of

commercial fights. Citation contains three citation networks Acmv9

(A), Citationv1 (C) and Dblpv7 (D) which are extracted from the

ArnetMiner datasets [38]. In these networks a node represents a

paper and an edge indicates the citation relationship. Blog contains

two disjoint social networks Blog1 (B1) and Blog2 (B2) which are

extracted from the BlogCatalog dataset [18]. Each node represents

a blogger and each edge indicates the friendship between two blog-

gers. These datasets are widely adopted by this line of research,
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and we build cross-network node classification tasks between every

two graphs within the same dataset.

Baselines. We consider baselines from four categories:

Inductive Graph Neural Network GCN [15] andGraphSAGE [12]

are used in an inductive manner, where they are trained on source

graph and tested directly on target graph.

Conventional Domain Adaptation DANN [8] is selected from

conventional domain adaptation models which ignore the intrinsic

relationship between samples.

Graph Domain Adaptation Abranch of SOTAGDAmodels based

onGNN is selected, includingAdaGCN [6], UDAGCN [40], ASN [47],

GRADE-N [39] and SpecReg [46].

GNN with self-supervised learning EGI [48] and GCC [30] are

chosen as they are representativeworks in the field of self-supervised

graph models [22]. In practice, EGI is trained on source graph and

tested on target graph. For GCC, we load the pre-trained model

provided by authors to infer source and target node embeddings,

after which we train an SVM on source embeddings for node clas-

sification and apply it to target embeddings.

Model Configuration. JHGDA adopts an architecture gconv1-
gpool1-gconv2 to each graph, and gconv is always shared between

graphs. That is, gconv1 is firstly applied to the original graphs

for updating node embeddings, then gpool1 is stacked on gconv1
for pooling. Finally, gconv2 is applied to the pooled graphs for

update embeddings. Each block comprises twoGCN layers, inwhich

hidden dimensions follow the same setting of baselines. We use

Gaussian RBF kernel in Equation 8-9, and 𝛼 is empirically set to 0.1.

The coefficients 𝛽 and 𝛾1 are both set to 0.1 following conventional

settings [39, 45]. The pooling rate 𝑟 equals 0.5 on Airport and is

reduced to 0.3 and 0.2 on Citation and Blog, because they are much

larger. We train the model using Adam optimizer with learning

rates tuned from {5e-1, 5e-2, 5e-3}. We report classification accuracy

averaged over 10 runs.

7.2 Results for Cross-network Node
Classification

Table 1 and 2 compare the performance of JHGDA to baselines,

and the results provide positive answers to the first part of Q1.
Across all datasets, JHGDA achieves the highest average perfor-

mance, surpassing the SOTA baselines by 8.3%, 3.9% and 1.8% on

Airport, Citation and Blog, respectively. Observably, the naive in-
ductive GNN and conventional DA models often underperform due

to their inability to adequately capture domain shifts or structural

information. The performance of GCC is hindered by a gap between

pretraining and testing, while EGI’s limitations stem from an inabil-

ity to model domain discrepancy. In contrast, GDA models achieve

the best overall performance across most scenarios, indicating the

superiority of GDA in addressing cross-network node classification

tasks. It is also noteworthy that JHGDA consistently performs well

in all datasets, which is hard to achieve by baseline models. The

optimal GDA baselines vary across datasets with GRADE-N, ASN,

and AdaGCN. The superior performance of JHGDA can be attrib-

uted to its ability to model the intrinsic hierarchical property of

networks, which widely exists across various scenarios. Further-

more, the underperformance of GDA baselines can be linked to

their neglect of class conditional distribution shift.

To address the second part of Q1, we assume that the degree of

a network’s hierarchical property is directly proportional to the

performance of JHGDA. In practice, we adopt the global cluster-

ing coefficient (CC) [14] as the measurement of network hierar-

chy [5, 31, 36]. We compute the Pearson correlation between the av-

erage performance gain by which we surpass the best baseline GDA

model and the average CC on each dataset. The correlation coeffi-

cient equals 0.95, indicating a strong positive correlation. Therefore,

JHGDA tend to perform better on datasets with a higher degree of

hierarchy. Hopefully, many real-world networks evidently exhibit

intrinsic hierarchy [31].

Figure 3: Effectiveness of adopting hierarchical pooling and
class conditional distribution shift.

7.3 Effectiveness Analysis
To address Q2, we conduct ablation studies to independently inves-

tigate the effectiveness of hierarchical pooling and the adoption of

CMMD. Initially, we create a variant,𝑚𝑜𝑑𝑒𝑙𝑟𝑎𝑛𝑑 , in which a random

pooling block substitutes the gpool in the hierarchical pooling mod-

ule, resulting in a random distribution of nodes to clusters. We also

create another variant𝑚𝑜𝑑𝑒𝑙𝑙𝑜𝑢𝑣𝑎𝑖𝑛 by substituting gpool with lou-

vain community detection method [3], which maps nodes to fixed

communities. Lastly, We remove hierarchical pooling entirely, fo-

cusing solely on the original graph (denoted as𝑚𝑜𝑑𝑒𝑙1𝐿). Figure 3(a)

reveals the results, which suggest that 1) the inclusion of hierarchy

generally enhances performance and 2) the hierarchy generated by

JHGDA consistently proves to be the most effective and reliable. In

addition, we investigate the incorporation of CMMD to assess the

advantage of modeling class conditional distribution shift, and the

results are shown in Figure 3(b). Comparing the two models based

on Equation 7 and 10, the latter consistently outperforms, revealing

the superiority of jointly modeling marginal and class conditional

distribution shifts.

7.4 Parameter Sensitivity
To address Q3, we investigate hyper-parameters from the aspect of

model architecture and loss-related coefficients.

Parameters related to model architecture. First, we conduct
experiments to identify an effective yet low pooling rate 𝑟 (𝑙 ) . Al-
though a higher pooling rate keeps more structural information, it
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Table 1: Classification accuracy on Airport

USA→ Brazil USA→ Europe Brazil→USA Brazil→Europe Europe→USA Europe→Brazil Avg.

GCN 0.427 0.436 0.454 0.481 0.458 0.465 0.453

GSAGE 0.445 0.433 0.461 0.458 0.463 0.455 0.452

DANN 0.501 0.386 0.402 0.350 0.436 0.538 0.436

UDAGCN 0.607 0.488 0.497 0.510 0.434 0.477 0.502

AdaGCN 0.466 0.434 0.501 0.486 0.456 0.561 0.484

ASN 0.519 0.469 0.498 0.494 0.466 0.595 0.507

GRADE-N 0.550 0.457 0.497 0.506 0.463 0.588 0.510

SpecReg 0.481 0.444 0.480 0.546 0.436 0.527 0.486

EGI 0.523 0.451 0.417 0.454 0.452 0.588 0.481

GCC 0.351 0.331 0.272 0.396 0.275 0.366 0.332

JHGDA 0.695 0.519 0.511 0.569 0.522 0.740 0.593

Table 2: Classification accuracy on Citation and Blog

Citation Blog

A→D D→A A→C C→A C→D D→C Avg. B1→B2 B2→B1 Avg.

GCN 0.623 0.578 0.675 0.635 0.666 0.654 0.638 0.501 0.467 0.484

GSAGE 0.665 0.593 0.717 0.653 0.701 0.685 0.669 0.460 0.446 0.453

DANN 0.488 0.436 0.520 0.518 0.518 0.465 0.491 0.410 0.419 0.415

AdaGCN 0.687 0.663 0.701 0.643 0.709 0.702 0.684 0.522 0.532 0.527

UDAGCN 0.684 0.623 0.728 0.663 0.712 0.645 0.676 0.522 0.517 0.519

ASN 0.729 0.723 0.752 0.678 0.752 0.754 0.731 0.515 0.498 0.506

GRADE-N 0.701 0.660 0.736 0.687 0.722 0.687 0.699 0.507 0.473 0.490

SpecReg 0.662 0.550 0.733 0.582 0.668 0.697 0.649 0.383 0.376 0.379

EGI 0.647 0.557 0.676 0.598 0.662 0.652 0.632 0.261 0.258 0.260

GCC 0.315 0.280 0.256 0.254 0.292 0.256 0.276 0.146 0.153 0.149

JHGDA 0.755 0.737 0.814 0.757 0.762 0.794 0.770 0.544 0.530 0.537

significantly increases both time and space complexity. The results

on Airport and Citation are shown in Figure 4, from which we select

the appropriate 𝑟 (𝑙 ) for each dataset. For Citation dataset, 𝑟 (𝑙 ) over
0.5 leads to OOM and thus is left under-explored. Generally, as there

is no significant merit in increasing pooling rates, a heuristic setting

could be around 0.5 for balancing performance and complexity.

Subsequently, we conduct experiments to explore the effect of

involving hierarchies at higher levels on Airport dataset without
loss of generality. Obviously, stacking more gpools could extract

higher network hierarchy, but it is both time and spacial consuming.

We observe that the model which stacks two gpools for each graph

performs slightly better but increases ×3 times of GPU memory

usage. Thus, a heuristic setting could be adopting single gpool for
each graph.

Parameters related to loss terms.We analyze two crucial coef-

ficients in loss terms, 𝑝 and 𝛾2. 𝑝 balances marginal distribution

shift and class conditional distribution shift, which are modeled

in Equation 10, while 𝛾2 determines the weight of conditional side

loss 𝐿𝑐𝑠 . We conducted experiments on different tasks, with the

results from Citation dataset presented in Figure 5, which typifies

the phenomena observed across all datasets. First of all, we observe

from Figure 5(a) that increasing 𝑝 from 0 to 1 initially boosts perfor-

mance, yet any further increases appear detrimental. This finding

underlines that modeling marginal distribution shift is essential,

and incorporating class conditional distribution shift benefits the

task. Consequently, a heuristic setting of 𝑝 could be slightly larger

than 0.5. As for 𝛾2, the findings in Figure 5(b) suggest that regu-

larizing 𝐿𝑐𝑠 is beneficial and one could heuristically set 𝛾2 slightly

larger than 0.1.

7.5 Optimization Effectiveness
To address Q4, we conduct experiments on optimized models. First

of all, results in Figure 6(a) reveal that sparsifying assignment ma-

trix by keeping top-1 assignment is sufficient for a competitive

performance, despite a slight performance decrease. Meanwhile, it

leads to ×1.5 reduction in time consumption and ×1.4 reduction in

GPU memory usage on Citation dataset (tested when 𝑟 (𝑙 ) = 0.2).

This optimization becomes evenmore significant when dealingwith

 

2256



Improving Graph Domain Adaptation with Network Hierarchy CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Figure 4: Correlation between pooling rate and task perfor-
mance across different datasets. We mark the pooling rates
which best balance complexity and efficiency in vertical dash
lines.

Figure 5: Sensitivity of coefficients in loss terms.Wehighlight
the coefficient-performance pair that yields the best result
for each task with a red circle.

larger pooled graphs. Secondly, although sharing gpool may over-

look distinct hierarchies of each graph, our results in Figure 6(b)

demonstrate similar effectiveness in sharing pooling blocks be-

tween graphs.

7.6 Visualization
In this section, we visualize node embeddings generated by com-

petitive GDA models in the task𝐶 → 𝐷 . The goal is to gain insight

into model performance. We observe from Figure 7 with two phe-

nomenons. Firstly, the nodes belonging to different classes are

well-separated from each other. This shows that JHGDA is effective

in distinguishing between different classes in the embedding space.

Secondly, nodes belonging to the same class from different domains

are mostly overlapping, which indicates that JHGDA could signifi-

cantly reduce domain discrepancy. The first observation indicates

good classification, while the latter suggests good adaptation.

Figure 6: The performance of the proposed optimization
solutions compared with the original design.

Figure 7: Visualizing source and target node embeddings
via T-SNE. Each color indicates a class, while dark and light
shades of the same color represent nodes belonging to the
same class from source and target domains.

8 CONCLUSION
In this work, we mainly propose JHGDA to improve the perfor-

mance of GDA models in cross-network node classification tasks.

The key idea is to utilize the intrinsic hierarchical structures of

graphs for improving the computation of domain discrepancy. By

doing so, we can highlight subtle differences that may not be im-

mediately apparent at the node-level. Additionally, we incorporate

class-conditional distribution shift into discrepancy computing.

This allows for more effective transfer of label information from

source graphs to target graphs. Subsequently, we prove the model

effectiveness and strengthen the interpretability through theoreti-

cal analysis. We also conduct experimental studies to validate the

superiority of JHGDA. In the future, we may strive to handle the

cases where multiple source graphs could be utilized to transfer

knowledge and design new frameworks for other cross-network

learning tasks, including link prediction and graph classification.

We will also deep into the theory of graph domain adaptation for

developing more powerful models.
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